1
|
Zhang F, Guo Z, Li Z, Luan H, Yu Y, Zhu AT, Ding S, Gao W, Fang RH, Zhang L, Wang J. Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of lung metastasis. SCIENCE ADVANCES 2024; 10:eadn6157. [PMID: 38865468 PMCID: PMC11168470 DOI: 10.1126/sciadv.adn6157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Lung metastasis poses a formidable challenge in the realm of cancer treatment, with conventional chemotherapy often falling short due to limited targeting and low accumulation in the lungs. Here, we show a microrobot approach using motile algae for localized delivery of drug-loaded nanoparticles to address lung metastasis challenges. The biohybrid microrobot [denoted "algae-NP(DOX)-robot"] combines green microalgae with red blood cell membrane-coated nanoparticles containing doxorubicin, a representative chemotherapeutic drug. Microalgae provide autonomous propulsion in the lungs, leveraging controlled drug release and enhanced drug dispersion to exert antimetastatic effects. Upon intratracheal administration, algae-NP(DOX)-robots efficiently transport their drug payload deep into the lungs while maintaining continuous motility. This strategy leads to rapid drug distribution, improved tissue accumulation, and prolonged retention compared to passive drug-loaded nanoparticles and free drug controls. In a melanoma lung metastasis model, algae-NP(DOX)-robots exhibit substantial improvement in therapeutic efficacy, reducing metastatic burden and extending survival compared to control groups.
Collapse
Affiliation(s)
| | | | | | - Hao Luan
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Yiyan Yu
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Audrey T. Zhu
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Shichao Ding
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Joseph Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Noske S, Karimov M, Krüger M, Lilli B, Ewe A, Aigner A. Spray-drying of PEI-/PPI-based nanoparticles for DNA or siRNA delivery. Eur J Pharm Biopharm 2024; 199:114297. [PMID: 38641228 DOI: 10.1016/j.ejpb.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Spray-drying of nucleic acid-based drugs designed for gene therapy or gene knockdown is associated with many advantages including storage stability and handling as well as the possibility of pulmonary application. The encapsulation of nucleic acids in nanoparticles prior to spray-drying is one strategy for obtaining efficient formulations. This, however, strongly relies on the definition of optimal nanoparticles, excipients and spray-drying conditions. Among polymeric nanoparticles, polyethylenimine (PEI)-based complexes with or without chemical modifications have been described previously as very efficient for gene or oligonucleotide delivery. The tyrosine-modification of linear or branched low molecular weight PEIs, or of polypropylenimine (PPI) dendrimers, has led to high complex stability, improved cell uptake and transfection efficacy as well as high biocompatibility. In this study, we identify optimal spray-drying conditions for PEI-based nanoparticles containing large plasmid DNA or small siRNAs, and further explore the spray-drying of nanoparticles containing chemically modified polymers. Poly(vinyl alcohol) (PVA), but not trehalose or lactose, is particularly well-suited as excipient, retaining or even enhancing transfection efficacies compared to fresh complexes. A big mesh size is critically important as well, while the variation of the spray-drying temperature plays a minor role. Upon spray-drying, microparticles in a ∼ 3.3 - 8.5 µm size range (laser granulometry) are obtained, dependent on the polymers. Upon their release from the spray-dried material, the nanoparticles show increased sizes and markedly altered zeta potentials as compared to their fresh counterparts. This may contribute to their high efficacy that is seen also after prolonged storage of the spray-dried material. We conclude that these spray-dried systems offer a great potential for the preparation of nucleic acid drug storage forms with facile reconstitution, as well as for their direct pulmonary application as dry powder.
Collapse
Affiliation(s)
- Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Martin Krüger
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany
| | - Bettina Lilli
- Institute of Chemical Technology, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
3
|
Adams F, Zimmermann CM, Baldassi D, Pehl TM. Pulmonary siRNA Delivery with Sophisticated Amphiphilic Poly(Spermine Acrylamides) for the Treatment of Lung Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308775. [PMID: 38126895 PMCID: PMC7616748 DOI: 10.1002/smll.202308775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Indexed: 12/23/2023]
Abstract
RNA interference (RNAi) is an efficient strategy to post-transcriptionally silence gene expression. While all siRNA drugs on the market target the liver, the lung offers a variety of currently undruggable targets, which can potentially be treated with RNA therapeutics. To achieve this goal, the synthesis of poly(spermine acrylamides) (P(SpAA) is reported herein. Polymers are prepared via polymerization of N-acryloxysuccinimide (NAS) and afterward this active ester is converted into spermine-based pendant groups. Copolymerizations with decylacrylamide are employed to increase the hydrophobicity of the polymers. After deprotection, polymers show excellent siRNA encapsulation to obtain perfectly sized polyplexes at very low polymer/RNA ratios. In vitro 2D and 3D cell culture, ex vivo and in vivo experiments reveal superior properties of amphiphilic spermine-copolymers with respect to delivery of siRNA to lung cells in comparison to commonly used lipid-based transfection agents. In line with the in vitro results, siRNA delivery to human lung explants confirm more efficient gene silencing of protease-activated receptor 2 (PAR2), a G protein-coupled receptor involved in fibrosis. This study reveals the importance of the balance between efficient polyplex formation, cellular uptake, gene knockdown, and toxicity for efficient siRNA delivery in vitro, in vivo, and in fibrotic human lung tissue ex vivo.
Collapse
Affiliation(s)
- Friederike Adams
- Pharmaceutical Technology and Biopharmaceutics, Department Pharmacy Ludwig-Maximilians-University Munich, Butenandtstr. 5−13, 81377Munich, Germany
- Institute of Polymer Chemistry Chair of Macromolecular Materials and Fiber Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569Stuttgart, Germany
- Center for Ophthalmology University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | | | - Domizia Baldassi
- Pharmaceutical Technology and Biopharmaceutics, Department Pharmacy Ludwig-Maximilians-University Munich, Butenandtstr. 5−13, 81377Munich, Germany
| | - Thomas M. Pehl
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Department of Chemistry, Technical University Munich, Lichtenbergstr. 4, 85748Garching bei München, Germany
| |
Collapse
|
4
|
Steffens RC, Wagner E. Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery. Pharm Res 2023; 40:47-76. [PMID: 36109461 PMCID: PMC9483255 DOI: 10.1007/s11095-022-03385-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.
Collapse
Affiliation(s)
- Ricarda Carolin Steffens
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany.
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377, Munich, Germany.
| |
Collapse
|
5
|
Wei L, Li H, Yu X, Yang H, Pu D, Zhu M, Lu Q, Bao Y, Zu Y. Amino Acid Composition, Antioxidant, α-Glucosidase and α-Amylase Inhibitory Activities of the Enzymic Polypeptide from Acer truncatum Seed Meal. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Wu J, Zhai T, Sun J, Yu Q, Feng Y, Li R, Wang H, Ouyang Q, Yang T, Zhan Q, Deng L, Qin M, Wang F. Mucus-permeable polymyxin B-hyaluronic acid/ poly (lactic-co-glycolic acid) nanoparticle platform for the nebulized treatment of lung infections. J Colloid Interface Sci 2022; 624:307-319. [DOI: 10.1016/j.jcis.2022.05.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
7
|
Treating Pulmonary Fibrosis with Non-Viral Gene Therapy: From Bench to Bedside. Pharmaceutics 2022; 14:pharmaceutics14040813. [PMID: 35456646 PMCID: PMC9027953 DOI: 10.3390/pharmaceutics14040813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by irreversible lung scarring, which achieves almost 80% five-year mortality rate. Undeniably, commercially available pharmaceuticals, such as pirfenidone and nintedanib, exhibit certain effects on improving the well-being of IPF patients, but the stubbornly high mortality still indicates a great urgency of developing superior therapeutics against this devastating disease. As an emerging strategy, gene therapy brings hope for the treatment of IPF by precisely regulating the expression of specific genes. However, traditional administration approaches based on viruses severely restrict the clinical application of gene therapy. Nowadays, non-viral vectors are raised as potential strategies for in vivo gene delivery, attributed to their low immunogenicity and excellent biocompatibility. Herein, we highlight a variety of non-viral vectors, such as liposomes, polymers, and proteins/peptides, which are employed in the treatment of IPF. By respectively clarifying the strengths and weaknesses of the above candidates, we would like to summarize the requisite features of vectors for PF gene therapy and provide novel perspectives on design-decisions of the subsequent vectors, hoping to accelerate the bench-to-bedside pace of non-viral gene therapy for IPF in clinical setting.
