1
|
Qin X, Song C, Yao L, Cai X, Xiao J. A Highly Specific and Versatile Biochip for Ultra-Sensitive Quantification of Denatured Collagen in Assessing Collagen Quality. Anal Chem 2024; 96:15640-15647. [PMID: 39231145 DOI: 10.1021/acs.analchem.4c02883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Collagen, a widely used biomaterial, is susceptible to denaturation during production from native tissues, posing serious challenges for its applications in tissue engineering. Accurate quantification of denatured collagen (DC) is essential for evaluating the quality of collagen-based biomaterials, yet quantitative methods for assessing collagen denaturation are lacking. Here, we for the first time present a highly specific biochip for sensitive quantification of denatured collagen levels (Ldc), addressing this critical need in collagen quality analysis. The denatured collagen-specific chip (DCSC) features an intrinsically nontrimerizing peptide probe, F-GOP-14, targeting denatured collagen and a fully denatured collagen-coated capture surface. The DCSC demonstrates exceptional sensitivity and accuracy in quantifying DC concentration (Cdc) and total collagen concentration (Ctc), enabling precise calculation of Ldc. Importantly, DCSC is versatile, detecting Ldc across various denaturing scenarios, including UV radiation, thermal environments, and decellularization. This denatured collagen-specific biochip offers a robust method for accurately analyzing Ldc, with significant potential for enhancing collagen quality assessment in biomaterial development and production.
Collapse
Affiliation(s)
- Xiaoyu Qin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chen Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Dhiman MS, Bader TJ, Ponjevic D, Salo PT, Hart DA, Swamy G, Matyas JR, Duncan NA. Collagen integrity of the annulus fibrosus in degenerative disc disease individuals quantified with collagen hybridizing peptide. JOR Spine 2024; 7:e1359. [PMID: 39092166 PMCID: PMC11291301 DOI: 10.1002/jsp2.1359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Degenerative disc disease (DDD) is accompanied by structural changes in the intervertebral discs (IVD). Extra-cellular matrix degradation of the annulus fibrosus (AF) has been linked with degeneration of the IVD. Collagen is a vital component of the IVD. Collagen hybridizing peptide (CHP) is an engineered protein that binds to degraded collagen, which we used to quantify collagen damage in AF. This method was used to compare AF samples obtained from donors with no DDD to AF samples from patients undergoing surgery for symptomatic DDD. Methods Fresh AF tissue was embedded in an optimal cutting temperature compound and cryosectioned at a thickness of 8 μm. Hematoxylin and Eosin staining was performed on sections for general histomorphological assessment. Serial sections were stained with Cy3-conjugated CHP and the mean fluorescence intensity and areal fraction of Cy3-positive staining were averaged for three regions of interest (ROI) on each CHP-stained section. Results Increases in mean fluorescence intensity (p = 0.0004) and percentage of positively stained area (p = 0.00008) with CHP were detected in DDD samples compared to the non-DDD samples. Significant correlations were observed between mean fluorescence intensity and percentage of positively stained area for both non-DDD (R = 0.98, p = 5E-8) and DDD (R = 0.79, p = 0.0012) samples. No significant differences were detected between sex and the lumbar disc level subgroups of the non-DDD and DDD groups. Only tissue pathology (non-DDD versus DDD) influenced the measured parameters. No three-way interactions between tissue pathology, sex, and lumbar disc level were observed. Discussion and Conclusions These findings suggest that AF collagen degradation is greater in DDD samples compared to non-DDD samples, as evidenced by the increased CHP staining. Strong positive correlations between the two measured parameters suggest that when collagen degradation occurs, it is detected by this technique and is widespread throughout the tissue. This study provides new insights into the structural alterations associated with collagen degradation in the AF that occur during DDD.
Collapse
Affiliation(s)
- Manmeet S. Dhiman
- Department of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
| | - Taylor J. Bader
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Dragana Ponjevic
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Paul T. Salo
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Surgery, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - David A. Hart
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Surgery, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Ganesh Swamy
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Surgery, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - John R. Matyas
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Neil A. Duncan
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Civil EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
3
|
Bhuket PRN, Li Y, Yu SM. From Collagen Mimetics to Collagen Hybridization and Back. Acc Chem Res 2024; 57:1649-1657. [PMID: 38795029 PMCID: PMC11472642 DOI: 10.1021/acs.accounts.3c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
ConspectusFacilitated by the unique triple-helical protein structure, fibrous collagens, the principal proteins in animals, demonstrate a dual function of serving as building blocks for tissue scaffolds and as a bioactive material capable of swift renewal in response to environmental changes. While studies of triple-helical collagen mimetic peptides (CMPs) have been instrumental in understanding the molecular forces responsible for the folding and assembly of triple helices, as well as identifying bioactive regions of fibrous collagen molecules, single-strand CMPs that can specifically target and hybridize to denatured collagens (i.e., collagen hybridizing peptides, CHPs) have proven useful in identifying the remodeling activity of collagen-rich tissues related to development, homeostasis, and pathology. Efforts to improve the utility of CHPs have resulted in the development of new skeletal structures, such as dimeric and cyclic CHPs, as well as the incorporation of artificial amino acids, including fluorinated proline and N-substituted glycines (peptoid residues). In particular, dimeric CHPs were used to capture collagen fragments from biological fluid for biomarker study, and the introduction of peptoid-based collagen mimetics has sparked renewed interest in peptidomimetic research because peptoids enable a stable triple-helical structure and the presentation of an extensive array of side chain structures offering a versatile platform for the development of new collagen mimetics.This Account will cover the evolution of our research from CMPs as biomaterials to ongoing efforts in developing triple-helical peptides with practical theranostic potential in targeting denatured and damaged collagens. Our early efforts in functionalizing natural collagen scaffolds via noncovalent modifications led to the discovery of an entirely new use of CMPs. This discovery resulted in the development of CHPs that are now used by many different laboratories for the investigation of pathologies associated with changes in the structures of extracellular matrices including fibrosis, cancer, and mechanical damage to collagen-rich, load-bearing tissues. Here, we delve into the essential design features of CHPs contributing to their collagen binding properties and practical usage and explore the necessity for further mechanistic understanding of not only the binding processes (e.g., binding domain and stoichiometry of the hybridized complex) but also the biology of collagen degradation, from proteolytic digestion of fibrils to cellular processing of collagen fragments. We also discuss the strengths and weaknesses of peptoid-based triple-helical peptides as applied to collagen hybridization touching on thermodynamic and kinetic aspects of triple-helical folding. Finally, we highlight current limitations and future directions in the use of peptoid building blocks to develop bioactive collagen mimetics as new functional biomaterials.
Collapse
Affiliation(s)
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - S. Michael Yu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Cai X, Wang B, Nian L, Cheng T, Zhang C, Li L, Zhang G, Xiao J. Simultaneous fingerprinting of multiplex collagen biomarkers in connective tissues by multicolor quantum dots-based peptide probes. Mater Today Bio 2024; 26:101026. [PMID: 38525311 PMCID: PMC10959700 DOI: 10.1016/j.mtbio.2024.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
The accurate detection of multiplex collagen biomarkers is vital for diagnosing and treating various critical diseases such as tumors and fibrosis. Despite the attractive optical properties of quantum dots (QDs), it remains technically challenging to create stable and specific QDs-based probes for multiplex biological imaging. We report for the first time the construction of multi-color QDs-based peptide probes for the simultaneous fingerprinting of multiplex collagen biomarkers in connective tissues. A bipeptide system composed of a glutathione (GSH) host peptide and a collagen-targeting guest peptide (CTP) has been developed, yielding CTP-QDs probes that exhibit exceptional luminescence stability when exposed to ultraviolet irradiation and mildly acidic conditions. The versatile bipeptide system allows for facile one-pot synthesis of high-quality multicolor CTP-QDs probes, exhibiting superior selectivity in targeting critical collagen biomarkers including denatured collagen, type I collagen, type II collagen, and type IV collagen. The multicolor CTP-QDs probes have demonstrated remarkable efficacy in simultaneously fingerprinting multiple collagen types in diverse connective tissues, irrespective of their status, whether affected by injury, diseases, or undergoing remodeling processes. The innovative multicolor CTP-QDs probes offer a robust toolkit for the multiplex fingerprinting of the collagen suprafamily, demonstrating significant potential in the diagnosis and treatment of collagen-related diseases.
Collapse
Affiliation(s)
- Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Bo Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Linge Nian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Tao Cheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Chunxia Zhang
- Tianjin Baogang Rare Earth Research Institute Co., Ltd, PR China
| | - Lu Li
- Tianjin Baogang Rare Earth Research Institute Co., Ltd, PR China
| | - Guangrui Zhang
- Tianjin Baogang Rare Earth Research Institute Co., Ltd, PR China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
5
|
Luke EN, Bhuket PRN, Yu SM, Weiss JA. Targeting damaged collagen for intra-articular delivery of therapeutics using collagen hybridizing peptides. J Orthop Res 2023; 41:2424-2432. [PMID: 37087677 PMCID: PMC10590823 DOI: 10.1002/jor.25577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The objective of this study was to investigate the potential of collagen hybridizing peptides (CHPs), which bind to denatured collagen, to extend the retention time of near-infrared fluorophores (NIRF) following intra-articular (IA) injection in rat knee joints. CHPs were synthesized with a NIRF conjugated to the N-terminus. Male Sprague-Dawley rats were assigned to one of four experimental groups: healthy, CHP; osteoarthritis (OA), CHP; healthy, scrambled-sequence CHP (sCHP), which has no collagen binding affinity; or OA, sCHP. Animals in the OA groups received an IA injection of monosodium iodoacetate to induce OA. All animals then received the corresponding CHP injection. Animals were imaged repeatedly over 2 weeks using an in vivo fluorescence imaging system. Joint components were isolated and imaged to determine CHP binding distribution. Safranin-O and Fast Green histological staining was performed to confirm the development of OA. CHPs were found to be retained within the joint following IA injection in both healthy and OA animals for the full study period. In contrast, sCHP signal was negligible by 24-48 h. CHP signal was significantly greater (p < 0.05) in OA joints when compared to healthy joints. At the 2-week end point, multiple joint components retained CHPs, including cartilage, meniscus, and synovium. CHPs dramatically extended the retention time of NIRFs following IA injection in healthy and OA knee joints by binding to multiple collagenous tissues in the joint. These results support the pursuit of further research to develop CHP based therapeutics for IA treatment of OA.
