1
|
Truong S, Mootoo DR. C-Glycosylcrotylboronates for the Synthesis of Glycomimetics. Org Lett 2021; 24:191-195. [PMID: 34958591 DOI: 10.1021/acs.orglett.1c03845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stereoselective synthesis of E- and Z- isomers of a C- mannosyl crotylpinacolboronate via Ni-promoted reactions on an allylic acetate and a diene precursor, respectively, is described. The E- and Z- isomers reacted with 1,2-O-isopropylidene glyceraldehyde in the presence or absence of (R)- and (S)- TRIP catalysts, to give predominantly 3,4-anti and 3,4-syn crotylation products, respectively, with moderate to high facial selectivity. These products were transformed to biologically relevant C-manno-disaccharides.
Collapse
Affiliation(s)
- Steven Truong
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States.,The Graduate Center, CUNY, 365 Fifth Avenue, New York, New York 10016, United States
| | - David R Mootoo
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States.,The Graduate Center, CUNY, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
2
|
Curvophilic-curvophobic balance of monoalkyl-mannosides determines the magnitude of disturbance promoted in synthetic bilayers. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
sp 2-Iminosugar glycolipids as inhibitors of lipopolysaccharide-mediated human dendritic cell activation in vitro and of acute inflammation in mice in vivo. Eur J Med Chem 2019; 169:111-120. [PMID: 30870792 DOI: 10.1016/j.ejmech.2019.02.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Glycolipid mimetics consisting of a bicyclic polyhydroxypiperidine-cyclic carbamate core and a pseudoanomeric hydrophobic tail, termed sp2-iminosugar glycolipids (sp2-IGLs), target microglia during neuroinflammatory processes. Here we have synthesized and investigated new variants of sp2-IGLs for their ability to suppress the activation of human monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS) signaling through Toll-like receptor 4. We report that the best lead was (1R)-1-dodecylsulfonyl-5N,6O-oxomethylidenenojirimycin (DSO2-ONJ), able to inhibit LPS-induced TNFα production and maturation of DCs. Immunovisualization experiments, using a mannoside glycolipid conjugate (MGC) that also suppress LPS-mediated DC activation as control, evidenced a distinct mode of action for the sp2-IGLs: unlike MGCs, DSO2-ONJ did not elicit internalization of the LPS co-receptor CD14 or induce its co-localization with the Toll-like receptor 4. In a mouse model of LPS-induced acute inflammation, DSO2-ONJ demonstrated anti-inflammatory activity by inhibiting the production of the pro-inflammatory interleukin-6. The ensemble of the data highlights sp2-IGLs as a promising new class of molecules against inflammation by interfering in Toll-like receptor intracellular signaling.
Collapse
|
4
|
Sekhar KPC, Adicherla H, Nayak RR. Impact of Glycolipid Hydrophobic Chain Length and Headgroup Size on Self-Assembly and Hydrophobic Guest Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8875-8886. [PMID: 29983075 DOI: 10.1021/acs.langmuir.8b01401] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Encapsulation of a hydrophobic guest molecule inside a micelle and its stimuli-sensitive release is a useful strategy for target-specific drug delivery. Herein, nine biobased glycolipids were derived from plant sources. The influence of headgroup on the stability and aggregation pattern in water with different alkyl chain lengths was investigated to deduce the structure-property relationship. External factors, such as temperature, pH, and NaCl and urea concentrations, were employed to explore stimuli response of glycolipid nanoassemblies. Furthermore, solvatochromic dyes, such as pyrene, N-phenyl-1-naphthylamine, and curcumin, were utilized to examine hydrophobe loading capacities of these glycolipid assemblies. A fluorescence study was performed to investigate the enzyme-sensitive hydrophobe release. Interestingly, the pH-sensitive hydrophobic guests showed pH-responsive release from dynamic micelles. Finally, the synthesized glycolipids revealed their nanoassemblies as smart carriers for hydrophobic cargo.