Collapse
|
8
|
Herman L, De Smedt SC, Raemdonck K. Pulmonary surfactant as a versatile biomaterial to fight COVID-19. J Control Release 2022; 342:170-188. [PMID: 34813878 PMCID: PMC8605818 DOI: 10.1016/j.jconrel.2021.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has wielded an enormous pressure on global health care systems, economics and politics. Ongoing vaccination campaigns effectively attenuate viral spreading, leading to a reduction of infected individuals, hospitalizations and mortality. Nevertheless, the development of safe and effective vaccines as well as their global deployment is time-consuming and challenging. In addition, such preventive measures have no effect on already infected individuals and can show reduced efficacy against SARS-CoV-2 variants that escape vaccine-induced host immune responses. Therefore, it is crucial to continue the development of specific COVID-19 targeting therapeutics, including small molecular drugs, antibodies and nucleic acids. However, despite clear advantages of local drug delivery to the lung, inhalation therapy of such antivirals remains difficult. This review aims to highlight the potential of pulmonary surfactant (PS) in the treatment of COVID-19. Since SARS-CoV-2 infection can progress to COVID-19-related acute respiratory distress syndrome (CARDS), which is associated with PS deficiency and inflammation, replacement therapy with exogenous surfactant can be considered to counter lung dysfunction. In addition, due to its surface-active properties and membrane-interacting potential, PS can be repurposed to enhance drug spreading along the respiratory epithelium and to promote intracellular drug delivery. By merging these beneficial features, PS can be regarded as a versatile biomaterial to combat respiratory infections, in particular COVID-19.
Collapse
Affiliation(s)
- Lore Herman
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
de Braganca L, Ferguson GJ, Luis Santos J, Derrick JP. Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung. J Immunotoxicol 2021; 18:61-73. [PMID: 33956565 PMCID: PMC8788408 DOI: 10.1080/1547691x.2021.1902432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is a large, unmet medical need to treat chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and other respiratory diseases. New modalities are being developed, including gene therapy which treats the disease at the DNA/RNA level. Despite recent innovations in non-viral gene therapy delivery for chronic respiratory diseases, unwanted or adverse interactions with immune cells, particularly macrophages, can limit drug efficacy. This review will examine the relationship between the design and fabrication of non-viral nucleic acid nanoparticle (NP) delivery systems and their ability to trigger unwanted immunogenic responses in lung tissues. NP formulated with peptides, lipids, synthetic and natural polymers provide a robust means of delivering the genetic cargos to the desired cells. However NP, or their components, may trigger local responses such as cell damage, edema, inflammation, and complement activation. These effects may be acute short-term reactions or chronic long-term effects like fibrosis, increased susceptibility to diseases, autoimmune disorders, and even cancer. This review examines the relationship between physicochemical properties, i.e. shape, charge, hydrophobicity, composition and stiffness, and interactions of NP with pulmonary immune cells. Inhalation is the ideal route of administration for direct delivery but inhaled NP encounter innate immune cells, such as alveolar macrophages (AM) and dendritic cells (DC), that perceive them as harmful foreign material, interfere with gene delivery to target cells, and can induce undesirable side effects. Recommendations for fabrication and formulation of gene therapies to avoid adverse immunological responses are given. These include fine tuning physicochemical properties, functionalization of the surface of NP to actively target diseased pulmonary cells and employing biomimetics to increase immunotolerance.
Collapse
Affiliation(s)
- Leonor de Braganca
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - G John Ferguson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jose Luis Santos
- Dosage Form Design Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Keil TWM, Merkel OM. Characterization of positively charged polyplexes by tunable resistive pulse sensing. Eur J Pharm Biopharm 2020; 158:359-364. [PMID: 33338601 DOI: 10.1016/j.ejpb.2020.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
With the approval of the first siRNA-based drugs, non-viral siRNA delivery has gained special interest in industry and academia in the last two years. For non-viral delivery, positively charged lipid and polymer formulations play a central role in research and development. However, nanoparticle size characterization, particularly of polydisperse formulations, can be very challenging. Tunable resistive pulse sensing for particle by particle measurements of size, polydispersity, zeta potential and a direct concentration promises better assessment of nanoparticle formulations. However, the current application is not optimized for positively charged particles. A supplier-provided coating solution for difficult-to-measure samples does not allow for successful measurements of positively charged nanoparticles. This article describes a new coating solution based on choline-chloride. Coating is verified by current-voltage (I-V) recordings and ultimately tested on a positively charged nanoparticle formulation comprising of siRNA and PEG-PCL-PEI polymer. This coating allows successful size, polydispersity index (PDI) and concentration measurement by tunable resistive pulse sensing of positively charged PEI-based polyplexes. This article provides the foundation for further characterization of polyplexes as well as other positively charged nanoparticle formulations based on particle by particle measurements.
Collapse
Affiliation(s)
- Tobias W M Keil
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians Universität München, 81377 Munich, Germany.
| |
Collapse
|
11
|
Keil TWM, Baldassi D, Merkel OM. T-cell targeted pulmonary siRNA delivery for the treatment of asthma. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1634. [PMID: 32267622 DOI: 10.1002/wnan.1634] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/31/2022]
Abstract
Despite the large number of drugs available for the treatment of asthma, in 5-10% of the patients this disease is not well controlled. While most treatments palliate symptoms, those suffering from severe and uncontrolled asthma could benefit more from a therapeutic approach addressing the root problem. An siRNA-based therapy targeting the transcription factor GATA3 in activated T helper cells subtype 2 (TH 2 cells), one of the key upstream factors involved in asthma, could therefore represent a promising strategy. However, the difficult-to-transfect cell type has not extensively been explored for nucleic acid therapeutics. In this regard, our group first identified a suitable pathway, that is, transferrin receptor mediated uptake, to target efficiently and specifically activated TH 2 cells with a transferrin-polyethyleneimine (PEI) conjugate which forms polyplexes with siRNA. This system, despite efficient uptake in activated T cells (ATCs) in vivo, suffered from poor endosomal release and was later improved by a combination with a melittin-PEI conjugate. The new formulation showed improved endosomal escape and gene silencing efficacy. Additionally, in order to develop a clinically relevant dosage form for pulmonary delivery of siRNA we have lately focused on a dry powder formulation by spray drying (SD) for the production of inhalable nano-in-microparticles. In proof-of-concept experiments, DNA/PEI polyplexes were used in order to implement analytics and engineer process parameters to pave the way for SD also siRNA containing polyplexes and more sophisticated systems in general. Ultimately, our efforts are devoted to the development of a novel treatment of asthma that can be translated from bench to bedside and are reviewed and discussed here in the context of the current literature. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Tobias W M Keil
- Pharmaceutical Technology and Biopharmaceutics, LMU Munich, Munich, Germany
| | - Domizia Baldassi
- Pharmaceutical Technology and Biopharmaceutics, LMU Munich, Munich, Germany
| | - Olivia M Merkel
- Pharmaceutical Technology and Biopharmaceutics, LMU Munich, Munich, Germany
| |
Collapse
|
12
|
Keil TWM, Feldmann DP, Costabile G, Zhong Q, da Rocha S, Merkel OM. Characterization of spray dried powders with nucleic acid-containing PEI nanoparticles. Eur J Pharm Biopharm 2019; 143:61-69. [PMID: 31445157 DOI: 10.1016/j.ejpb.2019.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
Localized aerosol delivery of gene therapies is a promising treatment of severe pulmonary diseases including lung cancer, cystic fibrosis, COPD and asthma. The administration of drugs by inhalation features multiple benefits including an enhanced patient acceptability and compliance. The application of a spray dried powder formulation has advantages over solutions due to their increased stability and shelf life. Furthermore, optimal sizes of the powder can be obtained by spray drying to allow a deep lung deposition. The present study optimized the parameters involved with spray drying polyplexes formed by polyethylenimine (PEI) and nucleic acids in inert excipients to generate a nano-embedded microparticle (NEM) powder with appropriate aerodynamic diameter. Furthermore, the effects of the excipient matrix used to generate the NEM powder on the biological activity of the nucleic acid and the ability to recover the embedded nanoparticles was investigated. The study showed that bioactivity and nucleic acid integrity was preserved after spray drying, and that polyplexes could be reconstituted from the dry powders made with trehalose but not mannitol as a stabilizer. Scanning electron microscopy (SEM) showed trehalose formulations that formed fused, lightly corrugated spherical particles in the range between 1 and 5 µm, while mannitol formulations had smooth surfaces and consisted of more defined particles. After redispersion of the microparticles in water, polyplex dispersions are obtained that are comparable to the initial formulations before spray drying. Cellular uptake and transfection studies conducted in lung adenocarcinoma cells show that redispersed trehalose particles performed similar to or better than polyplexes that were not spray dried. A method for quantifying polymer and nucleic acid loss following spray drying was developed in order to ensure that equal nucleic acid amounts were used in all in vitro experiments. The results confirm that spray dried NEM formulations containing nucleic acids can be prepared with characteristics known to be optimal for inhalation therapy.
