1
|
de La Bourdonnaye G, Ghazalova T, Fojtik P, Kutalkova K, Bednar D, Damborsky J, Rotrekl V, Stepankova V, Chaloupkova R. Computer-aided engineering of stabilized fibroblast growth factor 21. Comput Struct Biotechnol J 2024; 23:942-951. [PMID: 38379823 PMCID: PMC10877085 DOI: 10.1016/j.csbj.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
FGF21 is an endocrine signaling protein belonging to the family of fibroblast growth factors (FGFs). It has emerged as a molecule of interest for treating various metabolic diseases due to its role in regulating glucogenesis and ketogenesis in the liver. However, FGF21 is prone to heat, proteolytic, and acid-mediated degradation, and its low molecular weight makes it susceptible to kidney clearance, significantly reducing its therapeutic potential. Protein engineering studies addressing these challenges have generally shown that increasing the thermostability of FGF21 led to improved pharmacokinetics. Here, we describe the computer-aided design and experimental characterization of FGF21 variants with enhanced melting temperature up to 15 °C, uncompromised efficacy at activation of MAPK/ERK signaling in Hep G2 cell culture, and ability to stimulate proliferation of Hep G2 and NIH 3T3 fibroblasts cells comparable with FGF21-WT. We propose that stabilizing the FGF21 molecule by rational design should be combined with other reported stabilization strategies to maximize the pharmaceutical potential of FGF21.
Collapse
Affiliation(s)
- Gabin de La Bourdonnaye
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| | - Tereza Ghazalova
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| | - Petr Fojtik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - David Bednar
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jiri Damborsky
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | | | - Radka Chaloupkova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| |
Collapse
|
2
|
Korzhikov-Vlakh V, Mikhailova A, Sinitsyna E, Korzhikova-Vlakh E, Tennikova T. Gradient Functionalization of Poly(lactic acid)-Based Materials with Polylysine for Spatially Controlled Cell Adhesion. Polymers (Basel) 2024; 16:2888. [PMID: 39458716 PMCID: PMC11511340 DOI: 10.3390/polym16202888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The development of biomaterials with gradient surface modification capable of spatially controlled cell adhesion and migration is of great importance for tissue engineering and regeneration. In this study, we proposed a method for the covalent modification of PLA-based materials with a cationic polypeptide (polylysine, PLys) via a thiol-ene click reaction carried out under a light gradient. With this aim, PLA-based films were fabricated and modified with 2-aminoethyl methacrylate (AEMA) as a double bond source. The latter was introduced by reacting pre-formed and activated surface carboxyl groups with the amino group of AEMA. The success of the modification was confirmed by 1H NMR, Raman and X-ray photoelectron spectroscopy data. A further photoinduced thiol-ene click reaction in the presence of a photosensitive initiator as a radical source was further optimized using cysteine. For grafting of PLys via the thiol-ene click reaction, PLys with a terminal thiol group was synthesized by ring-opening polymerization using Cys(Acm) as an amine initiator. Deprotection of the polypeptide resulted in the formation of free thiol groups of Cys-PLys. Successful gradient grafting of Cys-PLys was evidenced by covalent staining with the fluorescent dye Cy3-NHS. In addition, PLys gradient-dependent adhesion and migration of HEK 293 cells on PLys-PLA-based surfaces was confirmed.
Collapse
Affiliation(s)
- Viktor Korzhikov-Vlakh
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
- St. Petersburg State University Hospital, 199034 St. Petersburg, Russia
| | - Aleksandra Mikhailova
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Ekaterina Sinitsyna
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
| | - Tatiana Tennikova
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
| |
Collapse
|
3
|
T G D, Chen CH, Kuo CY, Shalumon KT, Chien YM, Kao HH, Chen JP. Development of high resilience spiral wound suture-embedded gelatin/PCL/heparin nanofiber membrane scaffolds for tendon tissue engineering. Int J Biol Macromol 2022; 221:314-333. [PMID: 36075304 DOI: 10.1016/j.ijbiomac.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
This study develops a spiral wound scaffold based on gelatin/PCL/heparin (GPH) nanofiber membranes for tendon tissue engineering. By embedding sutures in dual layers of aligned GPH nanofiber membranes, prepared from mixed electrospinning of gelatin and PCL/heparin solutions, we fabricate a high resilience scaffold intended for the high loading environment experienced by tendons. The basic fibroblast growth factor (bFGF) was anchored to GPH scaffold through bioaffinity between heparin and bFGF, aim to provide biological cues for maintenance of tenogenic phenotype. In addition, the aligned nanofiber morphology is expected to provide physical cues toward seeded tenocytes. With sustained release of bFGF, GPH-bFGF can enhance proliferation, up-regulate tenogenic gene expression, and increase synthesis of tendon-specific proteins by tenocytes in vitro. Furthermore, by properly maintaining tendon phenotypes, GPH-bFGF/tenocytes constructs showed improved mechanical properties over GPH-bFGF. From in vivo study using GPH-bFGF/tenocytes constructs to repair rabbit Achilles tendon defects, neotendon tissue formation was confirmed from histological staining and biomechanical analysis. These findings collectively demonstrate that the newly designed GPH-bFGF scaffold could provide a niche for inducing tendon tissue regeneration by effectively restoring the tendon tissue structure and function.