Collapse
Affiliation(s)
- Kanaparedu P C Sekhar
- Centre for Lipid Science and Technology , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001 , India
| | - Harikrishna Adicherla
- CSIR-Centre for Cellular and Molecular Biology , Uppal Road , Hyderabad 500007 , India
| | - Rati Ranjan Nayak
- Centre for Lipid Science and Technology , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001 , India
| |
Collapse
|
5
|
Schaeffer E, Flacher V, Neuberg P, Hoste A, Brulefert A, Fauny JD, Wagner A, Mueller CG. Inhibition of dengue virus infection by mannoside glycolipid conjugates. Antiviral Res 2018; 154:116-123. [PMID: 29630976 DOI: 10.1016/j.antiviral.2018.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/31/2022]
Abstract
Dengue virus (DENV), a mosquito-borne flavivirus, causes severe and potentially fatal symptoms in millions of infected individuals each year. Although dengue fever represents a major global public health problem, the vaccines or antiviral drugs proposed so far have not shown sufficient efficacy and safety, calling for new antiviral developments. Here we have shown that a mannoside glycolipid conjugate (MGC) bearing a trimannose head with a saturated lipid chain inhibited DENV productive infection. It showed remarkable cell promiscuity, being active in human skin dendritic cells, hepatoma cell lines and Vero cells, and was active against all four DENV serotypes, with an IC50 in the low micromolar range. Time-of-addition experiments and structure-activity analyses revealed the importance of the lipid chain to interfere with an early viral infection step. This, together with a correlation between antiviral activity and membrane polarization by the lipid moiety indicated that the inhibitor functions by blocking viral envelope fusion with the endosome membrane. These finding establish MGCs as a novel class of antivirals against the DENV.
Collapse
Affiliation(s)
- Evelyne Schaeffer
- CNRS, Université de Strasbourg, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Vincent Flacher
- CNRS, Université de Strasbourg, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Patrick Neuberg
- CNRS, Université de Strasbourg, Laboratory of Functional Chemo Systems, UMR 7199, 67400 Illkirch, France
| | - Astrid Hoste
- CNRS, Université de Strasbourg, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Adrien Brulefert
- CNRS, Université de Strasbourg, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Jean-Daniel Fauny
- CNRS, Université de Strasbourg, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Alain Wagner
- CNRS, Université de Strasbourg, Laboratory of Functional Chemo Systems, UMR 7199, 67400 Illkirch, France
| | - Christopher G Mueller
- CNRS, Université de Strasbourg, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France.
| |
Collapse
|
6
|
Salvadó M, Reina JJ, Rojo J, Castillón S, Boutureira O. Topological Defects in Hyperbranched Glycopolymers Enhance Binding to Lectins. Chemistry 2017; 23:15790-15794. [PMID: 28851127 DOI: 10.1002/chem.201703432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 11/10/2022]
Abstract
Central scaffold topology and carbohydrate density are important features in determining the binding mechanism and potency of synthetic multivalent of poly- versus monodisperse carbohydrate systems against a model plant toxin (Ricinus communis agglutinin (RCA120 )). Lower densities of protein receptors favour the use of heterogeneous, polydisperse glycoconjugate presentations, as determined by surface plasmon resonance and dynamic light scattering.
Collapse
Affiliation(s)
- Míriam Salvadó
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel lí Domingo 1, 43007, Tarragona, Spain
| | - José J Reina
- Glycosystems Laboratory, Instituto de Investigaciones Químicas, IIQ, CSIC -, Universidad de Sevilla, Av. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas, IIQ, CSIC -, Universidad de Sevilla, Av. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Sergio Castillón
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel lí Domingo 1, 43007, Tarragona, Spain
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel lí Domingo 1, 43007, Tarragona, Spain
| |
Collapse
|
7
|
Štimac A, Cvitaš JT, Frkanec L, Vugrek O, Frkanec R. Design and syntheses of mono and multivalent mannosyl-lipoconjugates for targeted liposomal drug delivery. Int J Pharm 2016; 511:44-56. [PMID: 27363934 DOI: 10.1016/j.ijpharm.2016.06.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 12/21/2022]
Abstract
Multivalent mannosyl-lipoconjugates may be of interest for glycosylation of liposomes and targeted drug delivery because the mannose specifically binds to C-type lectin receptors on the particular cells. In this paper syntheses of two types of novel O-mannosides are presented. Conjugates 1 and 2 with a COOH- and NH2-functionalized spacer and the connection to a lysine and FmocNH-PEG-COOH, are described. The coupling reactions of prepared intermediates 6 and 4 with a PEGylated-DSPE or palmitic acid, respectively, are presented. Compounds 5, mono-, 8, di- and 12, tetravalent mannosyl-lipoconjugates, were synthesized. The synthesized compounds were incorporated into liposomes and liposomal preparations featuring exposed mannose units were characterized. Carbohydrate liposomal quartz crystal microbalance based assay has been established for studying carbohydrate-lectin binding. It was demonstrated that liposomes with incorporated mannosyl-lipoconjugates were effectively recognized by Con A and have great potential to be used for targeted liposomal drug delivery systems.