Collapse
Affiliation(s)
- Tobias W M Keil
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, 81337 Munich, Germany
| | - Daniel P Feldmann
- Department of Oncology, Wayne State University School of Medicine, 4100 John R St, Detroit, MI 48201, United States; Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, United States
| | - Gabriella Costabile
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, 81337 Munich, Germany
| | - Qian Zhong
- Department of Pharmaceutics, College of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Sandro da Rocha
- Department of Pharmaceutics, College of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, 81337 Munich, Germany; Department of Oncology, Wayne State University School of Medicine, 4100 John R St, Detroit, MI 48201, United States; Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, United States.
| |
Collapse
|
13
|
Mehta A, Dalle Vedove E, Isert L, Merkel OM. Targeting KRAS Mutant Lung Cancer Cells with siRNA-Loaded Bovine Serum Albumin Nanoparticles. Pharm Res 2019; 36:133. [PMID: 31289919 DOI: 10.1007/s11095-019-2665-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE KRAS is the most frequently mutated gene in human cancers. Despite its direct involvement in malignancy and intensive effort, direct inhibition of KRAS via pharmacological inhibitors has been challenging. RNAi induced knockdown using siRNAs against mutant KRAS alleles offers a promising tool for selective therapeutic silencing in KRAS-mutant lung cancers. However, the major bottleneck for clinical translation is the lack of efficient biocompatible siRNA carrier systems. METHODS Bovine serum albumin (BSA) nanoparticles were prepared by desolvation method to deliver siRNA targeting the KRAS G12S mutation. The BSA nanoparticles were characterized with respect to their size, zeta potential, encapsulation efficiency and nucleic acid release. Nanoparticle uptake, cellular distribution of nucleic acids, cytotoxicity and gene knock down to interfere with cancer hallmarks, uncontrolled proliferation and migration, were evaluated in KRAS G12S mutant A459 cells, a lung adenocarcinoma cell line. RESULTS BSA nanoparticles loaded with siRNA resulted in nanoparticles smaller than 200 nm in diameter and negative zeta potentials, displaying optimal characteristics for in vivo application. Encapsulating and protecting the siRNA payload well, the nanoparticles enabled transport to A549 cells in vitro, could evade endosomal entrapment and mediated significant sequence-specific KRAS knockdown, resulting in reduced cell growth of siRNA transfected lung cancer cells. CONCLUSIONS BSA nanoparticles loaded with mutant specific siRNA are a promising therapeutic approach for KRAS-mutant cancers.
Collapse
Affiliation(s)
- Aditi Mehta
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| | - Elena Dalle Vedove
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Lorenz Isert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
14
|
Kandil R, Xie Y, Heermann R, Isert L, Jung K, Mehta A, Merkel OM. Coming in and Finding Out: Blending Receptor-Targeted Delivery and Efficient Endosomal Escape in a Novel Bio-Responsive siRNA Delivery System for Gene Knockdown in Pulmonary T Cells. ADVANCED THERAPEUTICS 2019; 2:1900047. [PMID: 31372493 PMCID: PMC6675603 DOI: 10.1002/adtp.201900047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) offers the potential to selectively silence disease-related genes in defined cell subsets. Translation into the clinical routine is, however, still hampered by the lack of efficient carrier systems for therapeutic siRNA, endosomal entrapment presenting a major hurdle. A promising siRNA delivery system has previously been developed on the base of polyethylenimine (PEI) and the targeting ligand transferrin (Tf) to specifically reach activated T cells in the lung. In the present work, the focus is on optimizing Tf-PEI polyplexes for gene knockdown in primary activated T cells by improving their endosomal escape properties. Blending of the conjugate with membrane lytic melittin significantly enhanced endosomal release and thereby cytoplasmic delivery, while maintaining selective T cell targeting abilities and overall cell tolerability. The gathered data furthermore demonstrate that melittin addition also distinctly improves several other essential particle characteristics, such as siRNA encapsulation efficiency and stability in lung lining fluids. In conclusion, this results in a novel upgraded siRNA delivery system that is not only able to specifically deliver its payload to the desired target cells via receptor-mediated endocytosis, but also shows enhanced release from endosomal vesicles in order to initiate RNAi in the cytoplasm.
Collapse
Affiliation(s)
- Rima Kandil
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Yuran Xie
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA
| | - Ralf Heermann
- Institute for Molecular Physiology, Microbiology and Wine Research, Johannes-Gutenberg-University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany; Biocenter, Department Microbiology, Ludwig-Maximilians-University, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Lorenz Isert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Kirsten Jung
- Biocenter, Department Microbiology, Ludwig-Maximilians-University, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Aditi Mehta
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Olivia M. Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| |
Collapse
|
15
|
Microfluidic Assembly of siRNA-Loaded Micelleplexes for Tumor Targeting in an Orthotopic Model of Ovarian Cancer. Methods Mol Biol 2019. [PMID: 31099014 DOI: 10.1007/978-1-4939-9220-1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The use of cationic polymers to interact with negatively charged siRNA via charge complexation to form polyelectrolyte complexes has been widely studied ever since the 1998 report on RNA interference. These polyelectrolyte complex formulations aim to overcome the many pitfalls associated with the use of RNA interference as a potential cancer therapy. The triblock copolymer polyethylenimine-polycaprolactone-polyethylene glycol (PEI-PCL-PEG) contains the cation PEI and has been shown to be an efficient carrier capable of complexing with nucleic acids for gene delivery. This copolymer system also allows for targeting moieties to be linked to the micelleplex, thereby exploiting overexpressed receptors (such as the folate receptor) located within tumors. Additionally, we demonstrated recently that microfluidic mixing of PEI-PCL-PEG nanoparticles allows for the rapid, scaled-up production of micelleplexes while maintaining small and uniform particle distributions. The preparation of small and reproducible particles is imperative for clinical translation of nanomedicine and for tumor targeting via systemic administration. Furthermore, to enable tracing of its deposition in vivo after its administration, micelleplexes can be radiolabeled. To assess tumor targeting over time, the noninvasive imaging technique single-photon emission computed tomography (SPECT) offers the ability to examine the same subject at multiple time points and generate biodistribution profiles. Since the biodistribution and tumor targeting of the therapeutic load of micelleplexes is of foremost interest, we recently described an approach to modify siRNA with a DTPA (diethylenetriaminepentaacetic acid) chelator. Herein, we explain the details of encapsulating indium-labeled siRNA via microfluidic mixing in PEI-PCL-PEG nanoparticles with a folic acid targeting ligand for assessment of their in vivo tumor targeting in an orthotopic ovarian cancer model.
Collapse
|
16
|
Gaspar DP, Vital J, Leiva MC, Gonçalves LM, Taboada P, Remuñán-López C, Vítor J, Almeida AJ. Transfection of pulmonary cells by stable pDNA-polycationic hybrid nanostructured particles. Nanomedicine (Lond) 2019; 14:407-429. [PMID: 30698066 DOI: 10.2217/nnm-2018-0270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Cationically modified solid lipid nanoparticles (SLN) were investigated as plasmid DNA (pDNA) carriers and transfection agents for the pulmonary route. MATERIALS & METHODS pDNA-loaded SLN were produced using glyceryl dibehenate or tristearate as matrix lipids and chitosan as surface charge modifier, and encapsulated by spray-drying in mannitol and trehalose microspheres. RESULTS Nanoparticles of 200 nm, and zeta potential around +15 mV were produced. Electrophorectic analysis confirmed plasmid stability and integrity. The pDNA-loaded SLN were able to transfect the Calu-3 and A549 pulmonary cell lines, while showing low cytotoxicity. Microencapsulation of SLN yielded dry powders suitable for inhalation that protected pDNA from degradation. CONCLUSION Microencapsulated SLN are a promising safe and effective carrier system for pulmonary gene delivery following pulmonary administration.
Collapse
Affiliation(s)
- Diana P Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.,Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - María C Leiva
- Institute of Biopatology & Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18071 Granada, Spain.,Department of Anatomy & Embryology, University of Granada, 18071 Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), SAS - University of Granada, 18071 Granada, Spain
| | - Lídia Md Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Pablo Taboada
- Colloids & Polymers Physics Group, Department of Condensed Matter Physics, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Remuñán-López
- Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jorge Vítor
- Department of Biochemistry & Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
17
|
Guagliardo R, Pérez-Gil J, De Smedt S, Raemdonck K. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J Control Release 2018; 291:116-126. [PMID: 30321577 DOI: 10.1016/j.jconrel.2018.10.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Pulmonary surfactant (PS) has been extensively studied because of its primary role in mammalian breathing. The deposition of this surface-active material at the alveolar air-water interface is essential to lower surface tension, thus avoiding alveolar collapse during expiration. In addition, PS is involved in host defense, facilitating the clearance of potentially harmful particulates. PS has a unique composition, including 92% of lipids and 8% of surfactant proteins (SPs) by mass. Although they constitute the minor fraction, SPs to a large extent orchestrate PS-related functions. PS contains four surfactant proteins (SPs) that can be structurally and functionally divided in two groups, i.e. the large hydrophilic SP-A and SP-D and the smaller hydrophobic SP-B and SP-C. The former belong to the family of collectins and are involved in opsonization processes, thus promoting uptake of pathogens and (nano)particles by phagocytic cell types. The latter SPs regulate interfacial surfactant adsorption dynamics, facilitating (phospho)lipid transfer and membrane fusion processes. In the context of pulmonary drug delivery, the exploitation of PS as a carrier to promote drug spreading along the alveolar interface is gaining interest. In addition, recent studies investigated the interaction of PS with drug-loaded nanoparticles (nanomedicines) following pulmonary administration, which strongly influences their biological fate, drug delivery efficiency and toxicological profile. Interestingly, the specific biophysical mode-of-action of the four SPs affect the drug delivery process of nanomedicines both on the extra-and intracellular level, modulating pulmonary distribution, cell targeting and intracellular delivery. This knowledge can be harnessed to exploit SPs for the design of unique and bio-inspired drug delivery strategies.