Collapse
Affiliation(s)
- E. N. Luke
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | | | - S. M. Yu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
| | - J. A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
6
|
Todaro B, Ottalagana E, Luin S, Santi M. Targeting Peptides: The New Generation of Targeted Drug Delivery Systems. Pharmaceutics 2023; 15:1648. [PMID: 37376097 DOI: 10.3390/pharmaceutics15061648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptides can act as targeting molecules, analogously to oligonucleotide aptamers and antibodies. They are particularly efficient in terms of production and stability in physiological environments; in recent years, they have been increasingly studied as targeting agents for several diseases, from tumors to central nervous system disorders, also thanks to the ability of some of them to cross the blood-brain barrier. In this review, we will describe the techniques employed for their experimental and in silico design, as well as their possible applications. We will also discuss advancements in their formulation and chemical modifications that make them even more stable and effective. Finally, we will discuss how their use could effectively help to overcome various physiological problems and improve existing treatments.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Ottalagana
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Melissa Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
7
|
Lim PJ, Marcionelli G, Srikanthan P, Ndarugendamwo T, Pinner J, Rohrbach M, Giunta C. Perturbations in fatty acid metabolism and collagen production infer pathogenicity of a novel MBTPS2 variant in Osteogenesis imperfecta. Front Endocrinol (Lausanne) 2023; 14:1195704. [PMID: 37305034 PMCID: PMC10248412 DOI: 10.3389/fendo.2023.1195704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable and chronically debilitating skeletal dysplasia. Patients with OI typically present with reduced bone mass, tendency for recurrent fractures, short stature and bowing deformities of the long bones. Mutations causative of OI have been identified in over 20 genes involved in collagen folding, posttranslational modification and processing, and in bone mineralization and osteoblast development. In 2016, we described the first X-linked recessive form of OI caused by MBTPS2 missense variants in patients with moderate to severe phenotypes. MBTPS2 encodes site-2 protease, a Golgi transmembrane protein that activates membrane-tethered transcription factors. These transcription factors regulate genes involved in lipid metabolism, bone and cartilage development, and ER stress response. The interpretation of genetic variants in MBTPS2 is complicated by the gene's pleiotropic properties; MBTPS2 variants can also cause the dermatological conditions Ichthyosis Follicularis, Atrichia and Photophobia (IFAP), Keratosis Follicularis Spinulosa Decalvans (KFSD) and Olmsted syndrome (OS) without skeletal abnormalities typical of OI. Using control and patient-derived fibroblasts, we previously identified gene expression signatures that distinguish MBTPS2-OI from MBTPS2-IFAP/KFSD and observed stronger suppression of genes involved in fatty acid metabolism in MBTPS2-OI than in MBTPS2-IFAP/KFSD; this was coupled with alterations in the relative abundance of fatty acids in MBTPS2-OI. Furthermore, we observed a reduction in collagen deposition in the extracellular matrix by MBTPS2-OI fibroblasts. Here, we extrapolate our observations in the molecular signature unique to MBTPS2-OI to infer the pathogenicity of a novel MBTPS2 c.516A>C (p.Glu172Asp) variant of unknown significance in a male proband. The pregnancy was terminated at gestational week 21 after ultrasound scans showed bowing of femurs and tibiae and shortening of long bones particularly of the lower extremity; these were further confirmed by autopsy. By performing transcriptional analyses, gas chromatography-tandem mass spectrometry-based quantification of fatty acids and immunocytochemistry on fibroblasts derived from the umbilical cord of the proband, we observed perturbations in fatty acid metabolism and collagen production similar to what we previously described in MBTPS2-OI. These findings support pathogenicity of the MBTPS2 variant p.Glu172Asp as OI-causative and highlights the value of extrapolating molecular signatures identified in multiomics studies to characterize novel genetic variants.
Collapse
Affiliation(s)
- Pei Jin Lim
- Connective Tissue Unit, Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Giulio Marcionelli
- Connective Tissue Unit, Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Pakeerathan Srikanthan
- Department of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Timothée Ndarugendamwo
- Connective Tissue Unit, Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jason Pinner
- Centre for Clinical Genetics, Sydney Children’s Hospital, Sydney, Australia
- UNSW Medicine and Health, University of New South Wales, Sydney, Australia
| | - Marianne Rohrbach
- Connective Tissue Unit, Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Cecilia Giunta
- Connective Tissue Unit, Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Abstract
Collagen provides mechanical and biological support for virtually all human tissues in the extracellular matrix (ECM). Its defining molecular structure, the triple-helix, could be damaged and denatured in disease and injuries. To probe collagen damage, the concept of collagen hybridization has been proposed, revised, and validated through a series of investigations reported as early as 1973: a collagen-mimicking peptide strand may form a hybrid triple-helix with the denatured chains of natural collagen but not the intact triple-helical collagen proteins, enabling assessment of proteolytic degradation or mechanical disruption to collagen within a tissue-of-interest. Here we describe the concept and development of collagen hybridization, summarize the decades of chemical investigations on rules underlying the collagen triple-helix folding, and discuss the growing biomedical evidence on collagen denaturation as a previously overlooked ECM signature for an array of conditions involving pathological tissue remodeling and mechanical injuries. Finally, we propose a series of emerging questions regarding the chemical and biological nature of collagen denaturation and highlight the diagnostic and therapeutic opportunities from its targeting.
Collapse
Affiliation(s)
- Xiaojing Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qi Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - S. Michael Yu
- Department of Biomedical Engineering, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| |
Collapse
|
9
|
Elhamouly M, Nii T, Isobe N, Yoshimura Y. Aging-associated increased nitric oxide production is a potential cause of inferior eggshell quality produced by aged laying hens. Theriogenology 2023; 205:63-72. [PMID: 37086586 DOI: 10.1016/j.theriogenology.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 04/24/2023]
Abstract
It is important to prolong the productive life of laying hens without compromising their welfare. Therefore, in this study, we aimed to identify the cause for inferior quality egg production of aged hens by investigating the aging-associated molecular changes related to eggshell formation in the isthmic and uterine mucosae and determining whether nitric oxide plays a role in decreasing the quality of eggs produced by aged hens. Young (35 weeks old) and aged (130 weeks old) White Leghorn laying hens were used in this study to determine the effects of age on the expression of proteins related to eggshell membranes formation in the isthmus and eggshell biomineralization and nitric oxide production in the uterus. Nitric oxide synthesis during the ovulatory cycle was examined in twenty-five laying hens (46-52 weeks old) euthanized at 0, 4, 7, 16, and 24 h after oviposition. S-Nitroso-N-acetylpenicillamine (a nitric oxide donor) was added to the cultured isthmic and uterine mucosal cells to examine the effects of nitric oxide on the expression of genes related to eggshell membranes formation and eggshell biomineralization, respectively. The results showed that the protein abundance of collagen I and V in the isthmic mucosa and collagen V in the eggshell membranes were lower in aged hens than in young hens. The mRNA expression levels of calbindin, osteopontin, and ovocalyxin-36 and the protein abundance of calbindin and carbonic anhydrase-2 were lower in the uterine mucosa of aged hens than in that of young hens. Nitric oxide synthesis was higher in the uterine mucosa of aged hens than in that of young hens. Nitric oxide downregulated the mRNA expression levels of osteopontin and ovocalyxin-36 in cultured uterine mucosal cells. Our results indicated that the eggshell quality decreases with aging due to molecular changes in the uterine mucosa affecting the eggshell membrane formation and eggshell biomineralization. Moreover, nitric oxide overproduction may play a role in this dysfunction.
Collapse
Affiliation(s)
- M Elhamouly
- Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt; Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - T Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - N Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Y Yoshimura
- Hiroshima Study Center, The Open University of Japan, Hiroshima, 730-0053, Japan.
| |
Collapse
|
10
|
Pedaprolu K, Szczesny SE. Mouse Achilles tendons exhibit collagen disorganization but minimal collagen denaturation during cyclic loading to failure. J Biomech 2023; 151:111545. [PMID: 36944295 PMCID: PMC10069227 DOI: 10.1016/j.jbiomech.2023.111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
While overuse is a prominent risk factor for tendinopathy, the fatigue-induced structural damage responsible for initiating tendon degeneration remains unclear. Denaturation of collagen molecules and collagen fiber disorganization have been observed within certain tendons in response to fatigue loading. However, no studies have investigated whether these forms of tissue damage occur in Achilles tendons, which commonly exhibit tendinopathy. Therefore, the objective of this study was to determine whether mouse Achilles tendons undergo collagen denaturation and collagen fiber disorganization when cyclically loaded to failure. Consistent with previous testing of other energy-storing tendons, we found that cyclic loading of mouse Achilles tendons produced collagen disorganization but minimal collagen denaturation. To determine whether the lack of collagen denaturation is unique to mouse Achilles tendons, we monotonically loaded the Achilles and other mouse tendons to failure. We found that the patellar tendon was also resistant to collagen denaturation, but the flexor digitorum longus (FDL) tendon and tail tendon fascicles were not. Furthermore, the Achilles and patellar tendons had a lower tensile strength and modulus. While this may be due to differences in tissue structure, it is likely that the lack of collagen denaturation during monotonic loading in both the Achilles and patellar tendons was due to failure near their bony insertions, which were absent in the FDL and tail tendons. These findings suggest that mouse Achilles tendons are resistant to collagen denaturation in situ and that Achilles tendon degeneration may not be initiated by mechanically-induced damage to collagen molecules.
Collapse
Affiliation(s)
- Krishna Pedaprolu
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Spencer E Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States; Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, PA, United States.
| |
Collapse
|
11
|
Smith KA, Lin AH, Stevens AH, Yu SM, Weiss JA, Timmins LH. Collagen Molecular Damage is a Hallmark of Early Atherosclerosis Development. J Cardiovasc Transl Res 2023; 16:463-472. [PMID: 36097314 DOI: 10.1007/s12265-022-10316-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Remodeling of extracellular matrix proteins underlies the development of cardiovascular disease. Herein, we utilized a novel molecular probe, collagen hybridizing peptide (CHP), to target collagen molecular damage during atherogenesis. The thoracic aorta was dissected from ApoE-/- mice that had been on a high-fat diet for 0-18 weeks. Using an optimized protocol, tissues were stained with Cy3-CHP and digested to quantify CHP with a microplate assay. Results demonstrated collagen molecular damage, inferred from Cy3-CHP fluorescence, was a function of location and time on the high-fat diet. Tissue from the aortic arch showed a significant increase in collagen molecular damage after 18 weeks, while no change was observed in tissue from the descending aorta. No spatial differences in fluorescence were observed between the superior and inferior arch tissue. Our results provide insight into the early changes in collagen during atherogenesis and present a new opportunity in the subclinical diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Kelly A Smith
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Allen H Lin
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Alexander H Stevens
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - S Michael Yu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Lucas H Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
12
|
Lin AH, Slater CA, Martinez CJ, Eppell SJ, Yu SM, Weiss JA. Collagen fibrils from both positional and energy-storing tendons exhibit increased amounts of denatured collagen when stretched beyond the yield point. Acta Biomater 2023; 155:461-470. [PMID: 36400348 PMCID: PMC9805521 DOI: 10.1016/j.actbio.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Collagen molecules are the base structural unit of tendons, which become denatured during mechanical overload. We recently demonstrated that during tendon stretch, collagen denaturation occurs at the yield point of the stress-strain curve in both positional and energy-storing tendons. We were interested in investigating how this load is transferred throughout the collagen hierarchy, and sought to determine the onset of collagen denaturation when collagen fibrils are stretched. Fibrils are one level above the collagen molecule in the collagen hierarchy, allowing more direct probing of the effect of strain on collagen molecules. We isolated collagen fibrils from both positional and energy-storing tendon types and stretched them using a microelectromechanical system device to various levels of strain. We stained the fibrils with fluorescently labeled collagen hybridizing peptides that specifically bind to denatured collagen, and examined whether samples stretched beyond the yield point of the stress-strain curve exhibited increased amounts of denatured collagen. We found that collagen denaturation in collagen fibrils from both tendon types occurs at the yield point. Greater amounts of denatured collagen were found in post-yield positional fibrils than in energy-storing fibrils. This is despite a greater yield strain and yield stress in fibrils from energy-storing tendons compared to positional tendons. Interestingly, the peak modulus of collagen fibrils from both tendon types was the same. These results are likely explained by the greater crosslink density found in energy-storing tendons compared to positional tendons. The insights gained from this study could help management of tendon and other musculoskeletal injuries by targeting collagen molecular damage at the fibril level. STATEMENT OF SIGNIFICANCE: When tendons are stretched or torn, this can lead to collagen denaturation (damage). Depending on their biomechanical function, tendons are considered positional or energy-storing with different crosslink profiles. By stretching collagen fibrils instead of fascicles from both tendon types, we can more directly examine the effect of tensile stretch on the collagen molecule in tendons. We found that regardless of tendon type, collagen denaturation in fibrils occurs when they are stretched beyond the yield point of the stress-strain curve. This provides insight into how load affects different tendon sub-structures during tendon injuries and failure, which will help clinicians and researchers understand mechanisms of injuries and potentially target collagen molecular damage as a treatment strategy, leading to improved clinical outcomes following injury.
