1
|
Zhao Z, Pang J, Zhao D, Guo N, Guo Y, Kong F, Yang H, Zhao J. Exploring the efficacy of photodynamic antimicrobial chemotherapy on diabetic foot ulcers in rats. JOURNAL OF BIOPHOTONICS 2024; 17:e202300568. [PMID: 38651324 DOI: 10.1002/jbio.202300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
We investigate the efficacy of photodynamic antimicrobial chemotherapy (PACT) and its combination with an antibiotic in the treatment of diabetic foot ulcers (DFUs) in rats using a novel cationic amino acid porphyrin-based photosensitizer. The research findings demonstrate that the combination of novel cationic photosensitizer-mediated PACT and an antibiotic exhibits significant therapeutic efficacy in treating deep ulcers in a rat model of DFUs. Moreover, the PACT + Antibiotic group displays enhanced angiogenesis, improved tissue maturation, and superior wound healing effect. Micro-computed tomography examination showed that the periosteal reaction was most obvious in the PACT + Antibiotic group. The cortical bone volume ratio (BV/TV), the bone mineral density, and trabecular thickness were significantly higher in the PACT + Antibiotic group than in the model group (p < 0.05). The combination of PACT and antibiotic plays a sensitizing therapeutic role, which provides a new idea for the clinical treatment of DFUs.
Collapse
Affiliation(s)
- Zhanjuan Zhao
- College of Basic Medicine, Hebei University, Baoding, China
| | - Jinwen Pang
- Department of Medical Imaging, Cangzhou Hospital of Integrated TCM-WM Hebei, Cangzhou, China
| | - Di Zhao
- School of Foreign Languages, Tianjin University of Commerce, Tianjin, China
| | - Ning Guo
- College of Basic Medicine, Hebei University, Baoding, China
| | - Yiman Guo
- College of Clinical Medicine, Hebei University, Baoding, China
| | - Feiyan Kong
- College of Basic Medicine, Hebei University, Baoding, China
| | - Huizhong Yang
- College of Clinical Medicine, Hebei University, Baoding, China
| | - Jianxi Zhao
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
2
|
Pujari AK, Kaur R, Reddy YN, Paul S, Gogde K, Bhaumik J. Design and Synthesis of Metalloporphyrin Nanoconjugates for Dual Light-Responsive Antimicrobial Photodynamic Therapy. J Med Chem 2024; 67:2004-2018. [PMID: 38241140 DOI: 10.1021/acs.jmedchem.3c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Antimicrobial photodynamic therapy (APDT) utilizes photosensitizers (PSs) that eradicate a broad spectrum of bacteria in the presence of light and molecular oxygen. On the other hand, some light sources such as ultraviolet (UVB and UVC) have poor penetration and high cytotoxicity, leading to undesired PDT of the PSs. Herein, we have synthesized conjugatable mesosubstituted porphyrins and extensively characterized them. Time-dependent density functional theory (TD-DFT) calculations revealed that metalloporphyrin EP (5) is a suitable candidate for further applications. Subsequently, the metalloporphyrin was conjugated with lignin-based zinc oxide nanocomposites (ZnOAL and ZnOKL) to develop hydrophilic nanoconjugates (ZnOAL@EP and ZnOKL@EP). Upon dual light (UV + green light) exposure, nanoconjugates showed enhanced singlet oxygen generation ability and also demonstrated pH responsiveness. These nanoconjugates displayed significantly improved APDT efficiency (4-7 fold increase) to treat bacterial infection under dual light irradiation.
Collapse
Affiliation(s)
- Anil Kumar Pujari
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- Indian Institute of Science Education and Research (IISER), Knowledge City, Sector 81, S. A. S. Nagar, Mohali, Punjab 140306, India
| | - Ravneet Kaur
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
| | - Yeddula Nikhileshwar Reddy
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- Indian Institute of Science Education and Research (IISER), Knowledge City, Sector 81, S. A. S. Nagar, Mohali, Punjab 140306, India
| | - Shatabdi Paul
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001, India
| | - Kunal Gogde
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, Chandigarh 160014, India
| | - Jayeeta Bhaumik
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
| |
Collapse
|
3
|
Selvaraj SP, Chen JY. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur J Med Chem 2023; 259:115680. [PMID: 37515922 DOI: 10.1016/j.ejmech.2023.115680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The growing prevalence of antimicrobial resistance (AMR) has brought with it a continual increase in the numbers of deaths from multidrug-resistant (MDR) infections. Since the current arsenal of antibiotics has become increasingly ineffective, there exists an urgent need for discovery and development of novel antimicrobials. Antimicrobial peptides (AMPs) are considered to be a promising class of molecules due to their broad-spectrum activities and low resistance rates compared with other types of antibiotics. Since AMPs also often play major roles in elevating the host immune response, the molecules may also be called "host defense peptides." Despite the great promise of AMPs, the majority remain unsuitable for clinical use due to issues of structural instability, degradation by proteases, and/or toxicity to host cells. Moreover, AMP activities in vivo can be influenced by many factors, such as interaction with blood and serum biomolecules, physiological salt concentrations or different pH values. To overcome these limitations, structural modifications can be made to the AMP. Among several modifications, physical and chemical conjugation of AMP to other biomolecules is widely considered an effective strategy. In this review, we discuss structural modification strategies related to conjugation of AMPs and their possible effects on mode of action. The conjugation of fatty acids, glycans, antibiotics, photosensitizers, polymers, nucleic acids, nanoparticles, and immobilization to biomaterials are highlighted.
Collapse
Affiliation(s)
- Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan, 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
4
|
Jao Y, Ding SJ, Chen CC. Antimicrobial photodynamic therapy for the treatment of oral infections: A systematic review. J Dent Sci 2023; 18:1453-1466. [PMID: 37799910 PMCID: PMC10548011 DOI: 10.1016/j.jds.2023.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/30/2023] [Indexed: 10/07/2023] Open
Abstract
Oral infection is a common clinical symptom. While antibiotics are widely employed as the primary treatment for oral diseases, the emergence of drug-resistant bacteria has necessitated the exploration of alternative therapeutic approaches. One such modality is antimicrobial photodynamic therapy (aPDT), which utilizes light and photosensitizers. Indeed, aPDT has been used alone or in combination with other treatment options dealing with periodontal disease for the elimination of biofilms from bacterial community to achieve bone formation and/or tissue regeneration. In this review article, in addition to factors affecting the efficacy of aPDT, various photosensitizers, the latest technology and perspectives on aPDT are discussed in detail. More importantly, the article emphasizes the novel design and clinical applications of photosensitizers, as well as the synergistic effects of chemical and biomolecules with aPDT to achieve the complete eradication of biofilms and even enhance the biological performance of tissues surrounding the treated oral area.
Collapse
Affiliation(s)
- Ying Jao
- Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan
| | - Shinn-Jyh Ding
- Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Cheng Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Sarabando SN, Palmeira A, Sousa ME, Faustino MAF, Monteiro CJP. Photomodulation Approaches to Overcome Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:682. [PMID: 37242465 PMCID: PMC10221556 DOI: 10.3390/ph16050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Photopharmacology is an approach that aims to be an alternative to classical chemotherapy. Herein, the different classes of photoswitches and photocleavage compounds and their biological applications are described. Proteolysis targeting chimeras (PROTACs) containing azobenzene moieties (PHOTACs) and photocleavable protecting groups (photocaged PROTACs) are also mentioned. Furthermore, porphyrins are referenced as successful photoactive compounds in a clinical context, such as in the photodynamic therapy of tumours as well as preventing antimicrobial resistance, namely in bacteria. Porphyrins combining photoswitches and photocleavage systems are highlighted, taking advantage of both photopharmacology and photodynamic action. Finally, porphyrins with antibacterial activity are described, taking advantage of the synergistic effect of photodynamic treatment and antibiotic therapy to overcome bacterial resistance.