Collapse
Affiliation(s)
- Darshan T G
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - K T Shalumon
- Department of Chemistry, Sacred Heart College, MG University, Kochi 682013, India
| | - Yen-Miao Chien
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Hao-Hsi Kao
- Division of Nephrology, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Keelung 20401, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Kwei-San, Taoyuan 33305, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
4
|
Transdermal delivery of bFGF with sonophoresis facilitated by chitosan nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Shi Y, Jiao H, Sun J, Lu X, Yu S, Cheng L, Wang Q, Liu H, Biranje S, Wang J, Liu J. Functionalization of nanocellulose applied with biological molecules for biomedical application: A review. Carbohydr Polym 2022; 285:119208. [DOI: 10.1016/j.carbpol.2022.119208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 01/21/2023]
|
6
|
Recent Advances on Surface-modified Biomaterials Promoting Selective Adhesion and Directional Migration of Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2564-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Suppression of miR-4463 promotes phenotypic switching in VSMCs treated with Ox-LDL. Cell Tissue Res 2020; 383:1155-1165. [PMID: 33245416 DOI: 10.1007/s00441-020-03338-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 11/05/2020] [Indexed: 02/01/2023]
Abstract
Vascular smooth muscle cell (VSMC) phenotypic switching is a hallmark of vascular remodeling that contributes to atherosclerotic diseases. MicroRNA 4463 (miR-4463) has been implicated in the development of arteriosclerosis obliterans, whereas the underlying mechanisms in VSMCs have not been fully addressed. In this study, we assessed whether miR-4463 is involved in the phenotypic switching process in VSMCs. Oxidized low-density lipoprotein (Ox-LDL, 50 mg/L) was used to simulate the oxidative stress condition, and miR-4463 expression in VSMCs was detected by a quantitative polymerase chain reaction. To determine the effect of Ox-LDL-mediated regulation of miR-4463 on the phenotypic switching of VSMCs, cell counting kit-8, cell migration assays, and cytoskeleton test were performed. After using specific antagonists of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), the relationship between miR-4463 and its downstream signaling proteins was explored. Ox-LDL induced oxidative stress to promote VSMC transformation from contraction to secretion, which clearly decreased the level of miR-4463. Then, downregulated miR-4463 enhanced the migration and phenotypic transformation of VSMCs and activated the phosphorylation of JNK and ERK; these effects were increased after Ox-LDL induction. As expected, inhibiting the two signaling proteins blocked the effect of the miR-4463 inhibitor combined with Ox-LDL. In addition, inhibition of miR-4463 led to the upregulation of basic fibroblast growth factor (bFGF) expression. The results of this study demonstrate that miR-4463 is a novel regulator of VSMC function in hypoxic conditions and modulates VSMC phenotypic switching via the JNK and ERK signaling pathways; bFGF may be the target gene of miR-4463.
Collapse
|
8
|
Benington L, Rajan G, Locher C, Lim LY. Fibroblast Growth Factor 2-A Review of Stabilisation Approaches for Clinical Applications. Pharmaceutics 2020; 12:E508. [PMID: 32498439 PMCID: PMC7356611 DOI: 10.3390/pharmaceutics12060508] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
Basic fibroblast growth factor (FGF)-2 has been shown to regulate many cellular functions including cell proliferation, migration, and differentiation, as well as angiogenesis in a variety of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve. These multiple functions make FGF-2 an attractive component for wound healing and tissue engineering constructs; however, the stability of FGF-2 is widely accepted to be a major concern for the development of useful medicinal products. Many approaches have been reported in the literature for preserving the biological activity of FGF-2 in aqueous solutions. Most of these efforts were directed at sustaining FGF-2 activity for cell culture research, with a smaller number of studies seeking to develop sustained release formulations of FGF-2 for tissue engineering applications. The stabilisation approaches may be classified into the broad classes of ionic interaction modification with excipients, chemical modification, and physical adsorption and encapsulation with carrier materials. This review discusses the underlying causes of FGF-2 instability and provides an overview of the approaches reported in the literature for stabilising FGF-2 that may be relevant for clinical applications. Although efforts have been made to stabilise FGF-2 for both in vitro and in vivo applications with varying degrees of success, the lack of comprehensive published stability data for the final FGF-2 products represents a substantial gap in the current knowledge, which has to be addressed before viable products for wider tissue engineering applications can be developed to meet regulatory authorisation.