Collapse
Affiliation(s)
- Allen H Lin
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States
| | - Christopher A Slater
- Department of Biomedical Engineering, Case Western Reserve University, United States
| | - Callie-Jo Martinez
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States
| | - Steven J Eppell
- Department of Biomedical Engineering, Case Western Reserve University, United States
| | - S Michael Yu
- Department of Biomedical Engineering, University of Utah, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, United States
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States; Department of Orthopaedics, University of Utah, United States.
| |
Collapse
|
13
|
Biopolymer-Based Wound Dressings with Biochemical Cues for Cell-Instructive Wound Repair. Polymers (Basel) 2022; 14:polym14245371. [PMID: 36559739 PMCID: PMC9783382 DOI: 10.3390/polym14245371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine is an active research sphere that focuses on the repair, regeneration, and replacement of damaged tissues and organs. A plethora of innovative wound dressings and skin substitutes have been developed to treat cutaneous wounds and are aimed at reducing the length or need for a hospital stay. The inception of biomaterials with the ability to interact with cells and direct them toward desired lineages has brought about innovative designs in wound healing and tissue engineering. This cellular engagement is achieved by cell cues that can be biochemical or biophysical in nature. In effect, these cues seep into innate repair pathways, cause downstream cell behaviours and, ultimately, lead to advantageous healing. This review will focus on biomolecules with encoded biomimetic, instructive prompts that elicit desired cellular domino effects to achieve advanced wound repair. The wound healing dressings covered in this review are based on functionalized biopolymeric materials. While both biophysical and biochemical cues are vital for advanced wound healing applications, focus will be placed on biochemical cues and in vivo or clinical trial applications. The biochemical cues aforementioned will include peptide therapy, collagen matrices, cell-based therapy, decellularized matrices, platelet-rich plasma, and biometals.
Collapse
|
14
|
Marvin JC, Mochida A, Paredes J, Vaughn B, Andarawis-Puri N. Detergent-Free Decellularization Preserves the Mechanical and Biological Integrity of Murine Tendon. Tissue Eng Part C Methods 2022; 28:646-655. [PMID: 36326204 PMCID: PMC9807253 DOI: 10.1089/ten.tec.2022.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Tissue decellularization has demonstrated widespread applications across numerous organ systems for tissue engineering and regenerative medicine applications. Decellularized tissues are expected to retain structural and/or compositional features of the natural extracellular matrix (ECM), enabling investigation of biochemical factors and cell-ECM interactions that drive tissue homeostasis, healing, and disease. However, the dense collagenous tendon matrix has limited the efficacy of traditional decellularization strategies without the aid of harsh chemical detergents and/or physical agitation that disrupt tissue integrity and denature proteins involved in regulating cell behavior. In this study, we adapted and established the advantages of a detergent-free decellularization method that relies on latrunculin B actin destabilization, alternating hypertonic-hypotonic salt and water incubations, nuclease-assisted elimination of cellular material, and protease inhibitor supplementation under aseptic conditions. Our method maintained the collagen molecular structure (i.e., minimal extent of denaturation), while adequately removing cells and preserving bulk mechanical properties. Furthermore, we demonstrated that decellularized tendon ECM-derived coatings isolated from different mouse strains, injury states (i.e., naive and acutely injured/"provisional"), and anatomical sites harness distinct biochemical cues and robustly maintain tendon cell viability in vitro. Together, our work provides a simple and scalable decellularization method to facilitate mechanistic studies that will expand our fundamental understanding of tendon ECM and cell biology. Impact statement In this study, we present a decellularization method for tendon that does not rely on any detergent or physical processing techniques. We assessed the impact of detergent-free decellularization using tissue, cellular, and molecular level analyses and validated the preservation of gross fiber architecture, collagen molecular structure, and extracellular matrix (ECM)-associated biological cues that are essential for studying physiological cell-ECM interactions. Finally, we demonstrated the applicability of this method for healthy and injured tendon environments, across mouse strains, and for different types of tendons, illustrating the utility of this approach for isolating the contributions of biochemical cues within unique tendon ECM microenvironments.
Collapse
Affiliation(s)
- Jason C. Marvin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ai Mochida
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Juan Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Brenna Vaughn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
15
|
Ikeda-Imafuku M, Gao Y, Shaha S, Wang LLW, Park KS, Nakajima M, Adebowale O, Mitragotri S. Extracellular matrix degrading enzyme with stroma-targeting peptides enhance the penetration of liposomes into tumors. J Control Release 2022; 352:1093-1103. [PMID: 36351520 DOI: 10.1016/j.jconrel.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Various anti-tumor nanomedicines have been developed based on the enhanced permeability and retention effect. However, the dense extracellular matrix (ECM) in tumors remains a major barrier for the delivery and accumulation of nanoparticles into tumors. While ECM-degrading enzymes, such as collagenase, hyaluronidase, and bromelain, have been used to facilitate the accumulation of nanoparticles, serious side effects arising from the current non-tumor-specific delivery methods limit their clinical applications. Here, we report targeted delivery of bromelain into tumor tissues through its covalent attachment to a hyaluronic acid (HA)-peptide conjugate with tumor ECM targeting ability. The ECM targeting peptide, collagen type IV-binding peptide (C4BP), was chosen from six candidate-peptides based on their ability to bind to frozen sections of triple-negative breast cancer, 4T1 tumor ex vivo. The HA- C4BP conjugate showed a significant increase in tumor accumulation in 4T1-bearing mice after intravenous administration compared to unmodified HA. We further demonstrated that the systemic administration of bromelain conjugated C4BP-HA (C4BP-HA-Bro) potentiates the anti-tumor efficacy of liposomal doxorubicin. C4BP-HA-Bro decreased the number and length of collagen fibers and improved the distribution of doxorubicin within the tumor. No infusion reaction was noted after delivery of C4BP-HA-Bro. C4BP-HA thus offers a potential for effective and safe delivery of bromelain for improved intratumoral delivery of therapeutics.
Collapse
Affiliation(s)
- Mayumi Ikeda-Imafuku
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Suyog Shaha
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kyung Soo Park
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Mayuka Nakajima
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Omokolade Adebowale
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA.
| |
Collapse
|
16
|
Malcor JD, Mallein-Gerin F. Biomaterial functionalization with triple-helical peptides for tissue engineering. Acta Biomater 2022; 148:1-21. [PMID: 35675889 DOI: 10.1016/j.actbio.2022.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
In the growing field of tissue engineering, providing cells in biomaterials with the adequate biological cues represents an increasingly important challenge. Yet, biomaterials with excellent mechanical properties often are often biologically inert to many cell types. To address this issue, researchers resort to functionalization, i.e. the surface modification of a biomaterial with active molecules or substances. Functionalization notably aims to replicate the native cellular microenvironment provided by the extracellular matrix, and in particular by collagen, its major component. As our understanding of biological processes regulating cell behaviour increases, functionalization with biomolecules binding cell surface receptors constitutes a promising strategy. Amongst these, triple-helical peptides (THPs) that reproduce the architectural and biological properties of collagen are especially attractive. Indeed, THPs containing binding sites from the native collagen sequence have successfully been used to guide cell response by establishing cell-biomaterial interactions. Notably, the GFOGER motif recognising the collagen-binding integrins is extensively employed as a cell adhesive peptide. In biomaterials, THPs efficiently improved cell adhesion, differentiation and function on biomaterials designed for tissue repair (especially for bone, cartilage, tendon and heart), vascular graft fabrication, wound dressing, drug delivery or immunomodulation. This review describes the key characteristics of THPs, their effect on cells when combined to biomaterials and their strong potential as biomimetic tools for regenerative medicine. STATEMENT OF SIGNIFICANCE: This review article describes how triple-helical peptides constitute efficient tools to improve cell-biomaterial interactions in tissue engineering. Triple helical peptides are bioactive molecules that mimic the architectural and biological properties of collagen. They have been successfully used to specifically recognize cell-surface receptors and provide cells seeded on biomaterials with controlled biological cues. Functionalization with triple-helical peptides has enabled researchers to improve cell function for regenerative medicine applications, such as tissue repair. However, despite encouraging results, this approach remains limited and under-exploited, and most functionalization strategies reported in the literature rely on biomolecules that are unable to address collagen-binding receptors. This review will assist researchers in selecting the correct tools to functionalize biomaterials in efforts to guide cellular response.
Collapse
Affiliation(s)
- Jean-Daniel Malcor
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France.
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France
| |
Collapse
|
17
|
Hulgan SAH, Hartgerink JD. Recent Advances in Collagen Mimetic Peptide Structure and Design. Biomacromolecules 2022; 23:1475-1489. [PMID: 35258280 DOI: 10.1021/acs.biomac.2c00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Collagen mimetic peptides (CMPs) fold into a polyproline type II triple helix, allowing the study of the structure and function (or misfunction) of the collagen family of proteins. This Perspective will focus on recent developments in the use of CMPs toward understanding the structure and controlling the stability of the triple helix. Triple helix assembly is influenced by various factors, including the single amino acid propensity for the triple helix fold, pairwise interactions between these amino acids, and long-range effects observed across the helix, such as bend, twist, and fraying. Important progress in creating a comprehensive and predictive understanding of these factors for peptides with exclusively natural amino acids has been made. In contrast, several groups have successfully developed unnatural amino acids that are engineered to stabilize the triple helical structure. A third approach to controlling the triple helical structure includes covalent cross-linking of the triple helix to stabilize the assembly, which eliminates the problematic equilibrium of unfolding into monomers and enforces compositional control. Advances in all these areas have resulted in significant improvements to our understanding and control of this important class of protein, allowing for the design and application of more chemically complex and well-controlled collagen mimetic biomaterials.