Collapse
Affiliation(s)
- Sofia N. Sarabando
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | - Maria Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | | | - Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| |
Collapse
|
6
|
Priya TJ, Sugumar RW, Harini M, Prasad NR. Host-Guest Complex of Cucurbituril with 5-Fluorouracil: Structural Study, Effect on Cytotoxicity, and Intracellular ROS Generation. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
7
|
Makvandi P, Song H, Yiu CKY, Sartorius R, Zare EN, Rabiee N, Wu WX, Paiva-Santos AC, Wang XD, Yu CZ, Tay FR. Bioengineered materials with selective antimicrobial toxicity in biomedicine. Mil Med Res 2023; 10:8. [PMID: 36829246 PMCID: PMC9951506 DOI: 10.1186/s40779-023-00443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
Fungi and bacteria afflict humans with innumerous pathogen-related infections and ailments. Most of the commonly employed microbicidal agents target commensal and pathogenic microorganisms without discrimination. To distinguish and fight the pathogenic species out of the microflora, novel antimicrobials have been developed that selectively target specific bacteria and fungi. The cell wall features and antimicrobial mechanisms that these microorganisms involved in are highlighted in the present review. This is followed by reviewing the design of antimicrobials that selectively combat a specific community of microbes including Gram-positive and Gram-negative bacterial strains as well as fungi. Finally, recent advances in the antimicrobial immunomodulation strategy that enables treating microorganism infections with high specificity are reviewed. These basic tenets will enable the avid reader to design novel approaches and compounds for antibacterial and antifungal applications.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025, Italy. .,The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | | | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia
| | - Wei-Xi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Xiang-Dong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Cheng-Zhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
8
|
Wilkinson IVL, Bottlinger M, El Harraoui Y, Sieber SA. Profiling the Heme-Binding Proteomes of Bacteria Using Chemical Proteomics. Angew Chem Int Ed Engl 2023; 62:e202212111. [PMID: 36495310 DOI: 10.1002/anie.202212111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Heme is a cofactor with myriad roles and essential to almost all living organisms. Beyond classical gas transport and catalytic functions, heme is increasingly appreciated as a tightly controlled signalling molecule regulating protein expression. However, heme acquisition, biosynthesis and regulation is poorly understood beyond a few model organisms, and the heme-binding proteome has not been fully characterised in bacteria. Yet as heme homeostasis is critical for bacterial survival, heme-binding proteins are promising drug targets. Herein we report a chemical proteomics method for global profiling of heme-binding proteins in live cells for the first time. Employing a panel of heme-based clickable and photoaffinity probes enabled the profiling of 32-54 % of the known heme-binding proteomes in Gram-positive and Gram-negative bacteria. This simple-to-implement profiling strategy could be interchangeably applied to different cell types and systems and fuel future research into heme biology.
Collapse
Affiliation(s)
- Isabel V L Wilkinson
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Max Bottlinger
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Yassmine El Harraoui
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Stephan A Sieber
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| |
Collapse
|
9
|
The antibacterial activity of photodynamic agents against multidrug resistant bacteria causing wound infection. Photodiagnosis Photodyn Ther 2022; 40:103066. [PMID: 35998880 DOI: 10.1016/j.pdpdt.2022.103066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial photodynamic inactivation (aPDI) of multidrug-resistant (MDR) wound pathogens was evaluated with cationic porphyrin derivatives (CPDs). MDR bacterial strains including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, and Klebsiella pneumoniae were used. The CPDs named PM, PE, PN, and PL were synthesized as a photosensitizer (PS). A diode laser with a wavelength of 655 nm was used as a light source. aPDI of the combinations formed with different energy densities (50, 100, and 150 J/cm²) and PS concentrations (ranging from 3.125 to 600 µM) were evaluated on each bacterial strain. Dark toxicity, cytotoxicity, and phototoxicity were determined on fibroblast cells. In the aPDI groups, survival reductions of up to 5.80 log₁₀ for E. coli, 5.90 log₁₀ for P. aeruginosa, 6.11 log₁₀ for K. pneumoniae, and 6.78 log₁₀ for A. baumannii were obtained. The cytotoxic effect of PL and PM on fibroblast cells was very limited. PN was the type of CPD with the highest dark toxicity on fibroblast cells. In terms of providing broad-spectrum aPDI without or with very limited cytotoxic effect, the best result was observed in aPDI application with PL. The other CPDs need some modifications to show bacterial selectivity for use at 50 µM and above.
Collapse
|
10
|
Knowledgebase of potential multifaceted solutions to antimicrobial resistance. Comput Biol Chem 2022; 101:107772. [PMID: 36155273 DOI: 10.1016/j.compbiolchem.2022.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Antimicrobial resistance (AMR), a top threat to global health, challenges preventive and treatment strategies of infections. AMR strains of microbial pathogens arise through multiple mechanisms. The underlying "antibiotic resistance genes" (ARGs) spread through various species by lateral gene transfer thereby causing global dissemination. Human methods also augment this process through inappropriate use, non-compliance to treatment schedule, and environmental waste. Worldwide significant efforts are being invested to discover novel therapeutic solutions for tackling resistant pathogens. Diverse therapeutic strategies have evolved over recent years. In this work we have developed a comprehensive knowledgebase by collecting alternative antimicrobial therapeutic strategies from literature data. Therapeutic strategies against bacteria, virus, fungus and parasites were extracted from PubMed literature using text mining. We have used a subjective (sentimental) approach for data mining new strategies, resulting in broad coverage of novel entities and subsequently add objective data like entity name (including IUPAC), potency, and safety information. The extracted data was organized in a freely accessible web platform, KOMBAT. The KOMBAT comprises 1104 Chemical compounds, 220 of newly identified antimicrobial peptides, 42 bacteriophages, 242 phytochemicals, 106 nanocomposites, and 94 novel entities for phototherapy. Entities tested and evaluated on AMR pathogens are included. We envision that this database will be useful for developing future therapeutics against AMR pathogens. The database can be accessed through http://kombat.igib.res.in/.
Collapse
|
11
|
Gourlot C, Gosset A, Glattard E, Aisenbrey C, Rangasamy S, Rabineau M, Ouk TS, Sol V, Lavalle P, Gourlaouen C, Ventura B, Bechinger B, Heitz V. Antibacterial Photodynamic Therapy in the Near-Infrared Region with a Targeting Antimicrobial Peptide Connected to a π-Extended Porphyrin. ACS Infect Dis 2022; 8:1509-1520. [PMID: 35892255 DOI: 10.1021/acsinfecdis.2c00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The increase of antimicrobial resistance to conventional antibiotics is worldwide a major health problem that requires the development of new bactericidal strategies. Antimicrobial photodynamic therapy (a-PDT) that generates reactive oxygen species acting on multiple cellular targets is unlikely to induce bacterial resistance. This localized treatment requires, for safe and efficient treatment of nonsuperficial infections, a targeting photosensitizer excited in the near IR. To this end, a new conjugate consisting of an antimicrobial peptide linked to a π-extended porphyrin photosensitizer was designed for a-PDT. Upon irradiation at 720 nm, the conjugate has shown at micromolar concentration strong bactericidal action on both Gram-positive and Gram-negative bacteria. Moreover, this conjugate allows one to reach a low minimum bactericidal concentration with near IR excitation without inducing toxicity to skin cells.