Collapse
Affiliation(s)
- Adela Štimac
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia
| | | | - Leo Frkanec
- Institute Rudjer BoškoviĿ, BijeniĿka cesta 54, 10000 Zagreb, Croatia
| | - Oliver Vugrek
- Institute Rudjer BoškoviĿ, BijeniĿka cesta 54, 10000 Zagreb, Croatia
| | - Ruža Frkanec
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| |
Collapse
|
8
|
Sattin S, Bernardi A. Glycoconjugates and Glycomimetics as Microbial Anti-Adhesives. Trends Biotechnol 2016; 34:483-495. [DOI: 10.1016/j.tibtech.2016.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 12/31/2022]
|
9
|
Restuccia A, Fettis MM, Hudalla GA. Glycomaterials for immunomodulation, immunotherapy, and infection prophylaxis. J Mater Chem B 2016; 4:1569-1585. [DOI: 10.1039/c5tb01780g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synthetic carbohydrate-modified materials that can engage the innate and adaptive immune systems are receiving increasing interest to confer protection against onset of future disease, such as pathogen infection, as well as to treat established diseases, such as autoimmunity and cancer.
Collapse
Affiliation(s)
- Antonietta Restuccia
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
| | - Margaret M. Fettis
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
| | - Gregory A. Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
| |
Collapse
|
10
|
Flacher V, Neuberg P, Point F, Daubeuf F, Muller Q, Sigwalt D, Fauny JD, Remy JS, Frossard N, Wagner A, Mueller CG, Schaeffer E. Mannoside Glycolipid Conjugates Display Anti-inflammatory Activity by Inhibition of Toll-like Receptor-4 Mediated Cell Activation. ACS Chem Biol 2015; 10:2697-705. [PMID: 26389521 DOI: 10.1021/acschembio.5b00552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Inhibition of excessive Toll-like receptor 4 (TLR4) signaling is a therapeutic approach pursued for many inflammatory diseases. We report that Mannoside Glycolipid Conjugates (MGCs) selectively blocked TLR4-mediated activation of human monocytes and monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS). They potently suppressed pro-inflammatory cytokine secretion and maturation of DCs exposed to LPS, leading to impaired T cell stimulation. MGCs did not interfere with LPS and could act in a delayed manner, hours after LPS stimulation. Their inhibitory action required both the sugar heads and the lipid chain, although the nature of the sugar and the structure of the lipid tail could be modified. They blocked early signaling events at the cell membrane, enhanced internalization of CD14 receptors, and prevented colocalization of CD14 and TLR4, thereby abolishing NF-κB nuclear translocation. When the best lead conjugate was tested in a mouse model of LPS-induced acute lung inflammation, it displayed an anti-inflammatory action by suppressing the recruitment of neutrophils. Thus, MGCs could serve as promising leads for the development of selective TLR4 antagonistic agents for inflammatory diseases.