Collapse
Affiliation(s)
- Sarah A H Hulgan
- Rice University, Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D Hartgerink
- Rice University, Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
18
|
Modeling oxidative injury response in human kidney organoids. Stem Cell Res Ther 2022; 13:76. [PMID: 35189973 PMCID: PMC8862571 DOI: 10.1186/s13287-022-02752-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Hemolysis occurs in many injury settings and can trigger disease processes. In the kidney, extracellular hemoglobin can induce damage via several mechanisms. These include oxidative stress, mitochondrial dysfunction, and inflammation, which promote fibrosis and chronic kidney disease. Understanding the pathophysiology of these injury pathways offers opportunities to develop new therapeutic strategies.
Methods
To model hemolysis-induced kidney injury, human kidney organoids were treated with hemin, an iron-containing porphyrin, that generates reactive oxygen species. In addition, we developed an induced pluripotent stem cell line expressing the biosensor, CytochromeC-GFP (CytoC-GFP), which provides a real-time readout of mitochondrial morphology, health, and early apoptotic events.
Results
We found that hemin-treated kidney organoids show oxidative damage, increased expression of injury markers, impaired functionality of organic anion and cation transport and undergo fibrosis. Injury could be detected in live CytoC-GFP organoids by cytoplasmic localization of fluorescence. Finally, we show that 4-(phenylthio)butanoic acid, an HDAC inhibitor with anti-fibrotic effects in vivo, reduces hemin-induced human kidney organoid fibrosis.
Conclusion
This work establishes a hemin-induced model of kidney organoid injury. This platform provides a new tool to study the injury and repair response pathways in human kidney tissue and will assist in the development of new therapeutics.
Collapse
|
19
|
Tang Q, Lu B, He J, Chen X, Fu Q, Han H, Luo C, Yin H, Qin Z, Lyu D, Zhang L, Zhou M, Yao K. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration. Biomaterials 2021; 280:121320. [PMID: 34923312 DOI: 10.1016/j.biomaterials.2021.121320] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Abstract
Corneal damage forms scar tissue and manifests as permanent corneal opacity, which is the main cause of visual impairment caused by corneal diseases. To treat these diseases, herein, we developed a novel approach based on the exosome derived from induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) combined with a thermosensitive hydrogel, which reduces scar formation and accelerates the healing process. We found that a thermosensitive chitosan-based hydrogels (CHI hydrogel) sustained-release iPSC-MSC exosomes can effectively promote the repair of damaged corneal epithelium and stromal layer, downregulating mRNA expression coding for the three most enriched collagens (collagen type I alpha 1, collagen type V alpha 1 and collagen type V alpha 2) in corneal stroma and reducing scar formation in vivo. Furthermore, iPSC-MSCs secrete exosomes that contain miR-432-5p, which suppresses translocation-associated membrane protein 2 (TRAM2), a vital modulator of the collagen biosynthesis in the corneal stromal stem cells to avert the deposition of extracellular matrix (ECM). Our findings indicate that iPSC-MSCs secrete miRNA-containing exosomes to promote corneal epithelium and stroma regeneration, and that miR-432-5p can prevent ECM deposition via a mechanism most probably linked to direct repression of its target gene TRAM2. Overall, our exosomes-based thermosensitive CHI hydrogel, is a promising technology for clinical therapy of various corneal diseases.
Collapse
Affiliation(s)
- Qiaomei Tang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Bing Lu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Jian He
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qiuli Fu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Chenqi Luo
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Houfa Yin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Zhenwei Qin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Danni Lyu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Lifang Zhang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China.
| |
Collapse
|
20
|
Brandt ZJ, Collery RF, Besharse JC, Link BA. Ablation of mpeg+ Macrophages Exacerbates mfrp-Related Hyperopia. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 34913948 PMCID: PMC8684298 DOI: 10.1167/iovs.62.15.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Proper refractive development of the eye, termed emmetropization, is critical for focused vision and is impacted by both genetic determinants and several visual environment factors. Improper emmetropization caused by genetic variants can lead to congenital hyperopia, which is characterized by small eyes and relatively short ocular axial length. To date, variants in only four genes have been firmly associated with human hyperopia, one of which is MFRP. Zebrafish mfrp mutants also have hyperopia and, similar to reports in mice, exhibit increased macrophage recruitment to the retina. The goal of this research was to examine the effects of macrophage ablation on emmetropization and mfrp-related hyperopia. Methods We utilized a chemically inducible, cell-specific ablation system to deplete macrophages in both wild-type and mfrp mutant zebrafish. Spectral-domain optical coherence tomography was then used to measure components of the eye and determine relative refractive state. Histology, immunohistochemistry, and transmission electron microscopy were used to further study the eyes. Results Although macrophage ablation does not cause significant changes to the relative refractive state of wild-type zebrafish, macrophage ablation in mfrp mutants significantly exacerbates their hyperopic phenotype, resulting in a relative refractive error 1.3 times higher than that of non-ablated mfrp siblings. Conclusions Genetic inactivation of mfrp leads to hyperopia, as well as abnormal accumulation of macrophages in the retina. Ablation of the mpeg1-positive macrophage population exacerbates the hyperopia, suggesting that macrophages may be recruited in an effort help preserve emmetropization and ameliorate hyperopia.
Collapse
Affiliation(s)
- Zachary J Brandt
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ross F Collery
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joseph C Besharse
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
21
|
Zitnay JL, Lin AH, Weiss JA. Tendons exhibit greater resistance to tissue and molecular-level damage with increasing strain rate during cyclic fatigue. Acta Biomater 2021; 134:435-442. [PMID: 34314889 DOI: 10.1016/j.actbio.2021.07.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
Musculoskeletal soft connective tissues are commonly injured due to repetitive use, but the evolution of mechanical damage to the tissue structure during repeated loading is poorly understood. We investigated the strain-rate dependence of mechanical denaturation of collagen as a form of structural microdamage accumulation during creep fatigue loading of rat tail tendon fascicles. We cycled tendons at three strain rates to the same maximum stress relative to their rate-dependent tensile strength. Collagen denaturation at distinct points during the fatigue process was measured by fluorescence quantification of collagen hybridizing peptide binding. The amount of collagen denaturation was significantly correlated with fascicle creep strain, independent of the cyclic strain rate, supporting our hypothesis that tissue level creep is caused by collagen triple-helix unfolding. Samples that were loaded faster experienced more creep strain and denaturation as a function of the number of loading cycles relative to failure. Although this increased damage capacity at faster rates may serve as a protective measure during high-rate loading events, it may also predispose these tissues to subsequent injury and indicate a mechanism of overuse injury development. These results build on evidence that molecular-level collagen denaturation is the fundamental mechanism of structural damage to tendons during tensile loading. STATEMENT OF SIGNIFICANCE: This study is the first to investigate the accumulation of denatured collagen in tendons throughout fatigue loading when the maximum stress is scaled with the applied strain rate. The amount of denatured collagen was correlated with creep strain, independent of strain rate, but samples that were cycled faster withstood greater amounts of denaturation before failure. Differential accumulation of collagen damage between fast and slow repetitive loading has relevance toward understanding the prevalence of overuse musculoskeletal injuries following sudden changes in activity level. Since collagen is a ubiquitous biological structural component, the basic patterns and mechanisms of loading-induced collagen damage in connective tissues are relevant for understanding injury and disease in other tissues, including those from the cardiovascular and pulmonary systems.
Collapse
Affiliation(s)
- Jared L Zitnay
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Allen H Lin
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; School of Computing, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
22
|
Tohar R, Ansbacher T, Sher I, Afriat-Jurnou L, Weinberg E, Gal M. Screening Collagenase Activity in Bacterial Lysate for Directed Enzyme Applications. Int J Mol Sci 2021; 22:ijms22168552. [PMID: 34445258 PMCID: PMC8395246 DOI: 10.3390/ijms22168552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/23/2023] Open
Abstract
Collagenases are essential enzymes capable of digesting triple-helical collagen under physiological conditions. These enzymes play a key role in diverse physiological and pathophysiological processes. Collagenases are used for diverse biotechnological applications, and it is thus of major interest to identify new enzyme variants with improved characteristics such as expression yield, stability, or activity. The engineering of new enzyme variants often relies on either rational protein design or directed enzyme evolution. The latter includes screening of a large randomized or semirational genetic library, both of which require an assay that enables the identification of improved variants. Moreover, the assay should be tailored for microplates to allow the screening of hundreds or thousands of clones. Herein, we repurposed the previously reported fluorogenic assay using 3,4-dihydroxyphenylacetic acid for the quantitation of collagen, and applied it in the detection of bacterial collagenase activity in bacterial lysates. This enabled the screening of hundreds of E. coli colonies expressing an error-prone library of collagenase G from C. histolyticum, in 96-well deep-well plates, by measuring activity directly in lysates with collagen. As a proof-of-concept, a single variant exhibiting higher activity than the starting-point enzyme was expressed, purified, and characterized biochemically and computationally. This showed the feasibility of this method to support medium-high throughput screening based on direct evaluation of collagenase activity.
Collapse
Affiliation(s)
- Ran Tohar
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
| | - Tamar Ansbacher
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
- Hadassah Academic College, 7 Hanevi’im Street, Jerusalem 9101001, Israel
| | - Inbal Sher
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
| | - Livnat Afriat-Jurnou
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
| | - Maayan Gal
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
- Correspondence: ; Tel.: +972-50-7987058
| |
Collapse
|
23
|
Stefanovic B, Stefanovic L, Manojlovic Z. Imaging of type I procollagen biosynthesis in cells reveals biogenesis in highly organized bodies; Collagenosomes. Matrix Biol Plus 2021; 12:100076. [PMID: 34278289 PMCID: PMC8261018 DOI: 10.1016/j.mbplus.2021.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 10/26/2022] Open
Abstract
Mechanistic aspects of type I procollagen biosynthesis in cells are poorly understood. To provide more insight into this process we designed a system to directly image type I procollagen biogenesis by co-expression of fluorescently labeled full size procollagen α1(I) and one α2(I) polypeptides. High resolution images show that collagen α1(I) and α2(I) polypeptides are produced in coordination in discrete structures on the ER membrane, which we termed the collagenosomes. Collagenosomes are disk shaped bodies, 0.5-1 μM in diameter and 200-400 nm thick, in the core of which folding of procollagen takes place. Collagenosomes are intimately associated with the ER membrane and their formation requires intact translational machinery, suggesting that they are the sites of nascent procollagen biogenesis. Collagenosomes show little co-localization with the COPII transport vesicles, which export type I procollagen from the ER, suggesting that these two structures are distinct. LARP6 is the protein which regulates translation of type I collagen mRNAs. The characteristic organization of collagenosomes depends on binding of LARP6 to collagen mRNAs. Without LARP6 regulation, collagenosomes are poorly organized and the folding of α1(I) and α2(I) polypeptides into procollagen in their cores is diminished. This indicates that formation of collagenosomes is dependent on regulated translation of collagen mRNAs. In live cells the size, number and shape of collagenosomes show little change within several hours, suggesting that they are stable structures of type I procollagen biogenesis. This is the first report of structural organization of type I collagen biogenesis in collagenosomes, while the fluorescent reporter system based on simultaneous imaging of both type I collagen polypeptides will enable the detailed elucidation of their structure and function.