Collapse
Affiliation(s)
- Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
18
|
Synthesis and evaluation of a novel water-soluble high Se-enriched Astragalus polysaccharide nanoparticles. Int J Biol Macromol 2018; 118:1438-1448. [DOI: 10.1016/j.ijbiomac.2018.06.153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/28/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|
19
|
Ahmadi Z, Jha D, Kumar B, Gautam HK, Kumar P. Bifunctionally engineered polyethylenimines as efficient DNA carriers and antibacterials against resistant pathogens. J Biomater Appl 2018; 33:363-379. [PMID: 30103671 DOI: 10.1177/0885328218792139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we have designed and developed two series of bifunctional conjugates by tethering polyethylenimine with streptomycin. By varying the amount of streptomycin, conjugates, polyethylenimine-streptomycin, have been synthesized and characterized spectroscopically. Gel electrophoresis assay revealed a slight decrease in the cationic charge density on the conjugates as these retarded the mobility of pDNA at higher w/w ratios. Further, transfection studies showed that both the series of conjugates transfected the mammalian cells efficiently with low-molecular weight polyethylenimine-streptomycin conjugates were more competent (∼9-fold enhancement with respect to native bPEI) exhibiting high cell viability too. Besides, both the series of conjugates displayed excellent antibacterial activity on pathogenic bacteria, even better than native streptomycin on resistant strains. Altogether, these results ensure the promising potential of the projected bifunctional conjugates as safe and efficient gene delivery vectors as well as antibacterials for future biomedical applications.
Collapse
Affiliation(s)
- Z Ahmadi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - D Jha
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - B Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - H K Gautam
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Pradeep Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| |
Collapse
|
20
|
Osman N, Kaneko K, Carini V, Saleem I. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin Drug Deliv 2018; 15:821-834. [PMID: 30021074 PMCID: PMC6110405 DOI: 10.1080/17425247.2018.1502267] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Macromolecules with unique effects and potency are increasingly being considered for application in lung pathologies. Numerous delivery strategies for these macromolecules through the lung have been investigated to improve the targeting and overall efficacy. AREAS COVERED Targeting approaches from delivery devices, formulation strategies and specific targets are discussed. EXPERT OPINION Although macromolecules are a heterogeneous group of molecules, a number of strategies have been investigated at the macro, micro, and nanoscopic scale for the delivery of macromolecules to specific sites and cells of lung tissues. Targeted approaches are already in use at the macroscopic scale through inhalation devices and formulations, but targeting strategies at the micro and nanoscopic scale are still in the laboratory stage. The combination of controlling lung deposition and targeting after deposition, through a combination of targeting strategies could be the future direction for the treatment of lung pathologies through the pulmonary route.
Collapse
Affiliation(s)
- Nashwa Osman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kan Kaneko
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Valeria Carini
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Imran Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
21
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
22
|
Chow MYT, Qiu Y, Lo FFK, Lin HHS, Chan HK, Kwok PCL, Lam JKW. Inhaled powder formulation of naked siRNA using spray drying technology with l-leucine as dispersion enhancer. Int J Pharm 2017; 530:40-52. [PMID: 28720537 DOI: 10.1016/j.ijpharm.2017.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/14/2017] [Accepted: 07/05/2017] [Indexed: 01/25/2023]
Abstract
Pulmonary delivery of short interfering RNA (siRNA) has been widely studied in both animal and clinical studies to treat various respiratory diseases by gene silencing through RNA interference. Some of these studies showed that the administration of naked siRNA (without the use of any delivery vectors) could achieve satisfactory gene silencing effect, a unique feature to pulmonary delivery. Liquid aerosols were mostly used with very limited studies on the use of powder aerosols for siRNA. In this study, siRNA was co-spray dried with mannitol and l-leucine, the latter being a dispersion enhancer. To the best of our knowledge, this is the first time that siRNA in its naked form was formulated into an inhalable dry powder using spray drying technology. The aerosol performance of the powder was evaluated by Next Generation Impactor (NGI). The presence of l-leucine in the formulation could improve the aerosolization of siRNA-containing powders. Results from the X-ray photoelectron spectroscopy (XPS) suggested that l-leucine was enriched on the particle surface and promote powder dispersion. Among the different siRNA formulations being examined, the one that contained 50% w/w of l-leucine exhibited the best aerodynamic performance, with a high emitted fraction (EF) of around 80% and a modest fine particle fraction (FPF) of 45%. Importantly, the integrity of siRNA was successfully retained as evaluated by gel retardation assay and high performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Michael Y T Chow
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Yingshan Qiu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Fiona F K Lo
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Hinson H S Lin
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, Building A15, The University of Sydney, Sydney, NSW 2006, Australia
| | - Philip C L Kwok
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; Advanced Drug Delivery Group, Faculty of Pharmacy, Building A15, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jenny K W Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
23
|
Nia AH, Eshghi H, Abnous K, Ramezani M. The intracellular delivery of plasmid DNA using cationic reducible carbon nanotube — Disulfide conjugates of polyethylenimine. Eur J Pharm Sci 2017; 100:176-186. [DOI: 10.1016/j.ejps.2017.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/31/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022]
|
24
|
Heyder RS, Zhong Q, Bazito RC, da Rocha SRP. Cellular internalization and transport of biodegradable polyester dendrimers on a model of the pulmonary epithelium and their formulation in pressurized metered-dose inhalers. Int J Pharm 2017; 520:181-194. [PMID: 28161666 DOI: 10.1016/j.ijpharm.2017.01.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/23/2016] [Accepted: 01/28/2017] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to evaluate the effect of generation and surface PEGylation of degradable polyester-based dendrimers nanocarriers on their interactions with an in vitro model of the pulmonary epithelium as well as to assess the ability to formulate such carriers in propellant-based, portable oral-inhalation devices to determine their potential for local and systemic delivery of drugs to and through the lungs. Hydroxyl (-OH) terminated polyester dendrimers of generation 3 and 4 (G3, and G4) were synthesized using a divergent approach. G4 was surface-modified with PEG (1,000Da). All dendrimers and their building blocks were determined to be highly compatible with the model pulmonary epithelium, with toxicity profiles much more favorable than non-degradable polyamidoamine dendrimers (PAMAM). The transport of the species from the apical to basolateral side across polarized Calu-3 monolayers showed to be generation and surface-chemistry (PEGylation) dependent. The extent of the transport is modulated by their interaction with the polarized epithelium and their transient opening of the tight junctions. G3 was the one most efficiently internalized by the epithelium, and had a small impact on the integrity of the monolayer. On the other hand, the PEGylated G4 was the one least internalized by the polarized epithelium, and at the same time had a more pronounced transient impact on the cellular junctions, resulting in more efficient transport across the cell monolayer. PEGylation of the dendrimer surface played other roles as well. PEGylation modulated the degradation profile of the dendrimer, slowing the process in a step-wise fashion - first the PEG layer is shed and then the dendrimer starts degrading. PEGylation also helped increase the solvation of the nanocarriers by the hydrofluoroalkane propellant used in pressurized metered-dose inhalers, resulting in formulations with excellent dispersibility and aerosol quality (deep lung deposition of 88.5%), despite their very small geometric diameter. The combined in vitro and formulation performance results shown here demonstrated that degradable, modified polyester dendrimers may serve as a valuable platform that can be tailored to target the lung tissue for treating local diseases, or the circulation, using the lungs as pathway to the bloodstream.
Collapse
Affiliation(s)
- Rodrigo S Heyder
- Department of Chemical Engineering and Materials Science, Wayne State University, 48202, Detroit, MI, USA; Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Qian Zhong
- Department of Chemical Engineering and Materials Science, Wayne State University, 48202, Detroit, MI, USA
| | - Reinaldo C Bazito
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Sandro R P da Rocha
- Department of Chemical Engineering and Materials Science, Wayne State University, 48202, Detroit, MI, USA.
| |
Collapse
|
25
|
Ahmed M. Peptides, polypeptides and peptide–polymer hybrids as nucleic acid carriers. Biomater Sci 2017; 5:2188-2211. [DOI: 10.1039/c7bm00584a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptide, polypeptide and polymer–peptide hybrid based nucleic acid therapeutics (NAT).
