1
|
Kvorjak M, Ruffo E, Tivon Y, So V, Parikh A, Deiters A, Lohmueller J. Conditional Control of Universal CAR T Cells by Cleavable OFF-Switch Adaptors. ACS Synth Biol 2023; 12:2996-3007. [PMID: 37791909 PMCID: PMC10594876 DOI: 10.1021/acssynbio.3c00320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 10/05/2023]
Abstract
As living drugs, engineered T cell therapies are revolutionizing disease treatment with their unique functional capabilities. However, they suffer from limitations of potentially unpredictable behavior, toxicities, and nontraditional pharmacokinetics. Engineering conditional control mechanisms responsive to tractable stimuli such as small molecules or light is thus highly desirable. We and others previously developed "universal" chimeric antigen receptors (CARs) that interact with coadministered antibody adaptors to direct target cell killing and T cell activation. Universal CARs are of high therapeutic interest due to their ability to simultaneously target multiple antigens on the same disease or different diseases by combining with adaptors to different antigens. Here, we further enhance the programmability and potential safety of universal CAR T cells by engineering OFF-switch adaptors that can conditionally control CAR activity, including T cell activation, target cell lysis, and transgene expression, in response to a small molecule or light stimulus. Moreover, in adaptor combination assays, OFF-switch adaptors were capable of orthogonal conditional targeting of multiple antigens simultaneously, following Boolean logic. OFF-switch adaptors represent a robust new approach for the precision targeting of universal CAR T cells with potential for enhanced safety.
Collapse
Affiliation(s)
- Michael Kvorjak
- UPMC
Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Division
of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Department
of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Elisa Ruffo
- UPMC
Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Division
of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Department
of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Yaniv Tivon
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Victor So
- UPMC
Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Division
of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Department
of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Avani Parikh
- UPMC
Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Division
of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Department
of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Deiters
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jason Lohmueller
- UPMC
Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Division
of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Department
of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Kvorjak M, Ruffo E, Tivon Y, So V, Parikh AB, Deiters A, Lohmueller J. Conditional control of universal CAR T cells by cleavable OFF-switch adaptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541664. [PMID: 37292935 PMCID: PMC10245878 DOI: 10.1101/2023.05.22.541664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As living drugs, engineered T cell therapies are revolutionizing disease treatment with their unique functional capabilities. However, they suffer from limitations of potentially unpredictable behavior, toxicities, and non-traditional pharmacokinetics. Engineering conditional control mechanisms responsive to tractable stimuli such as small molecules or light is thus highly desirable. We and others previously developed "universal" chimeric antigen receptors (CARs) that interact with co-administered antibody adaptors to direct target cell killing and T cell activation. Universal CARs are of high therapeutic interest due to their ability to simultaneously target multiple antigens on the same disease or different diseases by combining with adaptors to different antigens. Here, we further enhance the programmability and potential safety of universal CAR T cells by engineering OFF-switch adaptors that can conditionally control CAR activity, including T cell activation, target cell lysis, and transgene expression, in response to a small molecule or light stimulus. Moreover, in adaptor combination assays, OFF-switch adaptors were capable of orthogonal conditional targeting of multiple antigens simultaneously following Boolean logic. OFF-switch adaptors represent a robust new approach for precision targeting of universal CAR T cells with potential for enhanced safety.