Collapse
Affiliation(s)
- Branko Stefanovic
- Department of Biomedical Sciences and Translational Science Laboratory, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Lela Stefanovic
- Department of Biomedical Sciences and Translational Science Laboratory, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Zarko Manojlovic
- Keck School of Medicine of University of Southern California, 1450 Biggy Street, NRT 4510, Los Angeles, CA 90033, USA
| |
Collapse
|
24
|
Ali SM, Khalid SG. To study the effect of acute infrared radiation-induced alterations in human skin at cellular and molecular level using in vivo confocal Raman spectroscopy. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 38:44-52. [PMID: 34157181 DOI: 10.1111/phpp.12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Solar radiations are classified in terms of wavelengths, including visible light, infrared, and ultraviolet. Infrared radiation (IR) accounts the largest proportion of solar radiations that cause oxidative stress-induced aging of human skin. This study investigates the biochemical changes in proteins, lipids, and DNA associated with acute exposure to IR radiations. METHOD In vivo confocal Raman spectroscopy was used to examine the forearms region of 20 healthy participants with phototype II skin, aged between 18 and 30 years, without IR incidence (T0), with IR incidence 30 minutes (T30) at day 1 and 30 minutes at day 2 (T60). One-way ANOVA and two-tailed t test along with post hoc Bonferroni correction were used to detect the existence of significant differences in the timestamps of stratum corneum, stratum basale, and dermis at all IR wavenumbers under test. RESULTS An increase in the Raman peaks of stratum corneum lipids, decrease in stratum basal DNA peaks, and a shift in the amide I peak of collagen in the skin dermis were observed. One-way ANOVA results showed significant differences among timestamps of stratum corneum, stratum basale, and dermis at all wavenumbers under test (P < .001). Furthermore, paired timestamps also showed significant differences (P < .016) except at two wavenumbers 1293 cm-1 and 852 cm-1 in stratum corneum and basale layer clusters on timestamps (T0 & T30 and T30 & T60, P > .016). This study proved that confocal Raman spectroscopy is an useful technique for early evaluation of IR-induced skin changes.
Collapse
Affiliation(s)
- Syed Mehmood Ali
- College of Engineering, Biomedical Engineering Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Research Centre for Intelligent Healthcare, Faculty of Life Sciences, Coventry University, Coventry, UK
| | - Syed Ghufran Khalid
- College of Engineering, Biomedical Engineering Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Research Centre for Intelligent Healthcare, Faculty of Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
25
|
Nerger BA, Jaslove JM, Elashal HE, Mao S, Košmrlj A, Link AJ, Nelson CM. Local accumulation of extracellular matrix regulates global morphogenetic patterning in the developing mammary gland. Curr Biol 2021; 31:1903-1917.e6. [PMID: 33705716 PMCID: PMC8119325 DOI: 10.1016/j.cub.2021.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/23/2020] [Accepted: 02/08/2021] [Indexed: 01/19/2023]
Abstract
The tree-like pattern of the mammary epithelium is formed during puberty through a process known as branching morphogenesis. Although mammary epithelial branching is stochastic and generates an epithelial tree with a random pattern of branches, the global orientation of the developing epithelium is predictably biased along the long axis of the gland. Here, we combine analysis of pubertal mouse mammary glands, a three-dimensional (3D)-printed engineered tissue model, and computational models of morphogenesis to investigate the origin and the dynamics of the global bias in epithelial orientation during pubertal mammary development. Confocal microscopy analysis revealed that a global bias emerges in the absence of pre-aligned networks of type I collagen in the fat pad and is maintained throughout pubertal development until the widespread formation of lateral branches. Using branching and annihilating random walk simulations, we found that the angle of bifurcation of terminal end buds (TEBs) dictates both the dynamics and the extent of the global bias in epithelial orientation. Our experimental and computational data demonstrate that a local increase in stiffness from the accumulation of extracellular matrix, which constrains the angle of bifurcation of TEBs, is sufficient to pattern the global orientation of the developing mammary epithelium. These data reveal that local mechanical properties regulate the global pattern of mammary epithelial branching and may provide new insight into the global patterning of other branched epithelia.
Collapse
Affiliation(s)
- Bryan A Nerger
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jacob M Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Hader E Elashal
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sheng Mao
- Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - A James Link
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
26
|
Three-Dimensional Imaging of Pulmonary Fibrotic Foci at the Alveolar Scale Using Tissue-Clearing Treatment with Staining Techniques of Extracellular Matrix. Int J Biomed Imaging 2021; 2020:8815231. [PMID: 33456450 PMCID: PMC7787752 DOI: 10.1155/2020/8815231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 01/21/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive, chronic lung disease characterized by the accumulation of extracellular matrix proteins, including collagen and elastin. Imaging of extracellular matrix in fibrotic lungs is important for evaluating its pathological condition as well as the distribution of drugs to pulmonary focus sites and their therapeutic effects. In this study, we compared techniques of staining the extracellular matrix with optical tissue-clearing treatment for developing three-dimensional imaging methods for focus sites in pulmonary fibrosis. Mouse models of pulmonary fibrosis were prepared via the intrapulmonary administration of bleomycin. Fluorescent-labeled tomato lectin, collagen I antibody, and Col-F, which is a fluorescent probe for collagen and elastin, were used to compare the imaging of fibrotic foci in intact fibrotic lungs. These lung samples were cleared using the ClearT2 tissue-clearing technique. The cleared lungs were two dimensionally observed using laser-scanning confocal microscopy, and the images were compared with those of the lung tissue sections. Moreover, three-dimensional images were reconstructed from serial two-dimensional images. Fluorescent-labeled tomato lectin did not enable the visualization of fibrotic foci in cleared fibrotic lungs. Although collagen I in fibrotic lungs could be visualized via immunofluorescence staining, collagen I was clearly visible only until 40 μm from the lung surface. Col-F staining facilitated the visualization of collagen and elastin to a depth of 120 μm in cleared lung tissues. Furthermore, we visualized the three-dimensional extracellular matrix in cleared fibrotic lungs using Col-F, and the images provided better visualization than immunofluorescence staining. These results suggest that ClearT2 tissue-clearing treatment combined with Col-F staining represents a simple and rapid technique for imaging fibrotic foci in intact fibrotic lungs. This study provides important information for imaging various organs with extracellular matrix-related diseases.
Collapse
|
27
|
Xu Y, Kirchner M. Collagen Mimetic Peptides. Bioengineering (Basel) 2021; 8:5. [PMID: 33466358 PMCID: PMC7824840 DOI: 10.3390/bioengineering8010005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Since their first synthesis in the late 1960s, collagen mimetic peptides (CMPs) have been used as a molecular tool to study collagen, and as an approach to develop novel collagen mimetic biomaterials. Collagen, a major extracellular matrix (ECM) protein, plays vital roles in many physiological and pathogenic processes. Applications of CMPs have advanced our understanding of the structure and molecular properties of a collagen triple helix-the building block of collagen-and the interactions of collagen with important molecular ligands. The accumulating knowledge is also paving the way for developing novel CMPs for biomedical applications. Indeed, for the past 50 years, CMP research has been a fast-growing, far-reaching interdisciplinary field. The major development and achievement of CMPs were documented in a few detailed reviews around 2010. Here, we provided a brief overview of what we have learned about CMPs-their potential and their limitations. We focused on more recent developments in producing heterotrimeric CMPs, and CMPs that can form collagen-like higher order molecular assemblies. We also expanded the traditional view of CMPs to include larger designed peptides produced using recombinant systems. Studies using recombinant peptides have provided new insights on collagens and promoted progress in the development of collagen mimetic fibrillar self-assemblies.
Collapse
Affiliation(s)
- Yujia Xu
- Department of Chemistry, Hunter College of the City University of New York, 695 Park Ave., New York, NY 10065, USA;
| | | |
Collapse
|
28
|
Cai X, Wei W, Liu Z, Bai Z, Lei J, Xiao J. In Situ Imaging of Pathological Collagen by Electrostatic Repulsion-Destabilized Peptide Probes. ACS APPLIED BIO MATERIALS 2020; 3:7492-7499. [DOI: 10.1021/acsabm.0c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenyu Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhao Liu
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhongtian Bai
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Junqiang Lei
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
29
|
Arlotta KJ, San BH, Mu HH, Yu SM, Owen SC. Localization of Therapeutic Fab-CHP Conjugates to Sites of Denatured Collagen for the Treatment of Rheumatoid Arthritis. Bioconjug Chem 2020; 31:1960-1970. [PMID: 32609496 DOI: 10.1021/acs.bioconjchem.0c00324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in synovial joints and protease-induced cartilage degradation. Current biologic treatments for RA can effectively reduce symptoms, primarily by neutralizing the proinflammatory cytokine TNFα; however, continued, indiscriminate overinhibition of inflammatory factors can significantly weaken the host immune system, leading to opportunistic infections and interrupting treatment. We hypothesize that localizing anti-TNFα therapeutics to denatured collagen (dCol) present at arthritic joints, via conjugation with collagen-hybridizing peptides (CHPs), will reduce off-site antigen binding and maintain local immunosuppression. We isolated the antigen-binding fragment of the clinically approved anti-TNFα therapeutic infliximab (iFab) and prepared iFab-CHP conjugates via lysine-based conjugation with an SMCC linker. After successful conjugation, confirmed by LC-MS, the binding affinity of iFab-CHP was characterized by ELISA-like assays, which showed comparable antigen binding relative to infliximab, comparable dCol binding relative to CHP, and the hybrid ability to bind both dCol and TNFα simultaneously. We further demonstrated localization of Fab-CHP to areas of high dCol in vivo and promising therapeutic efficacy, assessed by histological staining (Safranin-O and H&E), in a pilot mouse study.
Collapse
Affiliation(s)
- Keith J Arlotta
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Boi Hoa San
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hong-Hua Mu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84132, United States
| | - S Michael Yu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shawn C Owen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
30
|
Kessler JL, Li Y, Fornetti J, Welm AL, Yu SM. Enrichment of Collagen Fragments Using Dimeric Collagen Hybridizing Peptide for Urinary Collagenomics. J Proteome Res 2020; 19:2926-2932. [PMID: 32500704 DOI: 10.1021/acs.jproteome.0c00055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Collagen remodeling in normal and pathologic conditions releases numerous collagen fragments into biological fluids. Although a few collagen fragments have been tested as biomarkers for disease indication, most occur at trace levels, making them nearly impossible to detect even with modern analytical tools. Here we report a new way to enrich collagen fragments that allows complete peptidomic analysis of collagen fragments in urine. Enrichment is made possible by dimeric collagen hybridizing peptides (CHPs) that bind collagen fragments originating from the triple helical regions of all collagen types with minimal sequence bias. LC-MS/MS analysis of enriched mouse urine revealed an average of 383 collagenous peptide fragments per sample (compared to 34 for unenriched sample), which could be mapped to all types of mouse collagens in the SwissProt database including FACITs and MACITs. Hierarchical clustering of a selected panel of the detected fragments separated osteopenic mice from healthy mice. The results demonstrate dimeric CHP's ability to enrich collagen fragments from biological fluid and its potential to aid peptidomics-based disease detection and biomarker discovery.