Collapse
Affiliation(s)
- Marya Ahmed
- Department of Chemistry & School of Sustainable Design and Engineering
- University of Prince Edward Island
- Charlottetown
- Canada
| |
Collapse
|
26
|
Man DK, Chow MY, Casettari L, Gonzalez-Juarrero M, Lam JK. Potential and development of inhaled RNAi therapeutics for the treatment of pulmonary tuberculosis. Adv Drug Deliv Rev 2016; 102:21-32. [PMID: 27108702 DOI: 10.1016/j.addr.2016.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (Mtb), continues to pose a serious threat to public health, and the situation is worsening with the rapid emergence of multidrug resistant (MDR) TB. Current TB regimens require long duration of treatment, and their toxic side effects often lead to poor adherence and low success rates. There is an urgent need for shorter and more effective treatment for TB. In recent years, RNA interference (RNAi) has become a powerful tool for studying gene function by silencing the target genes. The survival of Mtb in host macrophages involves the attenuation of the antimicrobial responses mounted by the host cells. RNAi technology has helped to improve our understanding of how these bacilli interferes with the bactericidal effect and host immunity during TB infection. It has been suggested that the host-directed intervention by modulation of host pathways can be employed as a novel and effective therapy against TB. This therapeutic approach could be achieved by RNAi, which holds enormous potential beyond a laboratory to the clinic. RNAi therapy targeting TB is being investigated for enhancing host antibacterial capacity or improving drug efficacy on drug resistance strains while minimizing the associated adverse effects. One of the key challenges of RNAi therapeutics arises from the delivery of the RNAi molecules into the target cells, and inhalation could serve as a direct administration route for the treatment of pulmonary TB in a non-invasive manner. However, there are still major obstacles that need to be overcome. This review focuses on the RNAi candidates that are currently explored for the treatment of TB and discusses the major barriers of pulmonary RNAi delivery. From this, we hope to stimulate further studies of local RNAi therapeutics for pulmonary TB treatment.
Collapse
|
27
|
Kim N, Duncan GA, Hanes J, Suk JS. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release 2016; 240:465-488. [PMID: 27196742 DOI: 10.1016/j.jconrel.2016.05.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
Knowledge of genetic origins of obstructive lung diseases has made inhaled gene therapy an attractive alternative to the current standards of care that are limited to managing disease symptoms. Initial lung gene therapy clinical trials occurred in the early 1990s following the discovery of the genetic defect responsible for cystic fibrosis (CF), a monogenic disorder. However, despite over two decades of intensive effort, gene therapy has yet to help patients with CF or any other obstructive lung disease. The slow progress is due in part to poor understanding of the biological barriers to inhaled gene therapy. Encouragingly, clinical trials have shown that inhaled gene therapy with various viral vectors and non-viral gene vectors is well tolerated by patients, and continued research has provided valuable lessons and resources that may lead to future success of this therapeutic strategy. In this review, we first introduce representative obstructive lung diseases and examine limitations of currently available therapeutic options. We then review key components for successful execution of inhaled gene therapy, including gene delivery systems, primary physiological barriers and strategies to overcome them, and advances in preclinical disease models with which the most promising systems may be identified for human clinical trials.
Collapse
Affiliation(s)
- Namho Kim
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg A Duncan
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Environmental and Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
28
|
d'Angelo I, Perfetto B, Costabile G, Ambrosini V, Caputo P, Miro A, d'Emmanuele di Villa Bianca R, Sorrentino R, Donnarumma G, Quaglia F, Ungaro F. Large Porous Particles for Sustained Release of a Decoy Oligonucelotide and Poly(ethylenimine): Potential for Combined Therapy of Chronic Pseudomonas aeruginosa Lung Infections. Biomacromolecules 2016; 17:1561-71. [PMID: 27002689 DOI: 10.1021/acs.biomac.5b01646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently demonstrated that the specific inhibition of nuclear factor-κB by a decoy oligonucleotide (dec-ODN) delivered through inhalable large porous particles (LPP) made of poly(lactic-co-glycolic acid) (PLGA) may be highly beneficial for long-term treatment of lung inflammation. Nevertheless, besides chronic inflammation, multifunctional systems aimed to control also infection are required in chronic lung diseases, such as cystic fibrosis (CF). In this work, we tested the hypothesis that engineering PLGA-based LPP with branched poly(ethylenimine) (PEI) may improve LPP properties for pulmonary delivery of dec-ODN, with particular regard to the treatment of Pseudomonas aeruginosa lung infections. After getting insight into the role of PEI on the technological properties of PLGA-based LPP for delivery of dec-ODN, the putative synergistic effect of PEI free or PEI released from LPP on in vitro antimicrobial activity of tobramycin (Tb) and aztreonam (AZT) against P. aeruginosa was elucidated. Meanwhile, cytotoxicity studies on A549 cells were carried out. Results clearly demonstrate that the dry powders have promising aerosolization properties and afford a prolonged in vitro release of both dec-ODN and PEI. The encapsulation of PEI into LPP results in a 2-fold reduction of the minimum inhibitory concentration of AZT, while reducing the cytotoxic effect of PEI. Of note, the developed ODN/PLGA/PEI LPP persisted at lung at least for 14 days after intratracheal administration in rats where they can provide sustained and combined release of dec-ODN and PEI. dec-ODN will likely act as an anti-inflammatory drug, while PEI may enhance the therapeutic activity of inhaled antibiotics, which are commonly employed for the treatment of concomitant lung infections.
Collapse
Affiliation(s)
- Ivana d'Angelo
- Di.S.T.A.Bi.F., Second University of Naples , Via Vivaldi 43, 81100 Caserta, Italy
| | - Brunella Perfetto
- Department of Experimental Medicine- Section of Microbiology, Second University of Naples , Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Gabriella Costabile
- Drug Delivery Laboratories, Department of Pharmacy, University of Naples Federico II , Via Domenico Montesano 49, 80131 Naples, Italy
| | - Veronica Ambrosini
- Department of Experimental Medicine- Section of Microbiology, Second University of Naples , Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Pina Caputo
- Department of Experimental Medicine- Section of Microbiology, Second University of Naples , Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Agnese Miro
- Drug Delivery Laboratories, Department of Pharmacy, University of Naples Federico II , Via Domenico Montesano 49, 80131 Naples, Italy
| | | | - Raffaella Sorrentino
- Pharmacology Laboratories, Department of Pharmacy, University of Naples Federico II , Via Domenico Montesano 49, 80131 Naples, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine- Section of Microbiology, Second University of Naples , Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratories, Department of Pharmacy, University of Naples Federico II , Via Domenico Montesano 49, 80131 Naples, Italy
| | - Francesca Ungaro
- Drug Delivery Laboratories, Department of Pharmacy, University of Naples Federico II , Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
29
|
Xie Y, Kim NH, Nadithe V, Schalk D, Thakur A, Kılıç A, Lum LG, Bassett DJP, Merkel OM. Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma. J Control Release 2016; 229:120-129. [PMID: 27001893 DOI: 10.1016/j.jconrel.2016.03.029] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022]
Abstract
Asthma is a worldwide health problem. Activated T cells (ATCs) in the lung, particularly T helper 2 cells (Th2), are strongly associated with inducing airway inflammatory responses and chemoattraction of inflammatory cells in asthma. Small interfering RNA (siRNA) as a promising anti-sense molecule can specifically silence inflammation related genes in ATCs, however, lack of safe and efficient siRNA delivery systems limits the application of siRNA as a therapeutic molecule in asthma. Here, we designed a novel pulmonary delivery system of siRNA, transferrin-polyethylenimine (Tf-PEI), to selectively deliver siRNA to ATCs in the lung. Tf-PEI polyplexes demonstrated optimal physicochemical properties such as size, distribution, zeta-potential, and siRNA condensation efficiency. Moreover, in vitro studies showed significantly enhanced cellular uptake and gene knockdown mediated by Tf-PEI polyplexes in human primary ATCs. Biodistribution of polyplexes in a murine asthmatic model confirmed that Tf-PEI polyplexes can efficiently and selectively deliver siRNA to ATCs. In conclusion, the present work proves the feasibility to target ATCs in asthma via Tf receptor. This strategy could potentially be used to design an efficient siRNA delivery system for asthma therapy.