Collapse
Affiliation(s)
- Leah Benington
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (L.B.); (C.L.)
| | - Gunesh Rajan
- Division of Surgery, School of Medicine, University of Western Australia, Crawley 6009, Australia;
- Department of Otolaryngology, Head & Neck Surgery, Luzerner Kantonsspital, 6000 Luzern, Switzerland
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (L.B.); (C.L.)
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (L.B.); (C.L.)
| |
Collapse
|
9
|
Hof DJ, Versteeg EMM, van de Lest CHA, Daamen WF, van Kuppevelt TH. A versatile salt-based method to immobilize glycosaminoglycans and create growth factor gradients. Glycoconj J 2019; 36:227-236. [PMID: 31055697 PMCID: PMC6548755 DOI: 10.1007/s10719-019-09872-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 11/30/2022]
Abstract
Glycosaminoglycans (GAGs) are known to play pivotal roles in physiological processes and pathological conditions. To study interactions of GAGs with proteins, immobilization of GAGs is often required. Current methodologies for immobilization involve modification of GAGs and/or surfaces, which can be time-consuming and may involve specialized equipment. Here, we use an efficient and low-cost method to immobilize GAGs without any (chemical) modification using highly concentrated salt solutions. A number of salts from the Hofmeister series were probed for their capacity to immobilize heparin and chondroitin-6-sulfate on microtiter plates applying single chain antibodies against GAGs for detection (ELISA). From all salts tested, the cosmotropic salt ammonium sulfate was most efficient, especially at high concentrations (80–100% (v/v) saturation). Immobilized GAGs were bioavailable as judged by their binding of FGF2 and VEGF, and by their susceptibility towards GAG lyases (heparinase I, II and III, chondroitinase ABC). Using 80% (v/v) saturated ammonium sulfate, block and continuous gradients of heparin were established and a gradient of FGF2 was created using a heparin block gradient as a template. In conclusion, high concentrations of ammonium sulfate are effective for immobilization of GAGs and for the establishment of gradients of both GAGs and GAG-binding molecules, which enables the study to the biological roles of GAGs.
Collapse
Affiliation(s)
- Danique J Hof
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Elly M M Versteeg
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Chris H A van de Lest
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Equine Sciences and Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Preparation and evaluation of a self-anticlotting dialyzer via an interface crosslinking approach. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Yu S, Zuo X, Shen T, Duan Y, Mao Z, Gao C. A density gradient of VAPG peptides on a cell-resisting surface achieves selective adhesion and directional migration of smooth muscle cells over fibroblasts. Acta Biomater 2018; 72:70-81. [PMID: 29635070 DOI: 10.1016/j.actbio.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 12/19/2022]
Abstract
Selective adhesion and migration of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. In this study, a uniform cell-resisting layer of poly(ethylene glycol) (PEG) with a density gradient of azide groups was generated on a substrate by immobilizing two kinds of PEG molecules in a gradient manner. A density gradient of alkynyl-functionalized Val-Ala-Pro-Gly (VAPG) peptides was then prepared on the PEG layer via click chemistry. The VAPG density gradient was characterized by fluorescence imaging, revealing the gradual enhancement of the fluorescent intensity along the substrate direction. The adhesion and mobility of SMCs were selectively enhanced on the VAPG density gradient, leading to directional migration toward the higher peptide density (up to 84%). In contrast, the adhesion and mobility of FIBs were significantly weakened. The net displacement of SMCs also significantly increased compared with that on tissue culture polystyrene (TCPS) and that of FIBs on the gradient. The mitogen-activated protein kinase (MAPK) signaling pathways related to cell migration were studied, showing higher expressions of functional proteins from SMCs on the VAPG-modified surface in a density-dependent manner. For the first time the selective adhesion and directional migration of SMCs over FIBs was achieved by an elaborative design of a gradient surface, leading to a new insight in design of novel vascular regenerative materials. STATEMENT OF SIGNIFICANCE Selective cell adhesion and migration guided by regenerative biomaterials are extremely important for the regeneration of targeted tissues, which can avoid the drawbacks of incorrect and uncontrolled responses of tissue cells to implants. For example, selectivity of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. Herein we prepare a uniform cell-repelling layer, on which SMCs-selective Val-Ala-Pro-Gly (VAPG) peptides are immobilized in a continuous manner. Selective adhesion and enhanced and directional migration of SMCs over FIBs are achieved by the interplay of cell-repelling layer and gradient SMCs-selective VAPG peptides, paving a new way for the design of novel vascular grafts with enhanced biological performance.