Collapse
Affiliation(s)
- Julian L Kessler
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yang Li
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jaime Fornetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - S Michael Yu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
31
|
Zitnay JL, Jung GS, Lin AH, Qin Z, Li Y, Yu SM, Buehler MJ, Weiss JA. Accumulation of collagen molecular unfolding is the mechanism of cyclic fatigue damage and failure in collagenous tissues. SCIENCE ADVANCES 2020; 6:eaba2795. [PMID: 32923623 PMCID: PMC7455178 DOI: 10.1126/sciadv.aba2795] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/14/2020] [Indexed: 05/04/2023]
Abstract
Overuse injuries to dense collagenous tissues are common, but their etiology is poorly understood. The predominant hypothesis that micro-damage accumulation exceeds the rate of biological repair is missing a mechanistic explanation. Here, we used collagen hybridizing peptides to measure collagen molecular damage during tendon cyclic fatigue loading and computational simulations to identify potential explanations for our findings. Our results revealed that triple-helical collagen denaturation accumulates with increasing cycles of fatigue loading, and damage is correlated with creep strain independent of the cyclic strain rate. Finite-element simulations demonstrated that biphasic fluid flow is a possible fascicle-level mechanism to explain the rate dependence of the number of cycles and time to failure. Molecular dynamics simulations demonstrated that triple-helical unfolding is rate dependent, revealing rate-dependent mechanisms at multiple length scales in the tissue. The accumulation of collagen molecular denaturation during cyclic loading provides a long-sought "micro-damage" mechanism for the development of overuse injuries.
Collapse
Affiliation(s)
- Jared L. Zitnay
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Allen H. Lin
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yang Li
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - S. Michael Yu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeffrey A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Orthopaedics and School of Computing, University of Utah, Salt Lake City, UT 84112, USA
- Corresponding author.
| |
Collapse
|
32
|
Welsh RA, Song N, Foss CA, Boronina T, Cole RN, Sadegh-Nasseri S. Lack of the MHC class II chaperone H2-O causes susceptibility to autoimmune diseases. PLoS Biol 2020; 18:e3000590. [PMID: 32069316 PMCID: PMC7028248 DOI: 10.1371/journal.pbio.3000590] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
DO (HLA-DO, in human; murine H2-O) is a highly conserved nonclassical major histocompatibility complex class II (MHC II) accessory molecule mainly expressed in the thymic medulla and B cells. Previous reports have suggested possible links between DO and autoimmunity, Hepatitis C (HCV) infection, and cancer, but the mechanism of how DO contributes to these diseases remains unclear. Here, using a combination of various in vivo approaches, including peptide elution, mixed lymphocyte reaction, T-cell receptor (TCR) deep sequencing, tetramer-guided naïve CD4 T-cell precursor enumeration, and whole-body imaging, we report that DO affects the repertoire of presented self-peptides by B cells and thymic epithelium. DO induces differential effects on epitope presentation and thymic selection, thereby altering CD4 T-cell precursor frequencies. Our findings were validated in two autoimmune disease models by demonstrating that lack of DO increases autoreactivity and susceptibility to autoimmune disease development. A combination of cellular, molecular and in vivo approaches reveals that the non-classical MHC class II chaperone DO controls CD4 T cell thymic selection; its absence leads to susceptibility to two murine autoimmune diseases, collagen-induced arthritis and experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Robin A. Welsh
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nianbin Song
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Catherine A. Foss
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Quantitative Liver Fibrosis Using Collagen Hybridizing Peptide to Predict Native Liver Survival in Biliary Atresia: A Pilot Study. J Pediatr Gastroenterol Nutr 2020; 70:87-92. [PMID: 31568155 DOI: 10.1097/mpg.0000000000002505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND/RATIONALE Biliary atresia (BA) is a cholangiopathy characterized by bile flow obstruction due to destruction of the biliary tree. Without surgical correction with Kasai portoenterostomy (KPE), BA leads to death or liver transplant (LTx). Early-onset, progressive liver fibrosis is a defining characteristic of BA. Collagen hybridizing peptide (CHP) is a synthetic peptide which binds to denatured collagen strands allowing quantification of fibrosis. This technique has not been used on human liver tissue. The aim of this pilot study was to evaluate the utility of CHP as a measurement of quantitative fibrosis to allow earlier survival with native liver prognostication. RESULTS We identified 21 patients with wedge liver biopsies available, of which 14 required LTx. No deaths occurred. Patients requiring LTx tended to be girls with a significantly different mean bilirubin (P = 0.002), albumin (P = 0.001), and alanine aminotransferase (P = 0.03) at 3 months post-KPE. By 1 year post-KPE, 50% of patients in the high CHP intensity group required LTx versus 27% in the low CHP. Overall, fibrosis as quantified by CHP at time of KPE was associated with more than 3 times the risk of requiring LTx by 4 years of age (hazard ratio 3.6, 95% confidence interval 1.15-10.93, P = 0.03). When controlling for sex and total bilirubin >2 mg/dL and albumin at 3 months post-KPE, it predicted nearly 7 times the risk of LTx (hazard ratio 6.89, 95% confidence interval 1.38-34.32, P = 0.02). CONCLUSION Our results suggest that quantitative assessment of fibrosis at the time of KPE holds promise as an earlier predictor of LTx requirement in BA. A larger study is justified to assess quantitative fibrosis as a BA prognostic tool.
Collapse
|
34
|
Varanko A, Saha S, Chilkoti A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 2020; 156:133-187. [PMID: 32871201 PMCID: PMC7456198 DOI: 10.1016/j.addr.2020.08.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Engineering protein and peptide-based materials for drug delivery applications has gained momentum due to their biochemical and biophysical properties over synthetic materials, including biocompatibility, ease of synthesis and purification, tunability, scalability, and lack of toxicity. These biomolecules have been used to develop a host of drug delivery platforms, such as peptide- and protein-drug conjugates, injectable particles, and drug depots to deliver small molecule drugs, therapeutic proteins, and nucleic acids. In this review, we discuss progress in engineering the architecture and biological functions of peptide-based biomaterials -naturally derived, chemically synthesized and recombinant- with a focus on the molecular features that modulate their structure-function relationships for drug delivery.
Collapse
Affiliation(s)
| | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
35
|
Shu F, Dai C, Wang H, Xu C, Wie B, Zhang J, Xu Y, He L, Li S. Formation, Stability and Self‐Assembly Behaviour of the Collagen‐Like Triple Helix Confirmation: The Role of Ser, Ala and Arg/Glu. ChemistrySelect 2019. [DOI: 10.1002/slct.201903500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feiyi Shu
- School of Chemistry and Environmental EngineeringWuhan Polytechnic University, Changqing Garden, Wuhan, Hubei China
| | - Chun Dai
- School of Food Science and EngineeringWuhan Polytechnic University, Changqing Garden, Wuhan, Hubei China
| | - Haibo Wang
- School of Chemistry and Environmental EngineeringWuhan Polytechnic University, Changqing Garden, Wuhan, Hubei China
| | - Chengzhi Xu
- School of Chemistry and Environmental EngineeringWuhan Polytechnic University, Changqing Garden, Wuhan, Hubei China
| | - Benmei Wie
- School of Chemistry and Environmental EngineeringWuhan Polytechnic University, Changqing Garden, Wuhan, Hubei China
| | - Juntao Zhang
- School of Chemistry and Environmental EngineeringWuhan Polytechnic University, Changqing Garden, Wuhan, Hubei China
| | - Yuling Xu
- School of Chemistry and Environmental EngineeringWuhan Polytechnic University, Changqing Garden, Wuhan, Hubei China
| | - Lang He
- School of Chemistry and Environmental EngineeringWuhan Polytechnic University, Changqing Garden, Wuhan, Hubei China
| | - Sheng Li
- School of Chemistry and Environmental EngineeringWuhan Polytechnic University, Changqing Garden, Wuhan, Hubei China
| |
Collapse
|
36
|
Takita KK, Fujii KK, Ishii K, Koide T. Structural optimization of cyclic peptides that efficiently detect denatured collagen. Org Biomol Chem 2019; 17:7380-7387. [PMID: 31342036 DOI: 10.1039/c9ob01042d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To develop a facile method for detecting denatured collagen, we investigated the structure-activity relationship of cyclic collagen-mimetic peptides (cCMPs). Reported cCMP prototypes tend to self-assemble and they must be disassembled just before use. Introducing charge repulsion and a deformation in the peptide backbone structure enabled cCMPs to detect denatured collagen without a pre-treatment for disassembly. Using the optimized cCMP, types I-V collagen were detected by western blotting and denatured collagen fibrils were visualized in a cell culture system.
Collapse
Affiliation(s)
- Koh K Takita
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Japan
| | | | | | | |
Collapse
|
37
|
Johansson PK, Castner DG. Vibrational Sum-Frequency Scattering as a Sensitive Approach to Detect Structural Changes in Collagen Fibers Treated with Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7848-7857. [PMID: 31117724 PMCID: PMC6648693 DOI: 10.1021/acs.langmuir.9b00412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Optimizing protocols so that the structure of the collagen fibers in the extracellular matrix remains intact during the decellularization process requires techniques with high structural sensitivity, especially for the surface region of the collagen fibers. Here, we demonstrate that vibrational sum-frequency scattering (SFS) spectroscopy in the protein-specific amide I region provides vibrational spectra and scattering patterns characteristic of protein fiber networks self-assembled in vitro from collagen type I, which are kept in aqueous environments during the analysis. At scattering angles away from the phase-matched direction, the relative strengths of various polarization combinations are highly reproducible, and changes in their ratios can be followed in real time during exposure to sodium dodecyl sulfate surfactant solutions. For the fibers in this work, a scattering angle of about 22° provided specificity for the surface region of the fibers, as it allowed monitoring of immediate structural changes during the surfactant exposure. With further development, we hypothesize that the information from the SFS characterization of collagen fibers may complement information from other techniques with sensitivity to the overall structure, such as second-harmonic generation imaging and infrared spectroscopy, and provide a more complete understanding of fiber molecular structures and interactions during exposure to various environments and conditions.