Collapse
Affiliation(s)
- Yuran Xie
- Wayne State University, Detroit, MI, United States
| | - Na Hyung Kim
- Wayne State University, Detroit, MI, United States
| | | | - Dana Schalk
- Wayne State University, Detroit, MI, United States; Karmanos Cancer Institute, Detroit, MI, United States
| | - Archana Thakur
- Wayne State University, Detroit, MI, United States; Karmanos Cancer Institute, Detroit, MI, United States
| | - Ayşe Kılıç
- Philipps-Universität Marburg, Marburg, Germany
| | - Lawrence G Lum
- Wayne State University, Detroit, MI, United States; Karmanos Cancer Institute, Detroit, MI, United States
| | | | - Olivia M Merkel
- Wayne State University, Detroit, MI, United States; Karmanos Cancer Institute, Detroit, MI, United States; Ludwig-Maximilians Universität München, Munich, Germany.
| |
Collapse
|
30
|
Youngren-Ortiz SR, Gandhi NS, España-Serrano L, Chougule MB. Aerosol Delivery of siRNA to the Lungs. Part 1: Rationale for Gene Delivery Systems. KONA : POWDER SCIENCE AND TECHNOLOGY IN JAPAN 2016; 33:63-85. [PMID: 27081214 PMCID: PMC4829385 DOI: 10.14356/kona.2016014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This article reviews the pulmonary route of administration, aerosol delivery devices, characterization of pulmonary drug delivery systems, and discusses the rationale for inhaled delivery of siRNA. Diseases with known protein malfunctions may be mitigated through the use of siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics for the treatment of various pulmonary diseases, however barriers to pulmonary delivery and intracellular delivery of siRNA exists. siRNA loaded nanocarriers can be used to overcome the barriers associated with the pulmonary route, such as anatomical barriers, mucociliary clearance, and alveolar macrophage clearance. Apart from naked siRNA aerosol delivery, previously studied siRNA carrier systems comprise of lipidic, polymeric, peptide, or inorganic origin. Such siRNA delivery systems formulated as aerosols can be successfully delivered via an inhaler or nebulizer to the pulmonary region. Preclinical animal investigations of inhaled siRNA therapeutics rely on intratracheal and intranasal siRNA and siRNA nanocarrier delivery. Aerosolized siRNA delivery systems may be characterized using in vitro techniques, such as dissolution test, inertial cascade impaction, delivered dose uniformity assay, laser diffraction, and laser Doppler velocimetry. The ex vivo techniques used to characterize pulmonary administered formulations include the isolated perfused lung model. In vivo techniques like gamma scintigraphy, 3D SPECT, PET, MRI, fluorescence imaging and pharmacokinetic/pharmacodynamics analysis may be used for evaluation of aerosolized siRNA delivery systems. The use of inhalable siRNA delivery systems encounters barriers to their delivery, however overcoming the barriers while formulating a safe and effective delivery system will offer unique advances to the field of inhaled medicine.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Nishant S. Gandhi
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Laura España-Serrano
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Mahavir B. Chougule
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
- Natural Products and Experimental Therapeutics Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| |
Collapse
|
31
|
Shi Y, Zhao J, Zhou L, Li T, Liu M, Liu L. Blue-emitting and amphibious metal (Cu, Ni, Pt, Pd) nanodots prepared within supramolecular polymeric micelles for cellular imaging applications. RSC Adv 2016. [DOI: 10.1039/c6ra06116h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We propose a new method for the preparation of blue-emitting and amphibious metal (Cu, Ni, Pt, Pd) nanodots using supramolecular polymeric micelle nanoreactors for cellular imaging applications.
Collapse
Affiliation(s)
- Yunfeng Shi
- School of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- People's Republic of China
- Department of Bioengineering
| | - Junhong Zhao
- School of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- People's Republic of China
| | - Linzhu Zhou
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
| | - Ting Li
- School of Education
- Anyang Normal University
- Anyang 455000
- People's Republic of China
| | - Mei Liu
- School of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- People's Republic of China
| | - Leilei Liu
- School of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- People's Republic of China
| |
Collapse
|
32
|
Xu C, Tian H, Wang P, Wang Y, Chen X. The suppression of metastatic lung cancer by pulmonary administration of polymer nanoparticles for co-delivery of doxorubicin and Survivin siRNA. Biomater Sci 2016; 4:1646-1654. [DOI: 10.1039/c6bm00601a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DOX and siRNA were sprayed into trachea, bronchi and alveoli, and were co-delivered to cancer cells.
Collapse
Affiliation(s)
- Caina Xu
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Ping Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yanbing Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
33
|
De Backer L, Cerrada A, Pérez-Gil J, De Smedt SC, Raemdonck K. Bio-inspired materials in drug delivery: Exploring the role of pulmonary surfactant in siRNA inhalation therapy. J Control Release 2015; 220:642-50. [PMID: 26363301 DOI: 10.1016/j.jconrel.2015.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 01/13/2023]
Abstract
Many pathologies of the respiratory tract are inadequately treated with existing small molecule-based therapies. The emergence of RNA interference (RNAi) enables the post-transcriptional silencing of key molecular disease factors that cannot readily be targeted with conventional small molecule drugs. Pulmonary administration of RNAi effectors, such as small interfering RNA (siRNA), allows direct delivery into the lung tissue, hence reducing systemic exposure. Unfortunately, the clinical translation of RNAi is severely hampered by inefficient delivery of siRNA therapeutics towards the cytoplasm of the target cells. In order to have a better control of the siRNA delivery process, both extra- and intracellular, siRNAs are typically formulated in nanosized delivery vehicles (nanoparticles, NPs). In the lower airways, which are the targeted sites of action for multiple pulmonary disorders, these siRNA-loaded NPs will encounter the pulmonary surfactant (PS) layer, covering the entire alveolar surface. The interaction between the instilled siRNA-loaded NPs and the PS at this nano-bio interface results in the adsorption of PS components onto the surface of the NPs. The formation of this so-called biomolecular corona conceals the original NP surface and will therefore profoundly determine the biological efficacy of the NP. Though this interplay has initially been regarded as a barrier towards efficient siRNA delivery to the respiratory target cell, recent reports have illustrated that the interaction with PS might also be beneficial for local pulmonary siRNA delivery.
Collapse
Affiliation(s)
- Lynn De Backer
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Alejandro Cerrada
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, and Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, and Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
34
|
Xu C, Wang P, Zhang J, Tian H, Park K, Chen X. Pulmonary Codelivery of Doxorubicin and siRNA by pH-Sensitive Nanoparticles for Therapy of Metastatic Lung Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4321-33. [PMID: 26136261 DOI: 10.1002/smll.201501034] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/31/2015] [Indexed: 05/11/2023]
Abstract
A pulmonary codelivery system that can simultaneously deliver doxorubicin (DOX) and Bcl2 siRNA to the lungs provides a promising local treatment strategy for lung cancers. In this study, DOX is conjugated onto polyethylenimine (PEI) by using cis-aconitic anhydride (CA, a pH-sensitive linker) to obtain PEI-CA-DOX conjugates. The PEI-CA-DOX/siRNA complex nanoparticles are formed spontaneously via electrostatic interaction between cationic PEI-CA-DOX and anionic siRNA. The drug release experiment shows that DOX releases faster at acidic pH than at pH 7.4. Moreover, PEI-CA-DOX/Bcl2 siRNA complex nanoparticles show higher cytotoxicity and apoptosis induction in B16F10 cells than those treated with either DOX or Bcl2 siRNA alone. When the codelivery systems are directly sprayed into the lungs of B16F10 melanoma-bearing mice, the PEI-CA-DOX/Bcl2 siRNA complex nanoparticles exhibit enhanced antitumor efficacy compared with the single delivery of DOX or Bcl2 siRNA. Compared with systemic delivery, most drug and siRNA show a long-term retention in the lungs via pulmonary delivery, and a considerable number of the drug and siRNA accumulate in tumor tissues of lungs, but rarely in normal lung tissues. The PEI-CA-DOX/Bcl2 siRNA complex nanoparticles are promising for the treatment of metastatic lung cancer by pulmonary delivery with low side effects on the normal tissues.
Collapse
Affiliation(s)
- Caina Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Ping Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Jingpeng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Kinam Park
- Departments of Biomedical Engineering and Pharmaceutics, Purdue University, West Lafayette, IN, 47907, USA
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| |
Collapse
|
35
|
De Backer L, Naessens T, De Koker S, Zagato E, Demeester J, Grooten J, De Smedt SC, Raemdonck K. Hybrid pulmonary surfactant-coated nanogels mediate efficient in vivo delivery of siRNA to murine alveolar macrophages. J Control Release 2015; 217:53-63. [PMID: 26307350 DOI: 10.1016/j.jconrel.2015.08.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/15/2015] [Indexed: 12/31/2022]
Abstract
The local delivery of small interfering RNA (siRNA) to the lungs may provide a therapeutic solution to a range of pulmonary disorders. Resident alveolar macrophages (rAM) in the bronchoalveolar lumen play a critical role in lung inflammatory responses and therefore constitute a particularly attractive target for siRNA therapeutics. However, achieving efficient gene silencing in the lung while avoiding pulmonary toxicity requires appropriate formulation of siRNA in functional nanocarriers. In this study, we evaluated pulmonary surfactant-coated dextran nanogels for the delivery of siRNA to rAM upon pharyngeal aspiration in BALB/c mice. Both the surfactant-coated and uncoated nanogels achieved high levels of siRNA uptake in rAM, yet only the surfactant-coated formulation could significantly reduce gene expression on the protein level. Surfactant-coated nanogels induced a profound downregulation of target mRNA levels, reaching 70% knockdown with ~1mgkg(-1) siRNA dose. In addition, only mild acute pro-inflammatory cytokine and chemokine responses were detected one day after nanoparticle aspiration, accompanied by a moderate neutrophil infiltration in the bronchoalveolar lumen. The latter could be substantially reduced by removal of excess surfactant from the formulation. Overall, our hybrid core-shell nanoparticles have demonstrated safe and effective siRNA delivery to rAM, providing a new therapeutic approach for treatment of inflammatory pathologies in the lung.
Collapse
Affiliation(s)
- Lynn De Backer
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Thomas Naessens
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde 9052, Belgium.
| | - Stefaan De Koker
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde 9052, Belgium.
| | - Elisa Zagato
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Jo Demeester
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Johan Grooten
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde 9052, Belgium.