Collapse
|
12
|
Chen X, Gu H, Lyu Z, Liu X, Wang L, Chen H, Brash JL. Sulfonate Groups and Saccharides as Essential Structural Elements in Heparin-Mimicking Polymers Used as Surface Modifiers: Optimization of Relative Contents for Antithrombogenic Properties. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1440-1449. [PMID: 29231707 DOI: 10.1021/acsami.7b16723] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Blood compatibility is a long sought-after goal in biomaterials research, but remains an elusive one, and in spite of extensive work in this area, there is still no definitive information on the relationship between material properties and blood responses such as coagulation and thrombus formation. Materials modified with heparin-mimicking polymers have shown promise and indeed may be seen as comparable to materials modified with heparin itself. In this work, heparin was conceptualized as consisting of two major structural elements: saccharide- and sulfonate-containing units, and polymers based on this concept were developed. Copolymers of 2-methacrylamido glucopyranose, containing saccharide groups, and sodium 4-vinylbenzenesulfonate, containing sulfonate groups, were graft-polymerized on vinyl-functionalized polyurethane (PU) surfaces by free radical polymerization. This graft polymerization method is simple, and the saccharide and sulfonate contents are tunable by regulating the feed ratio of the monomers. Homopolymer-grafted materials, containing only sulfonate or saccharide groups, showed different effects on cell-surface interactions including platelet adhesion, adhesion and proliferation of vascular endothelial cells, and adhesion and proliferation of smooth muscle cells. The copolymer-grafted materials showed effects due to both sulfonate and saccharide elements with respect to blood responses, and the optimum composition was obtained at a 2:1 ratio of sulfonate to saccharide units (material designated as PU-PS1M1). In cell adhesion experiments, this material showed the lowest platelet and human umbilical vein smooth muscle cell density and the highest human umbilical vein endothelial cell density. Among the materials investigated, PU-PS1M1 also had the longest plasma clotting time. This material was thus shown to be multifunctional with a combination of properties, suggesting thromboresistant behavior in blood contact.
Collapse
Affiliation(s)
- Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Hao Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Zhonglin Lyu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Lei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - John L Brash
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
- Department of Chemical Engineering and School of Biomedical Engineering, McMaster University , Hamilton, Ontario L8S4L7, Canada
| |
Collapse
|
13
|
Paluck S, Nguyen TH, Lee JP, Maynard HD. A Heparin-Mimicking Block Copolymer Both Stabilizes and Increases the Activity of Fibroblast Growth Factor 2 (FGF2). Biomacromolecules 2016; 17:3386-3395. [PMID: 27580376 PMCID: PMC5059753 DOI: 10.1021/acs.biomac.6b01182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/27/2016] [Indexed: 01/22/2023]
Abstract
Fibroblast growth factor 2 (FGF2) is a protein involved in cellular functions in applications such as wound healing and tissue regeneration. Stabilization of this protein is important for its use as a therapeutic since the native protein is unstable during storage and delivery. Additionally, the ability to increase the activity of FGF2 is important for its application, particularly in chronic wound healing and the treatment of various ischemic conditions. Here we report a heparin mimicking block copolymer, poly(styrenesulfonate-co-poly(ethylene glycol) methyl ether methacrylate)-b-vinyl sulfonate) (p(SS-co-PEGMA)-b-VS, that contains a segment that enhances the stability of FGF2 and one that binds to the FGF2 receptor. The FGF2 conjugate retained activity after exposure to refrigeration (4 °C) and room temperature (23 °C) for 7 days, while unmodified FGF2 was inactive after these standard storage conditions. A cell study performed with a cell line lacking native heparan sulfate proteoglycans indicated that the conjugated block copolymer facilitated binding of FGF2 to its receptor similar to the addition of heparin to FGF2. A receptor-based enzyme-linked immunosorbant assay (ELISA) confirmed the results. The conjugate also increased the migration of endothelial cells by 80% compared to FGF2 alone. Additionally, the FGF2-p(SS-co-PEGMA)-b-VS stimulated endothelial cell sprouting 250% better than FGF2 at low concentration. These data verify that this rationally designed protein-block copolymer conjugate enhances receptor binding, cellular processes such as migration and tube-like formation, and stability, and suggest that it may be useful for applications in biomaterials, tissue regeneration, and wound healing.