Collapse
Affiliation(s)
- Michael Kvorjak
- University of Pittsburgh School of Medicine, Department of Surgery, Pittsburgh, PA 15232, USA
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA 15232, USA
- University of Pittsburgh, Center for Systems Immunology, Pittsburgh, PA 15232, USA
| | - Elisa Ruffo
- University of Pittsburgh School of Medicine, Department of Surgery, Pittsburgh, PA 15232, USA
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA 15232, USA
- University of Pittsburgh, Center for Systems Immunology, Pittsburgh, PA 15232, USA
| | - Yaniv Tivon
- University of Pittsburgh, Department of Chemistry, Pittsburgh, PA 15260, USA
| | - Victor So
- University of Pittsburgh School of Medicine, Department of Surgery, Pittsburgh, PA 15232, USA
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA 15232, USA
- University of Pittsburgh, Center for Systems Immunology, Pittsburgh, PA 15232, USA
| | - Avani B. Parikh
- University of Pittsburgh School of Medicine, Department of Surgery, Pittsburgh, PA 15232, USA
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA 15232, USA
- University of Pittsburgh, Center for Systems Immunology, Pittsburgh, PA 15232, USA
| | - Alexander Deiters
- University of Pittsburgh, Center for Systems Immunology, Pittsburgh, PA 15232, USA
- University of Pittsburgh, Department of Chemistry, Pittsburgh, PA 15260, USA
| | - Jason Lohmueller
- University of Pittsburgh School of Medicine, Department of Surgery, Pittsburgh, PA 15232, USA
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA 15232, USA
- University of Pittsburgh, Center for Systems Immunology, Pittsburgh, PA 15232, USA
| |
Collapse
|
3
|
Rahman Chowdhury T, Taufiq T, Ishida K, Ariful Islam M, Kasahara Y, Osawa T, Obika S. Synthesis and biophysical properties of tetravalent PEG-conjugated antisense oligonucleotide. Bioorg Med Chem 2023; 78:117149. [PMID: 36587552 DOI: 10.1016/j.bmc.2022.117149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
This study was aimed at developing a novel platform for tetravalent conjugation of 4-arm polyethylene glycol (PEG) with an antisense oligonucleotide (ASO). The ASO technology has several limitations, such as low cellular uptake, poor nuclease stability, and short half-life. PEG-conjugated ASOs may result in an improvement in the pharmacokinetic behavior of the drug. Moreover, PEGylation can reduce enzymatic degradation and renal excretion of the conjugates, thereby, increasing its blood stability and retention time. In this study, we successfully synthesized PEG-ASO conjugate consisting of 4-arm-PEG and four molecules of ASO (4-arm-PEG-tetra ASO). Its hybridization ability with complementary RNA, enzymatic stability, and in vitro gene silencing ability were evaluated. No significant difference in hybridization ability was observed between 4-arm-PEG-tetra ASO and the parent ASO. In addition, gene silencing activity of the 4-arm-PEG-tetra ASO was observed in vitro. However, the in vitro activity of the 4-arm-PEG-tetra ASO was slightly reduced as that of the parent ASO. Moreover, the 4-arm-PEG-tetra ASO showed appreciable stability in cellular extract, suggesting that it hybridizes with mRNA in its intact form, without being cleaved in the cell, and exhibits ASO activity.
Collapse
Affiliation(s)
- Taslima Rahman Chowdhury
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tahia Taufiq
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kenta Ishida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Md Ariful Islam
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuuya Kasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University (OTRI), 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Development of photolabile protecting groups and their application to the optochemical control of cell signaling. Curr Opin Struct Biol 2019; 57:164-175. [PMID: 31132552 DOI: 10.1016/j.sbi.2019.03.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 03/27/2019] [Indexed: 12/23/2022]
Abstract
Many biological processes are naturally regulated with spatiotemporal control. In order to perturb and investigate them, optochemical tools have been developed that convey similar spatiotemporal precision. Pivotal to optochemical probes are photolabile protecting groups, so called caging groups, and recent developments have enabled new applications to cellular processes, including cell signaling. This review focuses on the advances made in the field of caging groups and their application in cell signaling through caged molecules such as neurotransmitters, lipids, secondary messengers, and proteins.
Collapse
|
5
|
Abrosimova LA, Migur AY, Kubareva EA, Zatsepin TS, Gavshina AV, Yunusova AK, Perevyazova TA, Pingoud A, Oretskaya TS. A study on endonuclease BspD6I and its stimulus-responsive switching by modified oligonucleotides. PLoS One 2018; 13:e0207302. [PMID: 30475809 PMCID: PMC6261011 DOI: 10.1371/journal.pone.0207302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/28/2018] [Indexed: 11/18/2022] Open
Abstract
Nicking endonucleases (NEases) selectively cleave single DNA strands in double-stranded DNAs at a specific site. They are widely used in bioanalytical applications and in genome editing; however, the peculiarities of DNA-protein interactions for most of them are still poorly studied. Previously, it has been shown that the large subunit of heterodimeric restriction endonuclease BspD6I (Nt.BstD6I) acts as a NEase. Here we present a study of interaction of restriction endonuclease BspD6I with modified DNA containing single non-nucleotide insertion with an azobenzene moiety in the enzyme cleavage sites or in positions of sugar-phosphate backbone nearby. According to these data, we designed a number of effective stimulus-responsive oligonucleotide inhibitors bearing azobenzene or triethylene glycol residues. These modified oligonucleotides modulated the functional activity of Nt.BspD6I after cooling or heating. We were able to block the cleavage of T7 phage DNA by this enzyme in the presence of such inhibitors at 20-25°C, whereas the Nt.BspD6I ability to hydrolyze DNA was completely restored after heating to 45°C. The observed effects can serve as a basis for the development of a platform for regulation of NEase activity in vitro or in vivo by external signals.