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| |
Collapse
|
36
|
Merkel OM, Rubinstein I, Kissel T. siRNA delivery to the lung: what's new? Adv Drug Deliv Rev 2014; 75:112-28. [PMID: 24907426 PMCID: PMC4160355 DOI: 10.1016/j.addr.2014.05.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
RNA interference (RNAi) has been thought of as the general answer to many unmet medical needs. After the first success stories, it soon became obvious that short interfering RNA (siRNA) is not suitable for systemic administration due to its poor pharmacokinetics. Therefore local administration routes have been adopted for more successful in vivo RNAi. This paper reviews nucleic acid modifications, nanocarrier chemistry, animal models used in successful pulmonary siRNA delivery, as well as clinical translation approaches. We summarize what has been published recently and conclude with the potential problems that may still hamper the efficient clinical application of RNAi in the lung.
Collapse
Affiliation(s)
- Olivia M Merkel
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA; Department of Oncology, Wayne State University, Detroit, MI 48201, USA.
| | - Israel Rubinstein
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Thomas Kissel
- Department of Pharmaceutics and Biopharmacy, Philipps-Universität Marburg, Ketzerbach 63, 35037 Marburg, Germany
| |
Collapse
|
37
|
d'Angelo I, Conte C, La Rotonda MI, Miro A, Quaglia F, Ungaro F. Improving the efficacy of inhaled drugs in cystic fibrosis: challenges and emerging drug delivery strategies. Adv Drug Deliv Rev 2014; 75:92-111. [PMID: 24842473 DOI: 10.1016/j.addr.2014.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/23/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease in Caucasians associated with early death. Although the faulty gene is expressed in epithelia throughout the body, lung disease is still responsible for most of the morbidity and mortality of CF patients. As a local delivery route, pulmonary administration represents an ideal way to treat respiratory infections, excessive inflammation and other manifestations typical of CF lung disease. Nonetheless, important determinants of the clinical outcomes of inhaled drugs are the concentration/permanence at the lungs as well as the ability of the drug to overcome local extracellular and cellular barriers. This review focuses on emerging delivery strategies used for local treatment of CF pulmonary disease. After a brief description of the disease and formulation rules dictated by CF lung barriers, it describes current and future trends in inhaled drugs for CF. The most promising advanced formulations are discussed, highlighting the advantages along with the major challenges for researchers working in this field.
Collapse
Affiliation(s)
- Ivana d'Angelo
- Di.S.T.A.B.i.F., Second University of Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Claudia Conte
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Maria Immacolata La Rotonda
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Agnese Miro
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Fabiana Quaglia
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Francesca Ungaro
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
38
|
Platelet Activating Factor Receptor Activation Improves siRNA Uptake and RNAi Responses in Well-differentiated Airway Epithelia. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e175. [PMID: 25025465 PMCID: PMC4121516 DOI: 10.1038/mtna.2014.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/09/2014] [Indexed: 01/31/2023]
Abstract
Well-differentiated human airway epithelia present formidable barriers to efficient siRNA delivery. We previously reported that treatment of airway epithelia with specific small molecules improves oligonucleotide uptake and facilitates RNAi responses. Here, we exploited the platelet activating factor receptor (PAFR) pathway, utilized by specific bacteria to transcytose into epithelia, as a trigger for internalization of Dicer-substrate siRNAs (DsiRNA). PAFR is a G-protein coupled receptor which can be engaged and activated by phosphorylcholine residues on the lipooligosaccharide (LOS) of nontypeable Haemophilus influenzae and the teichoic acid of Streptococcus pneumoniae as well as by its natural ligand, platelet activating factor (PAF). When well-differentiated airway epithelia were simultaneously treated with either nontypeable Haemophilus influenzae LOS or PAF and transduced with DsiRNA formulated with the peptide transductin, we observed silencing of both endogenous and exogenous targets. PAF receptor antagonists prevented LOS or PAF-assisted DsiRNA silencing, demonstrating that ligand engagement of PAFR is essential for this process. Additionally, PAF-assisted DsiRNA transfection decreased CFTR protein expression and function and reduced exogenous viral protein levels and titer in human airway epithelia. Treatment with spiperone, a small molecule identified using the Connectivity map database to correlate gene expression changes in response to drug treatment with those associated with PAFR stimulation, also induced silencing. These results suggest that the signaling pathway activated by PAFR binding can be manipulated to facilitate siRNA entry and function in difficult to transfect well-differentiated airway epithelial cells.
Collapse
|
39
|
Conti DS, Brewer D, Grashik J, Avasarala S, da Rocha SRP. Poly(amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol Pharm 2014; 11:1808-22. [PMID: 24811243 PMCID: PMC4051247 DOI: 10.1021/mp4006358] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Small interfering RNA (siRNA)-based
therapies have great promise
in the treatment of a number of prevalent pulmonary disorders including
lung cancer, asthma and cystic fibrosis. However, progress in this
area has been hindered due to the lack of carriers that can efficiently
deliver siRNA to lung epithelial cells, and also due to challenges
in developing oral inhalation (OI) formulations for the regional administration
of siRNA and their carriers to the lungs. In this work we report the
ability of generation four, amine-terminated poly(amidoamine) (PAMAM)
dendrimer (G4NH2)–siRNA complexes (dendriplexes) to silence
the enhanced green fluorescent protein (eGFP) gene on A549 lung alveolar
epithelial cells stably expressing eGFP. We also report the formulation
of the dendriplexes and their aerosol characteristics in propellant-based
portable OI devices. The size and gene silencing ability of the dendriplexes
was seen not to be a strong function of the N/P ratio. Silencing efficiencies
of up to 40% are reported. Stable dispersions of the dendriplexes
encapsulated in mannitol and also in a biodegradable and water-soluble
co-oligomer were prepared in hydrofluoroalkane (HFA)-based pressurized
metered-dose inhalers (pMDIs). Their aerosol characteristics were
very favorable, and conducive to deep lung deposition, with respirable
fractions of up to 77%. Importantly, siRNA formulated as dendriplexes
in pMDIs was shown to keep its integrity after the particle preparation
processes, and also after long-term exposures to HFA. The relevance
of this study stems from the fact that this is the first work to report
the formulation of inhalable siRNA with aerosol properties suitable
to deep lung deposition using pMDIs devices that are the least expensive
and most widely used portable inhalers. This study is relevant because,
also for the first time, it shows that siRNA–G4NH2 dendriplexes
can efficiently target lung alveolar epithelial A549 cells and silence
genes even after siRNA has been exposed to the propellant environment.
Collapse
Affiliation(s)
- Denise S Conti
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University , 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | | | | | | | | |
Collapse
|
40
|
Zhang X, Yao J, Zhang L, Fang J, Bian F. Synthesis and characterization of PEG-conjugated quaternized chitosan and its application as a gene vector. Carbohydr Polym 2014; 103:566-72. [DOI: 10.1016/j.carbpol.2013.12.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/23/2013] [Accepted: 12/25/2013] [Indexed: 02/08/2023]
|
41
|
Xu C, Tian H, Chen X. Pulmonary Drugs and Genes Delivery Systems for Lung Disease Treatment. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201300741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Benediktsdóttir BE, Baldursson Ó, Másson M. Challenges in evaluation of chitosan and trimethylated chitosan (TMC) as mucosal permeation enhancers: From synthesis to in vitro application. J Control Release 2014. [DOI: 10.1016/j.jconrel.2013.10.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Luvino D, Khiati S, Oumzil K, Rocchi P, Camplo M, Barthélémy P. Efficient delivery of therapeutic small nucleic acids to prostate cancer cells using ketal nucleoside lipid nanoparticles. J Control Release 2013; 172:954-61. [DOI: 10.1016/j.jconrel.2013.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 01/19/2023]
|
44
|
Holley AC, Ray JG, Wan W, Savin DA, McCormick CL. Endolytic, pH-responsive HPMA-b-(L-Glu) copolymers synthesized via sequential aqueous RAFT and ring-opening polymerizations. Biomacromolecules 2013; 14:3793-9. [PMID: 24044682 DOI: 10.1021/bm401205y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A facile synthetic pathway for preparing block copolymers with pH-responsive L-glutamic acid segments for membrane disruption is reported. Aqueous reversible addition-fragmentation chain transfer (aRAFT) polymerization was first used to prepare biocompatible, nonimmunogenic poly[N-(2-hydroxypropyl)methacrylamide]. This macro chain transfer agent (CTA) was then converted into a macroinitiator via simultaneous aminolysis and thiol-ene Michael addition using the primary amine substituted N-(3-aminopropyl)methacrylamide. This macroinitiator was subsequently utilized in the ring-opening polymerization of the N-carboxyanhydride monomer of γ-benzyl-L-glutamate. After deprotection, the pH-dependent coil-to-helix transformations of the resulting HPMA-b-(L-Glu) copolymers were monitored via circular dichroism spectroscopy. HPMA segments confer water solubility and biocompatibility while the L-glutamic acid repeats provide reversible coil-to-helix transitions at endosomal pH values (~5-6). The endolytic properties of these novel [HPMA-b-(L-Glu)] copolymers and their potential as modular components in drug carrier constructs was demonstrated utilizing red blood cell hemolysis and fluorescein release from POPC vesicles.