Collapse
Affiliation(s)
- Charly Gourlot
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Alexis Gosset
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Elise Glattard
- Biophysique des membranes et RMN, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Christopher Aisenbrey
- Biophysique des membranes et RMN, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Sabarinathan Rangasamy
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF) - Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Morgane Rabineau
- Institut National de la Santé et de la Recherche Médicale, INSERM U1121 Biomaterials and Bioengineering, 1 rue Eugène Boeckel, 67000 Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Tan-Sothea Ouk
- Université de Limoges, Laboratoire PEIRENE, UR 22722, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Vincent Sol
- Université de Limoges, Laboratoire PEIRENE, UR 22722, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, INSERM U1121 Biomaterials and Bioengineering, 1 rue Eugène Boeckel, 67000 Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Barbara Ventura
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF) - Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Burkhard Bechinger
- Biophysique des membranes et RMN, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
12
|
Pourhajibagher M, Bahador A. Aptamer decorated emodin nanoparticles-assisted delivery of dermcidin-derived peptide DCD-1L: Photoactive bio-theragnostic agent for Enterococcus faecalis biofilm destruction. Photodiagnosis Photodyn Ther 2022; 39:103020. [PMID: 35850461 DOI: 10.1016/j.pdpdt.2022.103020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/12/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Despite the high success rate of root canal treatment, failures are observed in a broad range of cases. Therefore, the need for novel approaches with the development of new generations of antimicrobial agents and intracellular drug delivery systems as adjunctive therapy is undeniable. In this study, we investigated the antimicrobial effects of antimicrobial photodynamic therapy (aPDT) using dermcidin‑derived peptide DCD‑1L loaded onto aptamer-functionalized emodin nanoparticles (Apt@EmoNp-DCD-1L) against Enterococcus faecalis as one of the most common bacteria involved in recurrent root canal treatment failures. MATERIALS AND METHODS Following preparation of EmoNp-DCD-1L, the binding of selected labeled Apt to EmoNp-DCD-1L was performed, followed by the specificity of Apt@EmoNp-DCD-1L to E. faecalis was determined. The antimicrobial potential of aPDT was then assessed after the determination of the minimum inhibitory concentration (MIC) of Apt@EmoNp-DCD-1L. The molecular docking analysis was conducted to evaluate the potential binding modes of EmoNp to the proteins involved in E. faecalis pathogenesis. Eventually, the anti-virulence capacity of Apt@EmoNp-DCD-1L-mediated aPDT was investigated via quantitative real-time PCR (qRT-PCR) assay following measurement of intracellular reactive oxygen species (ROS) generation. RESULTS The binding specificity of Apt@EmoNp-DCD-1L to E. faecalis was confirmed by flow cytometry. The results showed that the cell viability of E. faecalis exposed to aPDT groups employing the sub-MIC doses of Apt@EmoNp-DCD-1L (7.8 and 15.6 µM) was significantly reduced compared to the control group (P < 0.05). Also, Apt@EmoNp-DCD-1L in combination with a blue laser light was capable of enhancing the anti-biofilm activity of aPDT against E. faecalis biofilm. Data obtained from the qRT-PCR analysis showed significant downregulation in the expression level of genes involved in bacterial biofilm formation after exposure to aPDT (P < 0.05). CONCLUSIONS This in vitro study highlights that aPDT with the minimum concentration of Apt@EmoNp-DCD-1L can be considered as a targeted bio-theragnostic agent for the detection and elimination of E. faecalis in the dispersed and biofilm states.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
13
|
Pornpitchanarong C, Rojanarata T, Opanasopit P, Ngawhirunpat T, Bradley M, Patrojanasophon P. Maleimide-functionalized carboxymethyl cellulose: A novel mucoadhesive polymer for transmucosal drug delivery. Carbohydr Polym 2022; 288:119368. [DOI: 10.1016/j.carbpol.2022.119368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 12/23/2022]
|
14
|
Chen M, Zhang J, Qi J, Dong R, Liu H, Wu D, Shao H, Jiang X. Boronic Acid-Decorated Multivariate Photosensitive Metal-Organic Frameworks for Combating Multi-Drug-Resistant Bacteria. ACS NANO 2022; 16:7732-7744. [PMID: 35535857 DOI: 10.1021/acsnano.1c11613] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are promising photosensitized materials that have displayed great advantages in antibacterial application. However, their bactericidal activity is still limited by the ultrashort diffusion distance of biocidal reactive oxygen species (ROS). Herein, we integrate the bacterial-binding boronic acid ligand and photosensitized porphyrin into one single MOF, synergistically boosting antibiotic capability. The introduction of the boronic acid group with a closed physical gap makes multivariate MOFs more powerful for eradicating multi-drug-resistant (MDR) bacteria. The MOFs that are decorated with boronic acid possess antibacterial efficiencies (10-20 times) higher than those without the targeting ligand. Moreover, the MOFs exhibit excellent biocompatibility. They significantly decrease the inflammatory responses and accelerate the healing of chronic wounds infected with MDR bacteria (nearly 2 times faster). This work provides a strategy to develop multivariate MOFs that target bacteria, which will further inspire specific bacterial-binding therapy in the future.
Collapse
Affiliation(s)
- Mian Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Jiangjiang Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Ruihua Dong
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Hongmei Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Decheng Wu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Huawu Shao
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
15
|
Atomic-Resolution Structures and Mode of Action of Clinically Relevant Antimicrobial Peptides. Int J Mol Sci 2022; 23:ijms23094558. [PMID: 35562950 PMCID: PMC9100274 DOI: 10.3390/ijms23094558] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Global rise of infections and deaths caused by drug-resistant bacterial pathogens are among the unmet medical needs. In an age of drying pipeline of novel antibiotics to treat bacterial infections, antimicrobial peptides (AMPs) are proven to be valid therapeutics modalities. Direct in vivo applications of many AMPs could be challenging; however, works are demonstrating encouraging results for some of them. In this review article, we discussed 3-D structures of potent AMPs e.g., polymyxin, thanatin, MSI, protegrin, OMPTA in complex with bacterial targets and their mode of actions. Studies on human peptide LL37 and de novo-designed peptides are also discussed. We have focused on AMPs which are effective against drug-resistant Gram-negative bacteria. Since treatment options for the infections caused by super bugs of Gram-negative bacteria are now extremely limited. We also summarize some of the pertinent challenges in the field of clinical trials of AMPs.
Collapse
|
16
|
A pH-Gated Functionalized Hollow Mesoporous Silica Delivery System for Photodynamic Sterilization in Staphylococcus aureus Biofilm. MATERIALS 2022; 15:ma15082815. [PMID: 35454508 PMCID: PMC9031160 DOI: 10.3390/ma15082815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022]
Abstract
Multidrug-resistant bacteria are increasing, particularly those embedded in microbial biofilm. These bacteria account for most microbial infections in humans. Traditional antibiotic treatment has low efficiency in sterilization of biofilm-associated pathogens, and thus the development of new approaches is highly desired. In this study, amino-modified hollow mesoporous silica nanoparticles (AHMSN) were synthesized and used as the carrier to load natural photosensitizer curcumin (Cur). Then glutaraldehyde (GA) and polyethyleneimine (PEI) were used to seal the porous structure of AHMSN by the Schiff base reaction, forming positively charged AHMSN@GA@PEI@Cur. The Cur delivery system can smoothly diffuse into the negatively charged biofilm of Staphylococcus aureus (S. aureus). Then Cur can be released to the biofilm after the pH-gated cleavage of the Schiff base bond in the slightly acidic environment of the biofilm. After the release of the photosensitizer, the biofilm was irradiated by the blue LED light at a wavelength of 450 nm and a power of 37.4 mV/cm2 for 5 min. Compared with the control group, the number of viable bacteria in the biofilm was reduced by 98.20%. Therefore, the constructed pH-gated photosensitizer delivery system can efficiently target biofilm-associated pathogens and be used for photodynamic sterilization, without the production of antibiotic resistance.
Collapse
|
17
|
Use of Photodynamic Therapy Associated with Antimicrobial Peptides for Bacterial Control: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms23063226. [PMID: 35328647 PMCID: PMC8953507 DOI: 10.3390/ijms23063226] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/29/2022] Open
Abstract
Considering the challenges related to antimicrobial resistance, other strategies for controlling infections have been suggested, such as antimicrobial photodynamic therapy (aPDT) and antimicrobial peptides (AMP). This study aims to perform a systematic review and meta-analysis to obtain evidence on the antimicrobial effectiveness of aPDT associated with AMP and establish in vitro knowledge on this topic for further study designs. The PubMed, Scopus, Web of Science, Science Direct, Scielo, and Cochrane Library databases were searched. Two independent and calibrated researchers (Kappa = 0.88) performed all the systematic steps according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The odds ratio (OR) was used as the effect measure. The Peto method was used to perform the meta-analysis due to the sparse data. Twenty studies were included in the present review. The result was significant (OR = 0.14/p = 0.0235/I-squared = 0%), showing better outcomes of aPDT associated with peptides than those of aPDT alone for controlling the microbial load. Only 20% of the studies included evaluated this approach in a biofilm culture. Combined treatment with aPDT and AMP highly increased the ability of microbial reduction of Gram-positive and Gram-negative bacteria. However, additional blind studies are required to evaluate the efficacy of this therapy on microbial biofilms.
Collapse
|
18
|
Aerssens D, Cadoni E, Tack L, Madder A. A Photosensitized Singlet Oxygen ( 1O 2) Toolbox for Bio-Organic Applications: Tailoring 1O 2 Generation for DNA and Protein Labelling, Targeting and Biosensing. Molecules 2022; 27:778. [PMID: 35164045 PMCID: PMC8838016 DOI: 10.3390/molecules27030778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Singlet oxygen (1O2) is the excited state of ground, triplet state, molecular oxygen (O2). Photosensitized 1O2 has been extensively studied as one of the reactive oxygen species (ROS), responsible for damage of cellular components (protein, DNA, lipids). On the other hand, its generation has been exploited in organic synthesis, as well as in photodynamic therapy for the treatment of various forms of cancer. The aim of this review is to highlight the versatility of 1O2, discussing the main bioorganic applications reported over the past decades, which rely on its production. After a brief introduction on the photosensitized production of 1O2, we will describe the main aspects involving the biologically relevant damage that can accompany an uncontrolled, aspecific generation of this ROS. We then discuss in more detail a series of biological applications featuring 1O2 generation, including protein and DNA labelling, cross-linking and biosensing. Finally, we will highlight the methodologies available to tailor 1O2 generation, in order to accomplish the proposed bioorganic transformations while avoiding, at the same time, collateral damage related to an untamed production of this reactive species.