Collapse
Affiliation(s)
- Liudmila A. Abrosimova
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Anzhela Yu. Migur
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Elena A. Kubareva
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Timofei S. Zatsepin
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region, Russia
| | - Aleksandra V. Gavshina
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alfiya K. Yunusova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Tatiana A. Perevyazova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig University, Giessen, Germany
| | - Tatiana S. Oretskaya
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Lu X, Zhang K. PEGylation of therapeutic oligonucletides: From linear to highly branched PEG architectures. NANO RESEARCH 2018; 11:5519-5534. [PMID: 30740197 PMCID: PMC6366847 DOI: 10.1007/s12274-018-2131-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 05/12/2023]
Abstract
PEGylation, the attachment of poly(ethylene glycol) (PEG), has been adopted to improve the pharmacokinetic properties of oligonucleotide therapeutics for nearly 30 years. Prior efforts mainly focused on the investigation of linear or slightly branched PEG having different molecular weights, terminal functional groups, and possible oligonucleotide sites for functionalization. Recent studies on highly branched PEG (including brush, star, and micellar structures) indicate superior properties in several areas including cellular uptake, gene regulation efficacy, reduction of side effects, and biodistribution. This review focuses on comparing the effects of PEG architecture on the physiochemical and biological properties of the PEGylated oligonucleotide.
Collapse
Affiliation(s)
- Xueguang Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
7
|
Ji R, Cheng J, Yang T, Song C, Li L, Du FS, Li ZC. Shell-Sheddable, pH-Sensitive Supramolecular Nanoparticles Based on Ortho Ester-Modified Cyclodextrin and Adamantyl PEG. Biomacromolecules 2014; 15:3531-9. [DOI: 10.1021/bm500711c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ran Ji
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Cheng
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ting Yang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cheng−Cheng Song
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Sosic A, Pasqualin M, Pasut G, Gatto B. Enzymatic formation of PEGylated oligonucleotides. Bioconjug Chem 2014; 25:433-41. [PMID: 24450424 DOI: 10.1021/bc400569z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gene therapy, siRNA, and therapeutic aptamers attract great interest owing to their versatility to treat a wide range of diseases and their potential high selectivity. Unfortunately, oligonucleotide-based therapeutics suffer rapid degradation by nucleases, scarce cell internalization, and fast kidney clearance. To address these limitations, the covalent attachment by mild chemical reactions of an activated polyethylene glycol (PEG) is widely used to obtain PEGylated nucleic acids showing a more favorable pharmacokinetic profile. We describe here a method for the enzymatic formation of PEGylated nucleic acids employing T4 DNA ligase: the ligation protocol was set up and optimized allowing the complete achievement of PEGylated oligonucleotides amenable to further enzymatic reactions. The feasibility of this approach for bioconjugation was demonstrated employing a set of PEG-donors and oligonucleotide acceptors, differing in the chemical link between PEG and the oligonucleotide donor, and in the length, sequence, and structure of the oligonucleotides employed. The ligase reaction allowed us to obtain double-stranded as well as single-stranded oligonucleotides, thus demonstrating the applicability of the method to a variety of substrates suitable for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Alice Sosic
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via F. Marzolo 5, 35131 Padua, Italy
| | | | | | | |
Collapse
|
9
|
Liu Q, Deiters A. Optochemical control of deoxyoligonucleotide function via a nucleobase-caging approach. Acc Chem Res 2014; 47:45-55. [PMID: 23981235 PMCID: PMC3946944 DOI: 10.1021/ar400036a] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic oligonucleotides have been extensively applied tocontrol a wide range of biological processes such as gene expression, gene repair, DNA replication, and protein activity. Based on well-established sequence design rules that typically rely on Watson-Crick base pairing interactions researchers can readily program the function of these oligonucleotides. Therefore oligonucleotides provide a flexible platform for targeting a wide range of biological molecules, including DNA, RNA, and proteins. In addition, oligonucleotides are commonly used research tools in cell