Collapse
Affiliation(s)
- Samantha
J. Paluck
- Department of Chemistry and
Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| | - Thi H. Nguyen
- Department of Chemistry and
Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| | - Jonghan P. Lee
- Department of Chemistry and
Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| | - Heather D. Maynard
- Department of Chemistry and
Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| |
Collapse
|
14
|
Ren T, Yu S, Mao Z, Gao C. A complementary density gradient of zwitterionic polymer brushes and NCAM peptides for selectively controlling directional migration of Schwann cells. Biomaterials 2015; 56:58-67. [DOI: 10.1016/j.biomaterials.2015.03.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
|
15
|
Yang JW, Zhang YF, Sun ZY, Song GT, Chen Z. Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. J Biomater Appl 2015; 30:221-9. [PMID: 25791684 DOI: 10.1177/0885328215577296] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The clinical translation of regenerative endodontics demands further development of suitable scaffolds. Here, we assessed the possibility of using silk fibroin scaffold for pulp regeneration with dental pulp stem cells (DPSCs) and basic fibroblast growth factor (bFGF) in ectopic root canal transplantation model. Porous silk fibroin scaffolds were fabricated using freeze-drying technique (with or without bFGF incorporation), and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. DPSCs were isolated, characterized, seeded onto scaffolds, and inserted into the tooth root fragments. Cell viability and morphology were tested in the 3D model in vitro using CCK8 assay and SEM. Furthermore, the ectopic transplantation model was used to verify the generation of pulp-like tissue in DPSCs seeded silk fibroin scaffold with bFGF, as examined by histological analysis. DPSCs seeded in silk fibroin scaffold survived, exhibited cytoplasmic elongation in scaffolds at least 4 weeks in culture. bFGF promoted DPSCs viability in tooth fragments/scaffolds (TSS) between 7 and 28 days. Pulp-like tissue was generated in the bFGF-incorporated TSS with DPSCs. Histologically, the generated tissue was shown to be with well vascularity, have new matrix deposition and dentin-like tissue formation, and consist of both the transplanted and host-derived cells. Collectively, these data support the use of bFGF-incorporated silk fibroin scaffold as a highly promising scaffold candidate for future treatment concepts in regenerative endodontics to save teeth.
Collapse
Affiliation(s)
- Jing-Wen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Yu-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zhe-Yi Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Guang-Tai Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| |
Collapse
|
16
|
Li Q, Ma L, Gao C. Biomaterials for in situ tissue regeneration: development and perspectives. J Mater Chem B 2015; 3:8921-8938. [DOI: 10.1039/c5tb01863c] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biomaterials are of fundamental importance to in situ tissue regeneration, which has emerged as a powerful method to treat tissue defects. The development and perspectives of biomaterials for in situ tissue regeneration were summarized.
Collapse
Affiliation(s)
- Qian Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
17
|
Wu J, Mao Z, Han L, Zhao Y, Xi J, Gao C. A density gradient of basic fibroblast growth factor guides directional migration of vascular smooth muscle cells. Colloids Surf B Biointerfaces 2014; 117:290-5. [PMID: 24657928 DOI: 10.1016/j.colsurfb.2014.02.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/08/2014] [Accepted: 02/17/2014] [Indexed: 01/15/2023]
Abstract
The migration of vascular smooth muscle cells (VSMCs) is an important process in many physiological events. It is of paramount importance to control the migration rate and direction of VSMCs by biomaterials. In this paper, a density gradient of basic fibroblast growth factor (bFGF) was fabricated using an injection method and the bio-conjugation between heparin and bFGF. The density of bFGF gradually increased with a slope of 17 ng/cm(2)/mm. Adhesion and migration of VSMCs were studied on the bFGF gradient. The VSMCs exhibited preferential orientation and an enhanced directional migration behavior on the gradient surface. Up to 70% cells migrated towards the region with a higher density of bFGF on the gradient. However, the bFGF gradient had no effect on the cell migration rate.
Collapse
Affiliation(s)
- Jindan Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lulu Han
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yizhi Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiabin Xi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
18
|
Han L, Wu J, Ren T, Mao Z, Guo Y, Gao C. Polyelectrolyte Multilayer Patterns Created by Capillary Force and Their Impact on Cell Migration. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|