Collapse
Affiliation(s)
- Patrik K. Johansson
- National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Seattle, 98195, United States
- Department of Bioengineering, University of Washington, Seattle, 98195, United States
- Corresponding Author ,
| | - David G. Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Seattle, 98195, United States
- Department of Bioengineering, University of Washington, Seattle, 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, 98195, United States
- Corresponding Author ,
| |
Collapse
|
38
|
Sasikumar S, Chameettachal S, Cromer B, Pati F, Kingshott P. Decellularized extracellular matrix hydrogels—cell behavior as a function of matrix stiffness. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Xiao L, Majumdar R, Dai J, Li Y, Xie L, Shen FH, Jin L, Li X. Molecular Detection and Assessment of Intervertebral Disc Degeneration via a Collagen Hybridizing Peptide. ACS Biomater Sci Eng 2019; 5:1661-1667. [PMID: 31788555 DOI: 10.1021/acsbiomaterials.9b00070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During aging, wear, and tear of intervertebral discs, human discs undergo a series of morphological and biochemical changes. Degradation of extracellular matrix proteins, e.g., collagen, arises as an important contributor and accelerator in this process. Existing methods to detect collagen degradation at the tissue level include histology and immunohistochemistry. Unfortunately, most of these methods only depict overall collagen content without the ability to specifically discern degraded collagen and to assess the severity of degeneration. To fill this technological gap, we developed a robust and simple approach to detect and assess early disc degeneration with a collagen hybridizing peptide (CHP) that hybridizes with the flawed triple helix structure in degraded collagen. Intriguingly, the CHP signal in mouse lumbar discs exhibited a linear incremental pattern with age. This finding was corroborated with histological analysis based on established methods. When comparing this analysis, a positive linear correlation was found between CHP fluorescence intensity and the histological score with a regression value of r 2 = 0.9478. In degenerative mouse discs elicited by pro-inflammatory stimuli (IL-1β and LPS) ex vivo, the newly developed approach empowered prediction of the severity of disc degeneration. We further demonstrated higher CHP signals in a degenerative human disc tissue when compared to a normal sample. These findings also resonated with histological analysis. This approach lays a solid foundation for specific detection and assessment of intervertebral disc degeneration at the molecular level and will promote development of future disc regeneration strategies.
Collapse
Affiliation(s)
- Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States
| | - Rahul Majumdar
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States
| | - Jun Dai
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States.,Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, P.R. China
| | - Yang Li
- Department of Biomedical Engineering, University of Utah, 201 Presidents Circle, Salt Lake City, Utah 84112, United States
| | - Lin Xie
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States.,Department of Orthopaedics, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Jinan District, Shanghai 200040, P.R. China
| | - Francis H Shen
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Cobb Hall, Charlottesville, Virginia 22908, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22904, United States
| |
Collapse
|
40
|
Lin AH, Zitnay JL, Li Y, Yu SM, Weiss JA. Microplate assay for denatured collagen using collagen hybridizing peptides. J Orthop Res 2019; 37:431-438. [PMID: 30474872 PMCID: PMC6576259 DOI: 10.1002/jor.24185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/13/2018] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to develop a microplate assay for quantifying denatured collagen by measuring the fluorescence of carboxyfluorescein bound collagen hybridizing peptides (F-CHP). We have shown that F-CHP binds selectively with denatured collagen, and that mechanical overload of tendon fascicles causes collagen denaturation. Proteinase K was used to homogenize tissue samples after F-CHP staining, allowing fluorescence measurement using a microplate reader. We compared our new assay to our previous image analysis method and the trypsin-hydroxyproline assay, which is the only other available method to directly quantify denatured collagen. Relative quantification of denatured collagen was performed in rat tail tendon fascicles subjected to incremental tensile overload, and normal and ostoeoarthritic guinea pig cartilage. In addition, the absolute amount of denatured collagen was determined in rat tail tendon by correlating F-CHP fluorescence with percent denatured collagen as determined by the trypsin-hydroxyproline assay. Rat tail tendon fascicles stretched to low strains (<7.5%) exhibited minimal denatured collagen, but values rapidly increased at medium strains (7.5-10.5%) and plateaued at high strains (≥12%). Osteoarthritic cartilage had higher F-CHP fluorescence than healthy cartilage. Both of these outcomes are consistent with previous studies. With the calibration curve, the microplate assay was able to absolutely quantify denatured collagen in mechanically damaged rat tail tendon fascicles as reliably as the trypsin-hydroxyproline assay. Further, we achieved these results more efficiently than current methods in a rapid, high-throughput manner, with multiple types of collagenous tissue while maintaining accuracy. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:431-438, 2019.
Collapse
Affiliation(s)
- Allen H. Lin
- Department of Bioengineering, University of Utah,Scientific Computing and Imaging Institute, University of Utah
| | - Jared L. Zitnay
- Department of Bioengineering, University of Utah,Scientific Computing and Imaging Institute, University of Utah
| | - Yang Li
- Department of Bioengineering, University of Utah
| | - S. Michael Yu
- Department of Bioengineering, University of Utah,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah
| | - Jeffrey A. Weiss
- Department of Bioengineering, University of Utah,Scientific Computing and Imaging Institute, University of Utah,Department of Orthopaedics, University of Utah
| |
Collapse
|
41
|
Li Y, Yu SM. In Situ Detection of Degraded and Denatured Collagen via Triple Helical Hybridization: New Tool in Histopathology. Methods Mol Biol 2019; 1944:135-144. [PMID: 30840240 DOI: 10.1007/978-1-4939-9095-5_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Degraded and denatured collagens are useful markers for physiological events (e.g., bone formation and aging) and pathologic conditions (e.g., cancer, arthritis, and fibrosis). Here we describe histological staining of such collagens using fluorescent collagen hybridizing peptide that can specifically bind to collagen strands by folding into triple helix. The method can report the amount of denatured collagen and/or collagen remodeling activity in tissues via localized fluorescence intensity and can be used in conjunction with conventional staining agents. The collagen hybridizing peptide probes can be used across species and collagen types, providing a versatile tool not only for pathology and developmental biology but also histology-based disease diagnosis, staging, and therapeutic screening.
Collapse
Affiliation(s)
- Yang Li
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- 3Helix Inc., Salt Lake City, UT, USA
| | - S Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
42
|
Bennink LL, Li Y, Kim B, Shin IJ, San BH, Zangari M, Yoon D, Yu SM. Visualizing collagen proteolysis by peptide hybridization: From 3D cell culture to in vivo imaging. Biomaterials 2018; 183:67-76. [PMID: 30149231 DOI: 10.1016/j.biomaterials.2018.08.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022]
Abstract
Degradation of the extracellular matrix (ECM) is one of the fundamental factors contributing to a variety of life-threatening or disabling pathological conditions. However, a thorough understanding of the degradation mechanism and development of new ECM-targeting diagnostics are severely hindered by a lack of technologies for direct interrogation of the ECM structures at the molecular level. Previously we demonstrated that the collagen hybridizing peptide [CHP, sequence: (GPO)9, O: hydroxyproline] can specifically recognize the degraded and unfolded collagen chains through triple helix formation. Here we show that fluorescently labeled CHP robustly visualizes the pericellular matrix turnover caused by proteolytic migration of cancer cells within 3D collagen culture, without the use of synthetic fluorogenic matrices or genetically modified cells. To facilitate in vivo imaging, we modified the CHP sequence by replacing each proline with a (2S,4S)-4-fluoroproline (f) residue which interferes with the peptide's inherent propensity to self-assemble into homo-triple helices. We show that the new CHP, (GfO)9, tagged with a near-infrared fluorophore, enables in vivo imaging and semi-quantitative assessment of osteolytic bone lesions in mouse models of multiple myeloma. Compared to conventional techniques (e.g., micro-CT), CHP-based imaging is simple and versatile in vitro and in vivo. Therefore, we envision CHP's applications in broad biomedical contexts ranging from studies of ECM biology and drug efficiency to development of clinical molecular imaging.
Collapse
Affiliation(s)
- Lucas L Bennink
- Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Yang Li
- Department of Bioengineering, University of Utah, Salt Lake City, United States.
| | - Bumjin Kim
- Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Ik Jae Shin
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Boi Hoa San
- Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Maurizio Zangari
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Donghoon Yoon
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, United States
| | - S Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, United States.
| |
Collapse
|
43
|
Cai X, Liu Z, Zhao S, Song C, Dong S, Xiao J. A single stranded fluorescent peptide probe for targeting collagen in connective tissues. Chem Commun (Camb) 2018; 53:11905-11908. [PMID: 29043304 DOI: 10.1039/c7cc06056d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We herein report the construction of a novel single stranded fluorescent collagen mimetic peptide by introducing a bulky FAM dye in the central region rather than the N terminus. Without the need for any prior thermal or ultraviolet treatment, the peptide probe can be conveniently applied to specifically target collagen in connective tissues for fluorescence imaging.
Collapse
Affiliation(s)
- Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | | | | | | | | | | |
Collapse
|
44
|
Szczesny SE, Aeppli C, David A, Mauck RL. Fatigue loading of tendon results in collagen kinking and denaturation but does not change local tissue mechanics. J Biomech 2018. [PMID: 29519673 DOI: 10.1016/j.jbiomech.2018.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fatigue loading is a primary cause of tendon degeneration, which is characterized by the disruption of collagen fibers and the appearance of abnormal (e.g., cartilaginous, fatty, calcified) tissue deposits. The formation of such abnormal deposits, which further weakens the tissue, suggests that resident tendon cells acquire an aberrant phenotype in response to fatigue damage and the resulting altered mechanical microenvironment. While fatigue loading produces clear changes in collagen organization and molecular denaturation, no data exist regarding the effect of fatigue on the local tissue mechanical properties. Therefore, the objective of this study was to identify changes in the local tissue stiffness of tendons after fatigue loading. We hypothesized that fatigue damage would reduce local tissue stiffness, particularly in areas with significant structural damage (e.g., collagen denaturation). We tested this hypothesis by identifying regions of local fatigue damage (i.e., collagen fiber kinking and molecular denaturation) via histologic imaging and by measuring the local tissue modulus within these regions via atomic force microscopy (AFM). Counter to our initial hypothesis, we found no change in the local tissue modulus as a consequence of fatigue loading, despite widespread fiber kinking and collagen denaturation. These data suggest that immediate changes in topography and tissue structure - but not local tissue mechanics - initiate the early changes in tendon cell phenotype as a consequence of fatigue loading that ultimately culminate in tendon degeneration.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Orthopaedic Surgery, University of Pennsylvania, 110 Stemmler Hall, 36th Street & Hamilton Walk, Philadelphia, PA 19104, United States; Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, Pennsylvania State University, 205 Hallowell Building, University Park, PA 16802, United States.
| | - Céline Aeppli
- Eidgenössische Technische Hochschule, Rämistrasse 101, 8092 Zürich, Switzerland
| | - Alexander David
- Department of Bioengineering, 240 Skirkanich Hall, 210 South 33rd Street, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, 110 Stemmler Hall, 36th Street & Hamilton Walk, Philadelphia, PA 19104, United States; Department of Bioengineering, 240 Skirkanich Hall, 210 South 33rd Street, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, United States
| |
Collapse
|
45
|
Converse MI, Walther RG, Ingram JT, Li Y, Yu SM, Monson KL. Detection and characterization of molecular-level collagen damage in overstretched cerebral arteries. Acta Biomater 2018; 67:307-318. [PMID: 29225149 PMCID: PMC5794621 DOI: 10.1016/j.actbio.2017.11.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022]
Abstract
It is well established that overstretch of arteries alters their mechanics and compromises their function. However, the underlying structural mechanisms behind these changes are poorly understood. Utilizing a recently developed collagen hybridizing peptide (CHP), we demonstrate that a single mechanical overstretch of an artery produces molecular-level unfolding of collagen. In addition, imaging and quantification of CHP binding revealed that overstretch produces damage (unfolding) among fibers aligned with the direction of loading, that damage increases with overstretch severity, and that the onset of this damage is closely associated with tissue yielding. These findings held true for both axial and circumferential loading directions. Our results are the first to identify stretch-induced molecular damage to collagen in blood vessels. Furthermore, our approach is advantageous over existing methods of collagen damage detection as it is non-destructive, readily visualized, and objectively quantified. This work opens the door to revealing additional structure-function relationships in arteries. We anticipate that this approach can be used to better understand arterial damage in clinically relevant settings such as angioplasty and vascular trauma. Furthermore, CHP can be a tool for the development of microstructurally-based constitutive models and experimentally validated computational models of arterial damage and damage propagation across physical scales. STATEMENT OF SIGNIFICANCE Arteries play a critical role by carrying oxygen and essential nutrients throughout the body. However, trauma to the head and neck, as well as surgical interventions, can overstretch arteries and alter their mechanics. In order to better understand the cause of these changes, we employ a novel collagen hybridizing peptide (CHP) to study collagen damage in overstretched arteries. Our approach is unique in that we go beyond the fiber- and fibril-level and characterize molecular-level disruption. In addition, we image and quantify fluorescently-labeled CHP to reveal a new structure-property relationship in arterial damage. We anticipate that our approach can be used to better understand arterial damage in clinically relevant settings such as angioplasty and vascular trauma.