Collapse
Affiliation(s)
| | | | | | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium; (D.A.); (E.C.); (L.T.)
| |
Collapse
|
19
|
Delcanale P, Abbruzzetti S, Viappiani C. Photodynamic treatment of pathogens. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:407-459. [PMCID: PMC8921710 DOI: 10.1007/s40766-022-00031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
The current viral pandemic has highlighted the compelling need for effective and versatile treatments, that can be quickly tuned to tackle new threats, and are robust against mutations. Development of such treatments is made even more urgent in view of the decreasing effectiveness of current antibiotics, that makes microbial infections the next emerging global threat. Photodynamic effect is one such method. It relies on physical processes proceeding from excited states of particular organic molecules, called photosensitizers, generated upon absorption of visible or near infrared light. The excited states of these molecules, tailored to undergo efficient intersystem crossing, interact with molecular oxygen and generate short lived reactive oxygen species (ROS), mostly singlet oxygen. These species are highly cytotoxic through non-specific oxidation reactions and constitute the basis of the treatment. In spite of the apparent simplicity of the principle, the method still has to face important challenges. For instance, the short lifetime of ROS means that the photosensitizer must reach the target within a few tens nanometers, which requires proper molecular engineering at the nanoscale level. Photoactive nanostructures thus engineered should ideally comprise a functionality that turns the system into a theranostic means, for instance, through introduction of fluorophores suitable for nanoscopy. We discuss the principles of the method and the current molecular strategies that have been and still are being explored in antimicrobial and antiviral photodynamic treatment.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
20
|
Wang Z, Xing B. Small-molecule fluorescent probes: big future for specific bacterial labeling and infection detection. Chem Commun (Camb) 2021; 58:155-170. [PMID: 34882159 DOI: 10.1039/d1cc05531c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial infections remain a global healthcare problem that is particularly attributed to the spread of antibiotic resistance and the evolving pathogenicity. Accurate and swift approaches for infection diagnosis are urgently needed to facilitate antibiotic stewardship and effective medical treatment. Direct optical imaging for specific bacterial labeling and infection detection offers an attractive prospect of precisely monitoring the infectious disease status and therapeutic response in real time. This feature article focuses on the recent advances of small-molecule probes developed for fluorescent imaging of bacteria and infection, which covers the probe design, responsive mechanisms and representative applications. In addition, the perspective and challenges to advance small-molecule fluorescent probes in the field of rapid drug-resistant bacterial detection and clinical diagnosis of bacterial infections are discussed. We envision that the continuous advancement and clinical translations of such a technique will have a strong impact on future anti-infective medicine.
Collapse
Affiliation(s)
- Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 637371, Singapore. .,School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
21
|
Advances in photodynamic antimicrobial chemotherapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100452] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Pathak P, Zarandi MA, Zhou X, Jayawickramarajah J. Synthesis and Applications of Porphyrin-Biomacromolecule Conjugates. Front Chem 2021; 9:764137. [PMID: 34820357 PMCID: PMC8606752 DOI: 10.3389/fchem.2021.764137] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
With potential applications in materials and especially in light-responsive biomedicine that targets cancer tissue selectively, much research has focused on developing covalent conjugation techniques to tether porphyrinoid units to various biomacromolecules. This review details the key synthetic approaches that have been employed in the recent decades to conjugate porphyrinoids with oligonucleotides and peptides/proteins. In addition, we provide succinct discussions on the subsequent applications of such hybrid systems and also give a brief overview of the rapidly progressing field of porphyrin-antibody conjugates. Since nucleic acid and peptide systems vary in structure, connectivity, functional group availability and placement, as well as stability and solubility, tailored synthetic approaches are needed for conjugating to each of these biomacromolecule types. In terms of tethering to ONs, porphyrins are typically attached by employing bioorthogonal chemistry (e.g., using phosphoramidites) that drive solid-phase ON synthesis or by conducting post-synthesis modifications and subsequent reactions (such as amide couplings, hydrazide-carbonyl reactions, and click chemistry). In contrast, peptides and proteins are typically conjugated to porphyrinoids using their native functional groups, especially the thiol and amine side chains. However, bioorthogonal reactions (e.g., Staudinger ligations, and copper or strain promoted alkyne-azide cycloadditions) that utilize de novo introduced functional groups onto peptides/proteins have seen vigorous development, especially for site-specific peptide-porphyrin tethering. While the ON-porphyrin conjugates have largely been explored for programmed nanostructure self-assembly and artificial light-harvesting applications, there are some reports of ON-porphyrin systems targeting clinically translational applications (e.g., antimicrobial biomaterials and site-specific nucleic acid cleavage). Conjugates of porphyrins with proteinaceous moieties, on the other hand, have been predominantly used for therapeutic and diagnostic applications (especially in photodynamic therapy, photodynamic antimicrobial chemotherapy, and photothermal therapy). The advancement of the field of porphyrinoid-bioconjugation chemistry from basic academic research to more clinically targeted applications require continuous fine-tuning in terms of synthetic strategies and hence there will continue to be much exciting work on porphyrinoid-biomacromolecule conjugation.
Collapse
Affiliation(s)
- Pravin Pathak
- Department of Chemistry, Tulane University, New Orleans, LA, United States
| | | | - Xiao Zhou
- Department of Chemistry, Tulane University, New Orleans, LA, United States
| | - Janarthanan Jayawickramarajah
- Department of Chemistry, Tulane University, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
23
|
Judzewitsch PR, Corrigan N, Wong EHH, Boyer C. Photo-Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser. Angew Chem Int Ed Engl 2021; 60:24248-24256. [PMID: 34453390 DOI: 10.1002/anie.202110672] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/14/2022]
Abstract
This work presents the synthesis of a novel photosensitive acrylate monomer for use as both a self-catalyst in the photoinduced electron/energy transfer-reversible addition fragmentation chain transfer (PET-RAFT) polymerisation process and a photosensitiser (PS) for antibacterial applications. Hydrophilic, cationic, and antimicrobial formulations are explored to compare the antibacterial effects between charged and non-charged polymers. Covalent attachment of the catalyst to well-defined linear polymer chains has no effect on polymerisation control or singlet oxygen generation. The addition of the PS to polymers provides activity against S. aureus for all polymer formulations, resulting in up to a 99.99999 % killing efficacy in 30 min. Antimicrobial peptide mimetic polymers previously active against P. aeruginosa, but not S. aureus, gain significant bactericidal activity against S. aureus through the inclusion of PS groups, with 99.998 % killing efficiency after 30 min incubation with light. Thus, a broader spectrum of antimicrobial activity is achieved using two distinct mechanisms of bactericidal activity via the incorporation of a photosensitiser monomer into an antimicrobial polymer.
Collapse
Affiliation(s)
- Peter R Judzewitsch
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| |
Collapse
|
24
|
Photo‐Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Feng Y, Coradi Tonon C, Ashraf S, Hasan T. Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives. Adv Drug Deliv Rev 2021; 177:113941. [PMID: 34419503 DOI: 10.1016/j.addr.2021.113941] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Antibiotic treatment, the mainstay for the control of bacterial infections, is greatly hampered by the global prevalence of multidrug-resistant (MDR) bacteria. Photodynamic therapy (PDT) is effective against MDR infections, but PDT-induced bacterial inactivation is often incomplete, causing the relapse of infections. Combination of PDT and antibiotics is a promising strategy to overcome the limitation of both antibiotic treatment and PDT, exerting increased disinfection efficacy on MDR bacterial pathogens versus either of the monotherapies alone. In this review, we present an overview of the therapeutic effects of PDT/antibiotic combinations that have been developed. We further summarize the influencing factors and the governing molecular mechanisms of the therapeutic outcomes of PDT/antibiotic combinations. In the end, we provide concluding remarks on the strengths, limitations, and future research directions of PDT/antibiotic combination therapy to guide its appropriate usage and further development.