Collapse
Affiliation(s)
- Andrew C Holley
- The Department of Polymer Science and Engineering and §The Department of Chemistry and Biochemistry, The University of Southern Mississippi , Hattiesburg, Mississippi 39406, United States
| | | | | | | | | |
Collapse
|
45
|
Drake CR, Aissaoui A, Argyros O, Thanou M, Steinke JH, Miller AD. Examination of the effect of increasing the number of intra-disulfide amino functional groups on the performance of small molecule cyclic polyamine disulfide vectors. J Control Release 2013; 171:81-90. [DOI: 10.1016/j.jconrel.2013.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 12/31/2022]
|
46
|
Dexamethasone-conjugated polyethylenimine/MIF siRNA complex regulation of particulate matter-induced airway inflammation. Biomaterials 2013; 34:7453-61. [PMID: 23831186 DOI: 10.1016/j.biomaterials.2013.05.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/24/2013] [Indexed: 01/15/2023]
Abstract
Inhalation of airborne particulate matter (PM), such as silicon dioxide (SiO2) and titanium dioxide (TiO2), induces acute lung inflammation. siRNA therapy has been proposed as a method to repair acute lung inflammation. To determine whether DEXA-PEI/MIF siRNA contributes to SiO2-induced acute lung inflammation repair, we administered Dexa-PEI/MIF siRNA in SiO2-treated Beas-2b cells and instilled DEXA-PEI-MIF siRNA intratracheally in mice with SiO2-induced acute lung inflammation. Using genetic (MIF mRNA RT-PCR), histological (H&E and PAS) and immunohistochemical (MIF and Muc5ac) analyses, we estimated the acute lung inflammation in Beas-2b cells and BALB/c mice. Cells and mice treated with SiO2 particles demonstrated pulmonary inflammation. DEXA-PEI/MIF siRNA restricted the extent of the pulmonary inflammation reaction to SiO2 in cells and mice. In case of SiO2-treated Beas-2b cells, only DEXA-PEI treatment failed to effectively regulate MIF mRNA release. At the same time, only DEXA-PEI treatment adjusted the amount of MIF mRNA to some extent in SiO2-treated BALB/c mice. siRNA treatment did not markedly control MIF mRNA release in mice. We also observed that the amount of MIF mRNA was decreased in cells and mice treated with DEXA-PEI/MIF siRNA. The increase of MIF mRNA markedly increased Muc5ac; in contrast, the decrease of MIF mRNA using DEXA-PEI/MIF siRNA effectively lowered Muc5ac in SiO2-treated cells and mice. These results suggest that DEXA-PEI plays a role in delivering siRNA to the nucleus as a carrier and limits the extent of acute lung inflammation. MIF siRNA also contributed to the reparative lung response in SiO2-induced pulmonary inflammation.
Collapse
|
47
|
Lin YS, Yang CH, Wu CT, Grumezescu AM, Wang CY, Hsieh WC, Chen SY, Huang KS. A microfluidic chip using phenol formaldehyde resin for uniform-sized polycaprolactone and chitosan microparticle generation. Molecules 2013; 18:6521-31. [PMID: 23736788 PMCID: PMC6270084 DOI: 10.3390/molecules18066521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/25/2013] [Accepted: 05/29/2013] [Indexed: 11/16/2022] Open
Abstract
This study develops a new solvent-compatible microfluidic chip based on phenol formaldehyde resin (PFR). In addition to its solvent-resistant characteristics, this microfluidic platform also features easy fabrication, organization, decomposition for cleaning, and reusability compared with conventional chips. Both solvent-dependent (e.g., polycaprolactone) and nonsolvent-dependent (e.g., chitosan) microparticles were successfully prepared. The size of emulsion droplets could be easily adjusted by tuning the flow rates of the dispersed/continuous phases. After evaporation, polycaprolactone microparticles ranging from 29.3 to 62.7 μm and chitosan microparticles ranging from 215.5 to 566.3 μm were obtained with a 10% relative standard deviation in size. The proposed PFR microfluidic platform has the advantages of active control of the particle size with a narrow size distribution as well as a simple and low cost process with a high throughput.
Collapse
Affiliation(s)
- Yung-Sheng Lin
- Department of Applied Cosmetology and Master Program of Cosmetic Science, Hungkuang University, Taichung 43302, Taiwan; E-Mail:
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; E-Mails: (C.-H.Y.); (W.-C.H.); (S.-Y.C.)
| | - Chin-Tung Wu
- Department of Computer Science and Information Engineering, Providence University, Taichung 43301, Taiwan; E-Mail:
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest 011061, Romania; E-Mail:
| | - Chih-Yu Wang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan; E-Mail:
| | - Wan-Chen Hsieh
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; E-Mails: (C.-H.Y.); (W.-C.H.); (S.-Y.C.)
| | - Szu-Yu Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; E-Mails: (C.-H.Y.); (W.-C.H.); (S.-Y.C.)
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-7-615-1100 (ext. 7063); Fax: +886-7-615-5150
| |
Collapse
|
48
|
De Backer L, Braeckmans K, Demeester J, De Smedt SC, Raemdonck K. The influence of natural pulmonary surfactant on the efficacy of siRNA-loaded dextran nanogels. Nanomedicine (Lond) 2013; 8:1625-38. [PMID: 23418856 DOI: 10.2217/nnm.12.203] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Topical administration of siRNA nanocarriers is a promising approach in the treatment of pulmonary disorders. Pulmonary surfactant, covering the entire alveolar surface of mammalian lungs, will be one of the first interfaces that siRNA nanocarriers encounter upon inhalation therapy. Therefore, it is of outstanding importance to evaluate the impact of pulmonary surfactant on the performance of siRNA nanocarriers. MATERIALS & METHODS The effect of natural lung-derived surfactants on the siRNA delivery capacity of dextran nanogels (DEX-NGs) was evaluated in vitro using flow cytometry and confocal microscopy. RESULTS Although the interaction with pulmonary surfactant decreases the cellular internalization of siRNA-loaded DEX-NGs significantly, the gene silencing potential of siRNA-loaded DEX-NGs was maintained. On the other hand, cationic lipid-based siRNA nanocarriers (Lipofectamine™ RNAiMAX) were incompatible with pulmonary surfactants. CONCLUSION Our data suggest that pulmonary surfactant can enhance the intracellular siRNA delivery by DEX-NGs, thereby possibly providing new therapeutic opportunities.
Collapse
Affiliation(s)
- Lynn De Backer
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
49
|
Abstract
The emergence of RNAi offers a potentially exciting new therapeutic paradigm for respiratory diseases. However, effective delivery remains a key requirement for their translation into the clinic and has been a major factor in the limited clinical success seen to date. Inhalation offers tissue-specific targeting of the RNAi to treat respiratory diseases and a diminished risk of off-target effects. In order to deliver RNAi directly to the respiratory tract via inhalation, ‘smart’ non-viral carriers are required to protect the RNAi during delivery/aerosolization and enhance cell-specific uptake to target cells. Here, we review the state-of-the-art in therapeutic aerosol bioengineering, and specifically non-viral siRNA delivery platforms, for delivery via inhalation. This includes developments in inhaler device engineering and particle engineering, including manufacturing methods and excipients used in therapeutic aerosol bioengineering that underpin the development of smart, cell type-specific delivery systems to target siRNA to respiratory epithelial cells and/or alveolar macrophages.
Collapse
|
50
|
Patnaik S, Gupta KC. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opin Drug Deliv 2012; 10:215-28. [PMID: 23252504 DOI: 10.1517/17425247.2013.744964] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Branched and linear polyethylenimines (PEIs) are cationic polymers that have been used to deliver nucleic acids both in vitro and in vivo. Owing to the high cationic charge, the branched polymers exhibit high transfection efficiency, and particularly PEI of molecular weight 25 kDa is considered as a gold standard in gene delivery. These polymers have been extensively studied and modified with different ligands so as to achieve the targeted delivery. AREAS COVERED The application of PEI in vivo promises to take the polymer-based vector to the next level wherein it can undergo clinical trials and subsequently could be used for delivery of therapeutics in humans. This review focuses on the various recent developments that have been made in the field of PEI-based delivery vectors for delivery of therapeutics in vivo. EXPERT OPINION The efficacy of PEI-based delivery vectors in vivo is significantly high and animal studies demonstrate that such systems have a potential in humans. However, we feel that though PEI is a promising vector, further studies involving PEI in animal models are needed so as to get a detailed toxicity profile of these vectors. Also, it is imperative that the vector reaches the specific organ causing little or no undesirable effects to other organs.
Collapse
Affiliation(s)
- Soma Patnaik
- CSIR-Indian Institute of Toxicology Research, M.G. Marg, Lucknow, 226 001, India
| | | |
Collapse
|