Collapse
Affiliation(s)
- Matthew I Converse
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Raymond G Walther
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Justin T Ingram
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Yang Li
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States
| | - S Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Kenneth L Monson
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, United States; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
46
|
Pinkert MA, Hortensius RA, Ogle BM, Eliceiri KW. Imaging the Cardiac Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1098:21-44. [PMID: 30238364 DOI: 10.1007/978-3-319-97421-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is the global leading cause of death. One route to address this problem is using biomedical imaging to measure the molecules and structures that surround cardiac cells. This cellular microenvironment, known as the cardiac extracellular matrix, changes in composition and organization during most cardiac diseases and in response to many cardiac treatments. Measuring these changes with biomedical imaging can aid in understanding, diagnosing, and treating heart disease. This chapter supports those efforts by reviewing representative methods for imaging the cardiac extracellular matrix. It first describes the major biological targets of ECM imaging, including the primary imaging target of fibrillar collagen. Then it discusses the imaging methods, describing their current capabilities and limitations. It categorizes the imaging methods into two main categories: organ-scale noninvasive methods and cellular-scale invasive methods. Noninvasive methods can be used on patients, but only a few are clinically available, and others require further development to be used in the clinic. Invasive methods are the most established and can measure a variety of properties, but they cannot be used on live patients. Finally, the chapter concludes with a perspective on future directions and applications of biomedical imaging technologies.
Collapse
Affiliation(s)
- Michael A Pinkert
- Laboratory for Optical and Computational Instrumentation and Department of Medical Physics, University of Wisconsin at Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Rebecca A Hortensius
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation and Department of Medical Physics, University of Wisconsin at Madison, Madison, WI, USA. .,Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
47
|
Banerjee J, Azevedo HS. Crafting of functional biomaterials by directed molecular self-assembly of triple helical peptide building blocks. Interface Focus 2017; 7:20160138. [PMID: 29147553 PMCID: PMC5665793 DOI: 10.1098/rsfs.2016.0138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Collagen is the most abundant extracellular matrix protein in the body and has widespread use in biomedical research, as well as in clinics. In addition to difficulties in the production of recombinant collagen due to its high non-natural imino acid content, animal-derived collagen imposes several major drawbacks-variability in composition, immunogenicity, pathogenicity and difficulty in sequence modification-that may limit its use in the practical scenario. However, in recent years, scientists have shifted their attention towards developing synthetic collagen-like materials from simple collagen model triple helical peptides to eliminate the potential drawbacks. For this purpose, it is highly desirable to develop programmable self-assembling strategies that will initiate the hierarchical self-assembly of short peptides into large-scale macromolecular assemblies with recommendable bioactivity. Herein, we tried to elaborate our understanding related to the strategies that have been adopted by few research groups to trigger self-assembly in the triple helical peptide system producing fascinating supramolecular structures. We have also touched upon the major epitopes within collagen that can be incorporated into collagen mimetic peptides for promoting bioactivity.
Collapse
Affiliation(s)
| | - Helena S. Azevedo
- School of Engineering and Material Science, Institute of Bioengineering, University of London, Queen Mary, Mile End Road, London E1 4NS, UK
| |
Collapse
|
48
|
San BH, Hwang J, Sampath S, Li Y, Bennink LL, Yu SM. Self-Assembled Water-Soluble Nanofibers Displaying Collagen Hybridizing Peptides. J Am Chem Soc 2017; 139:16640-16649. [PMID: 29091434 DOI: 10.1021/jacs.7b07900] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Collagen hybridizing peptides (CHP) have been demonstrated as a powerful vehicle for targeting denatured collagen (dColl) produced by disease or injury. Conjugation of β-sheet peptide motif to the CHP results in self-assembly of nonaggregating β-sheet nanofibers with precise structure. Due to the molecular architecture of the nanofibers which puts high density of hydrophilic CHPs on the nanofiber surface at fixed distance, the nanofibers exhibit high water solubility, without any signs of intramolecular triple helix formation or fiber-fiber aggregation. Other molecules that are flanked with the triple helical forming GlyProHyp repeats can readily bind to the nanofibers by triple helical folding, allowing facile display of bioactive molecules at high density. In addition, the multivalency of CHPs allows the nanofibers to bind to dColl in vitro and in vivo with extraordinary affinity, particularly without preactivation that unravels the CHP homotrimers. The length of the nanofibers can be tuned from micrometers down to 100 nm by simple heat treatment, and when injected intravenously into mice, the small nanofibers can specifically target dColl in the skeletal tissues with little target-associated signals in the skin and other organs. The CHP nanofibers can be a useful tool for detecting and capturing dColl, understanding how ECM remodelling impacts disease progression, and development of new delivery systems that target such diseases.
Collapse
Affiliation(s)
- Boi Hoa San
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | - Jeongmin Hwang
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | - Sujatha Sampath
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | - Yang Li
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | - Lucas L Bennink
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | - S Michael Yu
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| |
Collapse
|
49
|
Hwang J, Huang Y, Burwell TJ, Peterson NC, Connor J, Weiss SJ, Yu SM, Li Y. In Situ Imaging of Tissue Remodeling with Collagen Hybridizing Peptides. ACS NANO 2017; 11:9825-9835. [PMID: 28877431 PMCID: PMC5656977 DOI: 10.1021/acsnano.7b03150] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 09/06/2017] [Indexed: 05/20/2023]
Abstract
Collagen, the major structural component of nearly all mammalian tissues, undergoes extensive proteolytic remodeling during developmental states and a variety of life-threatening diseases such as cancer, myocardial infarction, and fibrosis. While degraded collagen could be an important marker of tissue damage, it is difficult to detect and target using conventional tools. Here, we show that a designed peptide (collagen hybridizing peptide: CHP), which specifically hybridizes to the degraded, unfolded collagen chains, can be used to image degraded collagen and inform tissue remodeling activity in various tissues: labeled with 5-carboxyfluorescein and biotin, CHPs enabled direct localization and quantification of collagen degradation in isolated tissues within pathologic states ranging from osteoarthritis and myocardial infarction to glomerulonephritis and pulmonary fibrosis, as well as in normal tissues during developmental programs associated with embryonic bone formation and skin aging. The results indicate the general correlation between the level of collagen remodeling and the amount of denatured collagen in tissue and show that the CHP probes can be used across species and collagen types, providing a versatile tool for not only pathology and developmental biology research but also histology-based disease diagnosis, staging, and therapeutic screening. This study lays the foundation for further testing CHP as a targeting moiety for theranostic delivery in various animal models.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department
of Bioengineering and Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- 3Helix
Inc, Salt Lake City, Utah 84117, United
States
| | - Yufeng Huang
- Division
of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | | | | | - Jane Connor
- MedImmune
LLC, Gaithersburg, Maryland 20878, United
States
| | - Stephen J. Weiss
- Division
of Molecular Medicine & Genetics, Department of Internal Medicine,
and the Life Sciences Institute, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - S. Michael Yu
- Department
of Bioengineering and Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- 3Helix
Inc, Salt Lake City, Utah 84117, United
States
| | - Yang Li
- Department
of Bioengineering and Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- 3Helix
Inc, Salt Lake City, Utah 84117, United
States
- Phone: 801.587.0215. E-mail:
| |
Collapse
|
50
|
Urello MA, Kiick KL, Sullivan MO. ECM turnover-stimulated gene delivery through collagen-mimetic peptide-plasmid integration in collagen. Acta Biomater 2017; 62:167-178. [PMID: 28865990 PMCID: PMC5654588 DOI: 10.1016/j.actbio.2017.08.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022]
Abstract
Gene therapies have great potential in regenerative medicine; however, clinical translation has been inhibited by low stability and limited transfection efficiencies. Herein, we incorporate collagen-mimetic peptide (CMP)-linked polyplexes in collagen scaffolds to increase DNA stability by up to 400% and enable tailorable in vivo transgene expression at 100-fold higher levels and 10-fold longer time periods. These improvements were directly linked to a sustained interaction between collagen and polyplexes that persisted during cellular remodeling, polyplex uptake, and intracellular trafficking. Specifically, incorporation of CMPs into polyethylenimine (PEI) polyplexes preserved serum-exposed polyplex-collagen activity over a period of 14days, with 4 orders-of-magnitude more intact DNA present in CMP-modified polyplex-collagen relative to unmodified polyplex-collagen after a 10day incubation under cell culture conditions. CMP-modification also altered endocytic uptake, as indicated by gene silencing studies showing a nearly 50% decrease in transgene expression in response to caveolin-1 silencing in modified samples versus only 30% in unmodified samples. Furthermore, cellular internalization studies demonstrated that polyplex-collagen association persisted within cells in CMP polyplexes, but not in unmodified polyplexes, suggesting that CMP linkage to collagen regulates intracellular transport. Moreover, experiments in an in vivo repair model showed that CMP modification enabled tailoring of transgene expression from 4 to 25days over a range of concentrations. Overall, these findings demonstrate that CMP decoration provides substantial improvements in gene retention, altered release kinetics, improved serum-stability, and improved gene activity in vivo. This versatile technique has great potential for multiple applications in regenerative medicine. STATEMENT OF SIGNIFICANCE In this work, we demonstrate a novel approach for stably integrating DNA into collagen scaffolds to exploit the natural process of collagen remodelling for high efficiency non-viral gene delivery. The incorporation of CMPs into DNA polyplexes, coupled with the innate affinity between CMPs and collagen, not only permitted improved control over polyplex retention and release, but also provided a series of substantial and highly unique benefits via the stable and persistent linkage between CMP-polyplexes and collagen fragments. Specifically, CMP-modification of polyplexes was demonstrated to (i) control release for nearly a month, (ii) improve vector stability under physiological-like conditions, and (iii) provide ligands able to efficiently transfer genes via endocytic collagen pathways. These unique properties overcome key barriers inhibiting non-viral gene therapy.
Collapse
Affiliation(s)
- Morgan A Urello
- Dept. of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Dept. of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Millicent O Sullivan
- Dept. of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|