Collapse
Affiliation(s)
- Yanfang Feng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Caroline Coradi Tonon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Health Sciences and Technology (Harvard-MIT), Cambridge, MA, USA.
| |
Collapse
|
26
|
Garin C, Alejo T, Perez-Laguna V, Prieto M, Mendoza G, Arruebo M, Sebastian V, Rezusta A. Chalcogenide nanoparticles and organic photosensitizers for synergetic antimicrobial photodynamic therapy. J Mater Chem B 2021; 9:6246-6259. [PMID: 34328492 DOI: 10.1039/d1tb00972a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synergistic antimicrobial effects were observed for copper sulfide (CuS) nanoparticles together with indocyanine green (ICG) in the elimination of wild type pathogenic bacteria (Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853) and also opportunistic fungal infective yeast (Candida albicans ATCC 10231). Furthermore, large antibacterial effects were observed for clinical isolates of Methicillin-resistant S. aureus (MRSA) PFGE strain-type USA300. This efficient antimicrobial action was attributed to the combined extra- and intracellular generation of reactive oxygen species upon light irradiation. Instead of the use of visible-light for the activation of common photosensitizers, both ICG and CuS nanoparticles can be activated in the near infrared (NIR)-region of the electromagnetic spectrum and therefore, superior tissue penetration would be expected in a potential elimination of pathogenic microorganisms not only on the skin but also in the soft tissue. In the different bacteria studied a 3-log reduction in the bacterial counts was achieved after only 6 min of NIR irradiation and treatment with ICG or CuS alone at concentrations of 40 and 160 µg mL-1, respectively. A maximum bactericidal effect against S. aureus and USA300 strains was obtained for the combination of both photosensitizers at the same concentration. Regarding P. aeruginosa, a 4-log reduction in the CFU was observed for the combination of CuS and ICG at various concentrations. In Candida albicans the combination of both ICG and CuS and light irradiation showed an antimicrobial dose-dependent effect with the reduction of at least 3-log in the cell counts for the combination of ICG + CuS at reduced concentrations. The observed antimicrobial effect was solely attributed to a photodynamic effect and any photothermal effect was avoided to discard any potential thermal injury in a potential clinical application. The generation of reactive oxygen species upon near infrared-light irradiation for those photosensitizers used was measured either alone or in combination. The cytocompatibility of the proposed materials at the doses used in photodynamic therapy was also demonstrated in human dermal fibroblasts and keratinocytes by cell culturing and flow cytometry studies.
Collapse
Affiliation(s)
- Carlos Garin
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yang W, Yoon Y, Lee Y, Oh H, Choi J, Shin S, Lee S, Lee H, Lee Y, Seo J. Photosensitizer-peptoid conjugates for photoinactivation of Gram-negative bacteria: structure-activity relationship and mechanistic studies. Org Biomol Chem 2021; 19:6546-6557. [PMID: 34259297 DOI: 10.1039/d1ob00926e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Multitarget engagement is considered an effective strategy to overcome the threat of bacterial infection, and antimicrobials with multiple mechanisms of action have been successful as natural chemical weaponry. Here, we synthesized a library of photosensitizer-peptoid conjugates (PsPCs) as novel antimicrobial photodynamic therapy (aPDT) agents. The peptoids, linkers, and photosensitizers were varied, and their structure-antimicrobial activity relationships against Escherichia coli were evaluated; PsPC 9 was indicated to be the most promising photoresponsive antimicrobial agent among the synthesized PsPCs. Spectroscopic analyses indicated that 9 generated singlet oxygen upon absorption of visible light (420 nm) while maintaining the weakly helical conformation of the peptoid. Mechanistic studies suggested that damage to the bacterial membrane and cleavage of DNA upon light irradiation were the main causes of bactericidal activity, which was supported by flow cytometry and DNA gel electrophoresis experiments. We demonstrated that the optimal combination of membrane-active peptoids and photosensitizers can generate an efficient aPDT agent that targets multiple sites of bacterial components and kills bacteria by membrane disruption and reactive oxygen species generation.
Collapse
Affiliation(s)
- Woojin Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Younggun Yoon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Yunjee Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Hyeongyeol Oh
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Sujin Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), 49 Dosicheomdansaneopro, Nam-gu, Gwangju 61751, South Korea
| | - Hohjai Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| |
Collapse
|
28
|
Wang X, Wang Q, Zhang Q, Han X, Xu S, Yin D, Hu HY. Developing fluoromodule-based probes for in vivo monitoring the bacterial infections and antibiotic responses. Talanta 2021; 233:122610. [PMID: 34215094 DOI: 10.1016/j.talanta.2021.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Recently, antibiotic resistant has become a serious public health concern, which warrants new generations of antibiotics to be developed. Pharmacodynamic evaluation is crucial in drug discovery processes. Despite numerous advanced imaging systems are available nowadays, technologies for the sensitive in vivo diagnosis of bacterial infections and direct visualization of drug efficacy are yet to be developed. In this study, we have developed novel near-infrared (NIR) fluorogenic probes. These probes are dark in solution but highly fluorescent when bound to the cognate reporter, fluorogen-activating protein (FAP). We established the in vivo bacterial infection model using FAP_dH6.2 recombinantly expressed E. coli and applied this NIR fluoromodule-based system for diagnosing bacterial infections and monitoring disease progressions and its responses to a type of antibiotics through classic mechanism of membrane lysis. This NIR fluoromodule-based system will discover new information on bacterial infections and identify newer antibacterial entities.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Dali Yin
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
29
|
A 2BC-Type Porphyrin SAM on Gold Surface for Bacteria Detection Applications: Synthesis and Surface Functionalization. MATERIALS 2021; 14:ma14081934. [PMID: 33924427 PMCID: PMC8070129 DOI: 10.3390/ma14081934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
Currently used elaborate technologies for the detection of bacteria can be improved in regard to their time consumption, labor intensity, accuracy and reproducibility. Well-known electrical measurement methods might connect highly sensitive sensing systems with biological requirements. The development of modified sensor surfaces with self-assembled monolayers (SAMs) from functionalized porphyrin for bacteria trapping can lead to a highly sensitive sensor for bacteria detection. Different A2BC-type porphyrin structures were synthesized and examined regarding their optical behavior. We achieved the synthesis of a porphyrin for SAM formation on a gold surface as electrode material. Two possible bio linkers were attached on the opposite meso-position of the porphyrin, which allows the porphyrin to react as a linker on the surface for bacteria trapping. Different porphyrin structures were attached to a gold surface, the SAM formation and the respective coverage was investigated.
Collapse
|
30
|
Khan AA, Manzoor KN, Sultan A, Saeed M, Rafique M, Noushad S, Talib A, Rentschler S, Deigner HP. Pulling the Brakes on Fast and Furious Multiple Drug-Resistant (MDR) Bacteria. Int J Mol Sci 2021; 22:E859. [PMID: 33467089 PMCID: PMC7830236 DOI: 10.3390/ijms22020859] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Life-threatening bacterial infections have been managed by antibiotics for years and have significantly improved the wellbeing and lifetime of humans. However, bacteria have always been one step ahead by inactivating the antimicrobial agent chemically or by producing certain enzymes. The alarming universal occurrence of multidrug-resistant (MDR) bacteria has compelled researchers to find alternative treatments for MDR infections. This is a menace where conventional chemotherapies are no longer promising, but several novel approaches could help. Our current review article discusses the novel approaches that can combat MDR bacteria: starting off with potential nanoparticles (NPs) that efficiently interact with microorganisms causing fatal changes in the morphology and structure of these cells; nanophotothermal therapy using inorganic NPs like AuNPs to destroy pathogenic bacterial cells; bacteriophage therapy against which bacteria develop less resistance; combination drugs that act on dissimilar targets in distinctive pathways; probiotics therapy by the secretion of antibacterial chemicals; blockage of quorum sensing signals stopping bacterial colonization, and vaccination against resistant bacterial strains along with virulence factors. All these techniques show us a promising future in the fight against MDR bacteria, which remains the greatest challenge in public health care.