Collapse
Affiliation(s)
- Vincent Flacher
- Laboratory of Immunopathology and Therapeutic Chemistry, CNRS UPR 3572/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire , 15 rue René Descartes, 67000 Strasbourg, France
| | | | - Floriane Point
- Laboratory of Immunopathology and Therapeutic Chemistry, CNRS UPR 3572/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire , 15 rue René Descartes, 67000 Strasbourg, France
| | - François Daubeuf
- Laboratory of Therapeutic Innovation, CNRS-University of Strasbourg UMR 7200/Laboratory of Excellence MEDALIS, Faculté de Pharmacie, Université de Strasbourg , 74 route du Rhin, 67400 Illkirch, France
| | - Quentin Muller
- Laboratory of Immunopathology and Therapeutic Chemistry, CNRS UPR 3572/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire , 15 rue René Descartes, 67000 Strasbourg, France
| | | | - Jean-Daniel Fauny
- Laboratory of Immunopathology and Therapeutic Chemistry, CNRS UPR 3572/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire , 15 rue René Descartes, 67000 Strasbourg, France
| | | | - Nelly Frossard
- Laboratory of Therapeutic Innovation, CNRS-University of Strasbourg UMR 7200/Laboratory of Excellence MEDALIS, Faculté de Pharmacie, Université de Strasbourg , 74 route du Rhin, 67400 Illkirch, France
| | | | - Christopher G Mueller
- Laboratory of Immunopathology and Therapeutic Chemistry, CNRS UPR 3572/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire , 15 rue René Descartes, 67000 Strasbourg, France
| | - Evelyne Schaeffer
- Laboratory of Immunopathology and Therapeutic Chemistry, CNRS UPR 3572/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire , 15 rue René Descartes, 67000 Strasbourg, France
| |
Collapse
|
11
|
Schneider CS, Bhargav AG, Perez JG, Wadajkar AS, Winkles JA, Woodworth GF, Kim AJ. Surface plasmon resonance as a high throughput method to evaluate specific and non-specific binding of nanotherapeutics. J Control Release 2015; 219:331-344. [PMID: 26415854 DOI: 10.1016/j.jconrel.2015.09.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022]
Abstract
Surface plasmon resonance (SPR) is a powerful analytical technique used to quantitatively examine the interactions between various biomolecules, such as proteins and nucleic acids. The technique has been particularly useful in screening and evaluating binding affinity of novel small molecule and biomolecule-derived therapeutics for various diseases and applications including lupus medications, thrombin inhibitors, HIV protease inhibitors, DNA gyrase inhibitors and many others. Recently, there has been increasing interest in nanotherapeutics (nanoRx), due to their unique properties and potential for controlled release of encapsulated drugs and structure-specific targeting to diseased tissues. NanoRx offer the potential to solve many drug delivery challenges by enabling, specific interactions between molecules on the surface of the nanoparticle and molecules in the diseased tissue, while minimizing off-target interactions toward non-diseased tissues. These properties are largely dependent upon careful control and balance of nanoRx interactions and binding properties with tissues in vivo. Given the great promise of nanoRx with regard to engineering specific molecular interactions, SPR can rapidly quantify small aliquots of nanoRx formulations for desired and undesired molecular interactions. Moving forward, we believe that utilization of SPR in the screening and design of nanoRx has the potential to greatly improve the development of targeted nanoRx formulations and eventually lead to improved therapeutic efficacy. In this review, we discuss (1) the fundamental principles of SPR and basic quantitative analysis of SPR data, (2) previous applications of SPR in the study of non-particulate therapeutics and nanoRx, and (3) future opportunities for the use of SPR in the evaluation of nanoRx.
Collapse
Affiliation(s)
- Craig S Schneider
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adip G Bhargav
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jimena G Perez
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aniket S Wadajkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A Winkles
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
12
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 381] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
13
|
Csávás M, Demeter T, Herczeg M, Timári I, Kövér KE, Herczegh P, Borbás A. Rapid synthesis of self-assembling 1,2-thiomannobioside glycoconjugates as potential multivalent ligands of mannose-binding lectins. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Avinash MB, Govindaraju T. Nanoarchitectonics of biomolecular assemblies for functional applications. NANOSCALE 2014; 6:13348-69. [PMID: 25287110 DOI: 10.1039/c4nr04340e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The stringent processes of natural selection and evolution have enabled extraordinary structure-function properties of biomolecules. Specifically, the archetypal designs of biomolecules, such as amino acids, nucleobases, carbohydrates and lipids amongst others, encode unparalleled information, selectivity and specificity. The integration of biomolecules either with functional molecules or with an embodied functionality ensures an eclectic approach for novel and advanced nanotechnological applications ranging from electronics to biomedicine, besides bright prospects in systems chemistry and synthetic biology. Given this intriguing scenario, our feature article intends to shed light on the emerging field of functional biomolecular engineering.
Collapse
Affiliation(s)
- M B Avinash
- Bioorganic Chemistry Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bangalore 560064, India.
| | | |
Collapse
|