biology and developmental biology. However, a lack of conditional control methods has hampered the precise spatial and temporal regulation of oligonucleotide activity, which limits the application of these reagents to investigate complex biological questions. Nature controls biological function with a high level of spatial and temporal resolution and in order to elucidate the molecular mechanisms of biological processes, researchers need tools that allow for the perturbation of these processes with Nature's precision. Light represents an excellent external regulatory element since irradiation can be easily controlled spatially and temporally. Thus, researchers have developed several different methods to conditionally control oligonucleotide activity with light. One of the most versatile strategies is optochemical regulation through the installation and removal of photolabile caging groups on oligonucleotides. To produce switches that can control nucleic acid function with light, chemists introduce caging groups into the oligomer backbone or on specific nucleobases to block oligonucleotide function until the caging groups are removed by light exposure. In this Account, we focus on the application of caged nucleobases to the photoregulation of DNA function. Using this approach, we have both activated and deactivated gene expression optochemically at the transcriptional and translational level with spatial and temporal control. Specifically, we have used caged triplex-forming oligomers and DNA decoys to regulate transcription, and we have regulated translation with light-activated antisense agents. Moreover, we also discuss strategies that can trigger DNA enzymatic activity, DNA amplification, and DNA mutagenesis by light illumination. More recently, we have developed light-activated DNA logic operations, an advance that may lay the foundation for the optochemical control of complex DNA calculations.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | |
Collapse
|
10
|
Ikeda Y, Nagasaki Y. Impacts of PEGylation on the gene and oligonucleotide delivery system. J Appl Polym Sci 2013. [DOI: 10.1002/app.40293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yutaka Ikeda
- Department of Materials Sciences; Graduate School of Pure and Applied Sciences, University of Tsukuba; Ibaraki 305-8573 Japan
| | - Yukio Nagasaki
- Department of Materials Sciences; Graduate School of Pure and Applied Sciences, University of Tsukuba; Ibaraki 305-8573 Japan
- Master's School of Medical Sciences; Graduate School of Comprehensive Human Sciences, University of Tsukuba; Ibaraki 305-8573 Japan
- Satellite Laboratory; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute of Materials Science (NIMS); Tennodai 1-1-1, Tsukuba Ibaraki 305-8573 Japan
| |
Collapse
|
11
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Light-controlled tools. Angew Chem Int Ed Engl 2012; 51:8446-76. [PMID: 22829531 DOI: 10.1002/anie.201202134] [Citation(s) in RCA: 750] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Indexed: 12/21/2022]
Abstract
Spatial and temporal control over chemical and biological processes plays a key role in life, where the whole is often much more than the sum of its parts. Quite trivially, the molecules of a cell do not form a living system if they are only arranged in a random fashion. If we want to understand these relationships and especially the problems arising from malfunction, tools are necessary that allow us to design sophisticated experiments that address these questions. Highly valuable in this respect are external triggers that enable us to precisely determine where, when, and to what extent a process is started or stopped. Light is an ideal external trigger: It is highly selective and if applied correctly also harmless. It can be generated and manipulated with well-established techniques, and many ways exist to apply light to living systems--from cells to higher organisms. This Review will focus on developments over the last six years and includes discussions on the underlying technologies as well as their applications.
Collapse
Affiliation(s)
- Clara Brieke
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
12
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Lichtgesteuerte Werkzeuge. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202134] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara Brieke
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| | - Falk Rohrbach
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Gottschalk
- Buchmann‐Institut für Molekulare Lebenswissenschaften, Institut für Biochemie, Max‐von‐Laue‐Straße 15, 60438 Frankfurt/Main (Deutschland)
| | - Günter Mayer
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Heckel
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| |
Collapse
|