Collapse
Affiliation(s)
- Abid Ali Khan
- Center for Precision Medicine, Hochschule Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany;
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Khanzadi Nazneen Manzoor
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Aamir Sultan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Maria Saeed
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Mahrukh Rafique
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Sameen Noushad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Ayesha Talib
- Mechano(bio)chem Department, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, Golm, 14476 Potsdam, Germany;
| | - Simone Rentschler
- Center for Precision Medicine, Hochschule Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany;
| | - Hans-Peter Deigner
- Center for Precision Medicine, Hochschule Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany;
- Max Planck Institute of Colloids and Interfaces, Leipzig, Schillingallee 68, 18057 Rostock, Germany
- Faculty of Science, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
31
|
Chu JCH, Chin ML, Wong CTT, Hui M, Lo P, Ng DKP. One‐Pot Synthesis of a Cyclic Antimicrobial Peptide‐Conjugated Phthalocyanine for Synergistic Chemo‐Photodynamic Killing of Multidrug‐Resistant Bacteria. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jacky C. H. Chu
- Department of Chemistry The Chinese University of Hong Kong, Shatin, New Territories Hong Kong China
| | - Miu Ling Chin
- Department of Microbiology The Chinese University of Hong Kong, Shatin, New Territories Hong Kong China
| | - Clarence T. T. Wong
- Department of Chemistry The Chinese University of Hong Kong, Shatin, New Territories Hong Kong China
| | - Mamie Hui
- Department of Microbiology The Chinese University of Hong Kong, Shatin, New Territories Hong Kong China
| | - Pui‐Chi Lo
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| | - Dennis K. P. Ng
- Department of Chemistry The Chinese University of Hong Kong, Shatin, New Territories Hong Kong China
| |
Collapse
|
32
|
Wu Y, Peng D, Qi Z, Zhao J, Huang W, Zhang Y, Liu C, Deng T, Liu F. Magnetic Nanoparticle-Based Ligand Replacement Strategy for Chemical Luminescence Determination of Cholesterol. Front Chem 2020; 8:601636. [PMID: 33304887 PMCID: PMC7693431 DOI: 10.3389/fchem.2020.601636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 01/16/2023] Open
Abstract
Determination of serum cholesterol (Chol) is important for disease diagnosis, and has attracted great attention during the last few decades. Herein, a new magnetic nanoparticle-based ligand replacement strategy has been presented for chemical luminescence detection of Chol. The detection depends on ligand replacement from ferrocene (Fc) to Chol through a β-cyclodextrin (β-CD)-based host-guest interaction, which releases Fc-Hemin as a catalyst for the luminol/hydrogen peroxide chemical luminescence system. More importantly, the luminescence signal can be captured by the camera of a smartphone, thus realizing Chol detection with less instrument dependency. The limit of detection of this method is calculated to be 0.18 μM, which is comparable to some of the developed methods. Moreover, this method has been used successfully to quantify Chol from serum samples with a simple extraction process.
Collapse
Affiliation(s)
- Yalan Wu
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danfeng Peng
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Jing Zhao
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenyi Huang
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhang
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Deng
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang Liu
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Development of a Colorimetric Sensor for Autonomous, Networked, Real-Time Application. SENSORS 2020; 20:s20205857. [PMID: 33081235 PMCID: PMC7589661 DOI: 10.3390/s20205857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022]
Abstract
This review describes an ongoing effort intended to develop wireless sensor networks for real-time monitoring of airborne targets across a broad area. The goal is to apply the spectrophotometric characteristics of porphyrins and metalloporphyrins in a colorimetric array for detection and discrimination of changes in the chemical composition of environmental air samples. The work includes hardware, software, and firmware design as well as development of algorithms for identification of event occurrence and discrimination of targets. Here, we describe the prototype devices and algorithms related to this effort as well as work directed at selection of indicator arrays for use with the system. Finally, we review the field trials completed with the prototype devices and discuss the outlook for further development.
Collapse
|
34
|
Choi SK. Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences University of Michigan Medical School Ann Arbor MI 48109 USA
- Department of Internal Medicine University of Michigan Medical School Ann Arbor MI 48109 USA
| |
Collapse
|
35
|
Pang X, Li D, Zhu J, Cheng J, Liu G. Beyond Antibiotics: Photo/Sonodynamic Approaches for Bacterial Theranostics. NANO-MICRO LETTERS 2020; 12:144. [PMID: 34138184 PMCID: PMC7770670 DOI: 10.1007/s40820-020-00485-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 05/04/2023]
Abstract
Rapid evolution and propagation of multidrug resistance among bacterial pathogens are outpacing the development of new antibiotics, but antimicrobial photodynamic therapy (aPDT) provides an excellent alternative. This treatment depends on the interaction between light and photoactivated sensitizer to generate reactive oxygen species (ROS), which are highly cytotoxic to induce apoptosis in virtually all microorganisms without resistance concern. When replacing light with low-frequency ultrasonic wave to activate sensitizer, a novel ultrasound-driven treatment emerges as antimicrobial sonodynamic therapy (aSDT). Recent advances in aPDT and aSDT reveal golden opportunities for the management of multidrug resistant bacterial infections, especially in the theranostic application where imaging diagnosis can be accomplished facilely with the inherent optical characteristics of sensitizers, and the generated ROS by aPDT/SDT cause broad-spectrum oxidative damage for sterilization. In this review, we systemically outline the mechanisms, targets, and current progress of aPDT/SDT for bacterial theranostic application. Furthermore, potential limitations and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Xin Pang
- Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, People's Republic of China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, People's Republic of China.
| | - Dengfeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, People's Republic of China
- Amoy Hopeful Biotechnology Co., Ltd, 361027, Xiamen, People's Republic of China
| | - Jing Zhu
- Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, People's Republic of China
| | - Jingliang Cheng
- Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, People's Republic of China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, People's Republic of China.
| |
Collapse
|
36
|
Sitte E, Senge MO. The Red Color of Life Transformed - Synthetic Advances and Emerging Applications of Protoporphyrin IX in Chemical Biology. European J Org Chem 2020; 2020:3171-3191. [PMID: 32612451 PMCID: PMC7319466 DOI: 10.1002/ejoc.202000074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/10/2023]
Abstract
Protoporphyrin IX (PPIX) is the porphyrin scaffold of heme b, a ubiquitous prosthetic group of proteins responsible for oxygen binding (hemoglobin, myoglobin), electron transfer (cytochrome c) and catalysis (cytochrome P450, catalases, peroxidases). PPIX and its metallated derivatives frequently find application as therapeutic agents, imaging tools, catalysts, sensors and in light harvesting. The vast toolkit of accessible porphyrin functionalization reactions enables easy synthetic modification of PPIX to meet the requirements for its multiple uses. In the past few years, particular interest has arisen in exploiting the interaction of PPIX and its synthetic derivatives with biomolecules such as DNA and heme-binding proteins to evolve molecular devices with new functions as well as to uncover potential therapeutic toeholds. This review strives to shine a light on the most recent developments in the synthetic chemistry of PPIX and its uses in selected fields of chemical biology.
Collapse
Affiliation(s)
- Elisabeth Sitte
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152‐160 Pearse Street2DublinIreland
| | - Mathias O. Senge
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152‐160 Pearse Street2DublinIreland
- Institute for Advanced Study (TUM‐IAS)Technische Universität MünchenLichtenberg‐Str. 2a85748GarchingGermany
| |
Collapse
|
37
|
Ahadi S, Awan SI, Werz DB. Total Synthesis of Tri-, Hexa- and Heptasaccharidic Substructures of the O-Polysaccharide of Providencia rustigianii O34. Chemistry 2020; 26:6264-6270. [PMID: 32092205 PMCID: PMC7318715 DOI: 10.1002/chem.202000496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Indexed: 12/22/2022]
Abstract
A general and efficient strategy for synthesis of tri-, hexa- and heptasaccharidic substructures of the lipopolysaccharide of Providencia rustigianii O34 is described. For the heptasaccharide seven different building blocks were employed. Special features of the structures are an α-linked galactosamine and the two embedded α-fucose units, which are either branched at positions-3 and -4 or further linked at their 2-position. Convergent strategies focused on [4+3], [3+4], and [4+2+1] couplings. Whereas the [4+3] and [3+4] coupling strategies failed the [4+2+1] strategy was successful. As monosaccharidic building blocks trichloroacetimidates and phosphates were employed. Global deprotection of the fully protected structures was achieved by Birch reaction.
Collapse
Affiliation(s)
- Somayeh Ahadi
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Shahid I. Awan
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstraße 237077GöttingenGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
38
|
Cantelli A, Piro F, Pecchini P, Di Giosia M, Danielli A, Calvaresi M. Concanavalin A-Rose Bengal bioconjugate for targeted Gram-negative antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111852. [PMID: 32199235 DOI: 10.1016/j.jphotobiol.2020.111852] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) is considered a very promising therapeutic modality for antimicrobial therapy. Although several studies have demonstrated that Gram-positive bacteria are very sensitive to PDT, Gram-negative bacteria are more resistant to photodynamic action. This difference is due to a different cell wall structure. Gram-negative bacteria have an outer cell membrane containing lipopolysaccharides (LPS) that hinder the binding of photosensitizer molecules, protecting the bacterial cells from chemical attacks. Combination of the lipopolysaccharides-binding activity of Concanavalin A (ConA) with the photodynamic properties of Rose Bengal (RB) holds the potential of an innovative protein platform for targeted photodynamic therapy against Gram-negative bacteria. A ConA-RB bioconjugate was synthesized and characterized. Approximately 2.4 RB molecules were conjugated per ConA monomer. The conjugation of RB to ConA determines a decrease of the singlet oxygen generation and an increase of superoxide and peroxide production. The photokilling efficacy of the ConA-RB bioconjugate was demonstrated in a planktonic culture of E. coli. Irradiation with white light from a LED lamp produced a dose-dependent photokilling of bacteria. ConA-RB conjugates exhibited a consistent improvement over RB (up to 117-fold). The improved uptake of the photosensitizer explains the enhanced PDT effect accompanying increased membrane damages induced by the ConA-RB conjugate. The approach can be readily generalized (i) using different photo/sonosensitizers, (ii) to target other pathogens characterized by cell membranes containing lipopolysaccharides (LPS).
Collapse
Affiliation(s)
- Andrea Cantelli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Francesca Piro
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy
| | - Pietro Pecchini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
39
|
Ning LG, Liu P, Wang B, Li CM, Kang ET, Lu ZS, Hu XF, Xu LQ. Hydrothermal derived protoporphyrin IX nanoparticles for inactivation and imaging of bacteria strains. J Colloid Interface Sci 2019; 549:72-79. [DOI: 10.1016/j.jcis.2019.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023]
|
40
|
Zhang AN, Wu W, Zhang C, Wang QY, Zhuang ZN, Cheng H, Zhang XZ. A versatile bacterial membrane-binding chimeric peptide with enhanced photodynamic antimicrobial activity. J Mater Chem B 2019; 7:1087-1095. [PMID: 32254776 DOI: 10.1039/c8tb03094d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) has become an effective antibiosis method for overcoming antibiotic resistance. In this study, we developed a versatile bacterial membrane-binding chimeric peptide PpIX-[PEG8-(KLAKLAK)2]2 (denoted as PPK) by conjugating a photosensitizer protoporphyrin IX (PpIX) with an antimicrobial peptide (KLAKLAK)2 (KLA) for effective photodynamic inactivation of bacteria. The chimeric peptide PPK with positively charged properties and an α-helical conformation could rapidly bind to microbial cells through electrostatic interactions and membrane insertion. Moreover, PPK could disrupt the bacterial membrane and further elicit lipid bilayer leakage to kill bacteria by toxic reactive oxygen species (ROS) generated by PpIX under 660 nm light. In vitro experiments demonstrated that cationic PPK possessed excellent antimicrobial activity against both Gram-positive bacteria Staphylococcus aureus (S. aureus) and Gram-negative bacteria Escherichia coli (E. coli). Afterward, PPK also exhibited perfect therapeutic effects on S. aureus-infected mice without any systemic side effects. This chimeric peptide PPK will show great potential for photodynamic antibiosis.
Collapse
Affiliation(s)
- Ai-Nv Zhang
- College of Pharmacy, Hubei University of Medicine, Shiyan 442000, P. R. China
| | | | | | | | | | | | | |
Collapse
|
41
|
Wei G, Wang Y, Huang X, Yang G, Zhao J, Zhou S. Enhancing the Accumulation of Polymer Micelles by Selectively Dilating Tumor Blood Vessels with NO for Highly Effective Cancer Treatment. Adv Healthc Mater 2018; 7:e1801094. [PMID: 30565900 DOI: 10.1002/adhm.201801094] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/07/2018] [Indexed: 12/28/2022]
Abstract
The accumulation of nanoparticles in tumors by the enhanced permeability and retention (EPR) effect is effective and well known. However, how to maximize accumulation is still a bottleneck in the development of nanomedicine. Herein, a tumor vascular-targeted hybrid polymeric micelle, which has a great capacity to selectively augment the EPR effect of nanoparticles by dilating tumor blood vessels via the activity of nitric oxide (NO), is presented. Under neutral conditions, the micelle is stable, with a long blood circulation half-life due to the carboxylated poly(ethylene glycol) (PEG) layer; in mildly acidic tumor tissues, the micelle can selectively target the tumor blood vessels by the exposed cyclic Arg-Gly-Asp peptide (cRGD) peptides, which is realized with a pH-dependent hydrolysis of the monomethoxy PEG layer. Simultaneously, exposed copper ions catalyze the decomposition of endogenous NO donors, which generates NO in situ, leading to vasodilation and increased tumor vascular permeability. As a result, the accumulation of nanoparticles is significantly enhanced, and a high accumulation of doxorubicin in tumors is achieved at 48 h after injection. This high dose of therapeutic agent produces a large inhibition of tumor growth (94%) in cancer treatment, and shows no general toxicity, with 100% of the mice surviving the treatment regimen.
Collapse
Affiliation(s)
- Guoqing Wei
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Yi Wang
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Xuehui Huang
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Guang Yang
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Jingya Zhao
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| |
Collapse
|
42
|
Taslı H, Akbıyık A, Topaloğlu N, Alptüzün V, Parlar S. Photodynamic antimicrobial activity of new porphyrin derivatives against methicillin resistant Staphylococcus aureus. J Microbiol 2018; 56:828-837. [PMID: 30353469 DOI: 10.1007/s12275-018-8244-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) with multiple drug resistance patterns is frequently isolated from skin and soft tissue infections that are involved in chronic wounds. Today, difficulties in the treatment of MRSA associated infections have led to the development of alternative approaches such as antimicrobial photodynamic therapy. This study aimed to investigate photoinactivation with cationic porphyrin derivative compounds against MRSA in in-vitro conditions. In the study, MRSA clinical isolates with different antibiotic resistance profiles were used. The newly synthesized cationic porphyrin derivatives (PM, PE, PPN, and PPL) were used as photosensitizer, and 655 nm diode laser was used as light source. Photoinactivation experiments were performed by optimizing energy doses and photosensitizer concentrations. In photoinactivation experiments with different energy densities and photosensitizer concentrations, more than 99% reduction was achieved in bacterial cell viability. No decrease in bacterial survival was observed in control groups. It was determined that there was an increase in photoinactivation efficiency by increasing the energy dose. At the energy dose of 150 J/cm2 a survival reduction of over 6.33 log10 was observed in each photosensitizer type. While 200 μM PM concentration was required for this photoinactivation, 12.50 μM was sufficient for PE, PPN, and PPL. In our study, antimicrobial photodynamic therapy performed with cationic porphyrin derivatives was found to have potent antimicrobial efficacy against multidrug resistant S. aureus which is frequently isolated from wound infections.
Collapse
Affiliation(s)
- Hüseyin Taslı
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey.
| | - Ayse Akbıyık
- Department of Nursing, Faculty of Health Sciences, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Nermin Topaloğlu
- Department of Biomedical Engineering, Faculty of Engineering and Architecture Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Vildan Alptüzün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey
| | - Sülünay Parlar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
43
|
Lu S, Bi W, Du Q, Sinha S, Wu X, Subrata A, Bhattacharjya S, Xing B, Yeow EKL. Lipopolysaccharide-affinity copolymer senses the rapid motility of swarmer bacteria to trigger antimicrobial drug release. Nat Commun 2018; 9:4277. [PMID: 30323232 PMCID: PMC6189052 DOI: 10.1038/s41467-018-06729-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022] Open
Abstract
An intelligent drug release system that is triggered into action upon sensing the motion of swarmer P. mirabilis is introduced. The rational design of the drug release system focuses on a pNIPAAm-co-pAEMA copolymer that prevents drug leakage in a tobramycin-loaded mesoporous silica particle by covering its surface via electrostatic attraction. The copolymer chains are also conjugated to peptide ligands YVLWKRKRKFCFI-NH2 that display affinity to Gram-negative bacteria. When swarmer P. mirabilis cells approach and come in contact with the particle, the copolymer-YVLWKRKRKFCFI-NH2 binds to the lipopolysaccharides on the outer membrane of motile P. mirabilis and are stripped off the particle surface when the cells move away; hence releasing tobramycin into the swarmer colony and inhibiting its expansion. The release mechanism is termed Motion-Induced Mechanical Stripping (MIMS). For swarmer B. subtilis, the removal of copolymers from particle surfaces via MIMS is not apparent due to poor adherence between bacteria and copolymer-YVLWKRKRKFCFI-NH2 system.
Collapse
Affiliation(s)
- Shengtao Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Wuguo Bi
- College of Science, Harbin Engineering University, Harbin, 150080, China
| | - Quanchao Du
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Sheetal Sinha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore, Singapore
| | - Xiangyang Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Arnold Subrata
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Edwin K L Yeow
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.
| |
Collapse
|
44
|
Nakonieczna J, Wolnikowska K, Ogonowska P, Neubauer D, Bernat A, Kamysz W. Rose Bengal-Mediated Photoinactivation of Multidrug Resistant Pseudomonas aeruginosa Is Enhanced in the Presence of Antimicrobial Peptides. Front Microbiol 2018; 9:1949. [PMID: 30177928 PMCID: PMC6110182 DOI: 10.3389/fmicb.2018.01949] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Due to the overuse of antibiotics in medicine and food production, and their targeted mechanism of action, an increasing rate in spreading of antibiotic resistance genes has been noticed. This results in inefficient therapy outcomes and higher mortality all over the world. Pseudomonas aeruginosa (carbapenem-resistant) is considered one of the top three critical species according to the World Health Organization’s priority pathogens list. This means that new drugs and/or treatments are needed to tackle infections caused by this bacterium. In this context search for new/alternative approaches that would overcome resistance to classical antimicrobials is of prime importance. The use of antimicrobial photodynamic inactivation (aPDI) and antimicrobial peptides (AMPs) is an efficient strategy to treat localized infections caused by multidrug-resistant P. aeruginosa. In this study, we have treated P. aeruginosa cells photodynamically in the presence and in the absence of AMP (CAMEL or pexiganan). The conditions for aPDI were as follows: rose bengal (RB) as a photosensitizing agent at 1–10 μM concentration, and subsequent irradiation with 514 nm-LED at 23 mW/cm2 irradiance. The analysis of cell number after the treatment has shown that the combined action of RB-mediated aPDI and cationic AMPs reduced the number of viable cells below the limit of detection (<1log10 CFU/ml). This was in contrast to no reduction or partial reduction after aPDI or AMP applied separately. Students t-test was applied to test the statistical significance of the results. Noteworthy, our treatment proved to be effective against all 35 clinical isolates of P. aeruginosa tested within this study, including those characterized as multiresistant. Moreover, we demonstrated that such treatment is safe and does not violate the growth dynamics of human keratinocytes (77.3–97.64% survival depending on the concentration of the studied compounds or their mixtures).
Collapse
Affiliation(s)
- Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Wolnikowska
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Patrycja Ogonowska
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Bernat
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
45
|
McCarthy KA, Kelly MA, Li K, Cambray S, Hosseini AS, van Opijnen T, Gao J. Phage Display of Dynamic Covalent Binding Motifs Enables Facile Development of Targeted Antibiotics. J Am Chem Soc 2018; 140:6137-6145. [PMID: 29701966 DOI: 10.1021/jacs.8b02461] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibiotic resistance of bacterial pathogens poses an increasing threat to the wellbeing of our society and urgently calls for new strategies for infection diagnosis and antibiotic discovery. The antibiotic resistance problem at least partially arises from extensive use of broad-spectrum antibiotics. Ideally, for the treatment of infection, one would like to use a narrow-spectrum antibiotic that specifically targets and kills the disease-causing strain. This is particularly important considering the commensal bacterial species that are beneficial and sometimes even critical to the health of a human being. In this contribution, we describe a phage display platform that enables rapid identification of peptide probes for specific bacterial strains. The phage library described herein incorporates 2-acetylphenylboronic acid moieties to elicit dynamic covalent binding to the bacterial cell surface. Screening of the library against live bacterial cells yields submicromolar and highly specific binders for clinical strains of Staphylococcus aureus and Acinetobacter baumannii that display antibiotic resistance. We further show that the identified peptide probes can be readily converted to bactericidal agents that deliver generic toxins to kill the targeted bacterial strain with high specificity. The phage display platform described here is applicable to a wide array of bacterial strains, paving the way to facile diagnosis and development of strain-specific antibiotics.
Collapse
Affiliation(s)
- Kelly A McCarthy
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Michael A Kelly
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Kaicheng Li
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Samantha Cambray
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Azade S Hosseini
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Tim van Opijnen
- Department of Biology , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| |
Collapse
|
46
|
Affiliation(s)
| | - Marina Gobbo
- Department of Chemical SciencesUniversity of PadovaPadova35131 Italy
- Institute of Biomolecular Chemistry of CNR, Padova UnitPadova35131 Italy
| |
Collapse
|
47
|
Le Guern F, Ouk TS, Ouk C, Vanderesse R, Champavier Y, Pinault E, Sol V. Lysine Analogue of Polymyxin B as a Significant Opportunity for Photodynamic Antimicrobial Chemotherapy. ACS Med Chem Lett 2018; 9:11-16. [PMID: 29348804 DOI: 10.1021/acsmedchemlett.7b00360] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/17/2017] [Indexed: 11/30/2022] Open
Abstract
In order to highlight the potential of photodynamic antimicrobial chemotherapy in case of infections by antibiotic resistant-strains, a new antimicrobial peptide conjugate has been synthesized, consisting of a derivative of polymyxin B and a cationic porphyrin covalently attached together to a spacer. A polymyxin-derived moiety was subjected to a primary structural modification in the replacement of four diaminobutyrate residues with lysine ones. This modification was done in order to strongly reduce bactericidal activity, with the aim to eliminate the potential rise of polymyxin-resistant strains. Despite this modification, this new conjugate displayed a strong photobactericidal activity against Gram-positive as well as Gram-negative bacteria. It was further shown that this conjugate was able to strongly stick to the cell walls of either kind of strain, thus helping to inactivate bacteria through the production of reactive oxygen species under light irradiation.
Collapse
Affiliation(s)
- Florent Le Guern
- Université de Limoges, Laboratoire de
Chimie des Substances Naturelles (LCSN), EA 1069, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Tan-Sothea Ouk
- Université de Limoges, Laboratoire de
Chimie des Substances Naturelles (LCSN), EA 1069, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Catherine Ouk
- Université de Limoges, BISCEm, 87000 Limoges, France
| | - Regis Vanderesse
- Université de Lorraine, Laboratoire de Chimie Physique Macromoléculaire
(LCPM), UMR 7375 CNRS, ENSIC, 1 rue Grandville, 54000 Nancy, France
| | | | | | - Vincent Sol
- Université de Limoges, Laboratoire de
Chimie des Substances Naturelles (LCSN), EA 1069, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| |
Collapse
|
48
|
Li X, Wu B, Chen H, Nan K, Jin Y, Sun L, Wang B. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. J Mater Chem B 2018; 6:4274-4292. [PMID: 32254504 DOI: 10.1039/c8tb01245h] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since their development over 70 years, antibiotics are still the most effective strategy to treat bacterial biofilms and infections.
Collapse
Affiliation(s)
- Xi Li
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Biao Wu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| | - Kaihui Nan
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| | - Yingying Jin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Lin Sun
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| |
Collapse
|
49
|
Chen S, Li Q, Wang X, Yang YW, Gao H. Multifunctional bacterial imaging and therapy systems. J Mater Chem B 2018; 6:5198-5214. [DOI: 10.1039/c8tb01519h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Advanced antibacterial materials are classified and introduced, and their applications in multimodal imaging and therapy are reviewed.
Collapse
Affiliation(s)
- Shuai Chen
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Qiaoying Li
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Xin Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ying-Wei Yang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Hui Gao
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| |
Collapse
|
50
|
Cressiot B, Greive SJ, Si W, Pascoa TC, Mojtabavi M, Chechik M, Jenkins HT, Lu X, Zhang K, Aksimentiev A, Antson AA, Wanunu M. Porphyrin-Assisted Docking of a Thermophage Portal Protein into Lipid Bilayers: Nanopore Engineering and Characterization. ACS NANO 2017; 11:11931-11945. [PMID: 29120602 PMCID: PMC5963890 DOI: 10.1021/acsnano.7b06980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nanopore-based sensors for nucleic acid sequencing and single-molecule detection typically employ pore-forming membrane proteins with hydrophobic external surfaces, suitable for insertion into a lipid bilayer. In contrast, hydrophilic pore-containing molecules, such as DNA origami, have been shown to require chemical modification to favor insertion into a lipid environment. In this work, we describe a strategy for inserting polar proteins with an inner pore into lipid membranes, focusing here on a circular 12-subunit assembly of the thermophage G20c portal protein. X-ray crystallography, electron microscopy, molecular dynamics, and thermal/chaotrope denaturation experiments all find the G20c portal protein to have a highly stable structure, favorable for nanopore sensing applications. Porphyrin conjugation to a cysteine mutant in the protein facilitates the protein's insertion into lipid bilayers, allowing us to probe ion transport through the pore. Finally, we probed the portal interior size and shape using a series of cyclodextrins of varying sizes, revealing asymmetric transport that possibly originates from the portal's DNA-ratchet function.
Collapse
Affiliation(s)
- Benjamin Cressiot
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sandra J. Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Wei Si
- Department of Physics, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, China
| | - Tomas C. Pascoa
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Mehrnaz Mojtabavi
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Xueguang Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|