1
|
Santos MPF, de Souza Junior EC, Villadóniga C, Vallés D, Castro-Sowinski S, Bonomo RCF, Veloso CM. Proteases: Importance, Immobilization Protocols, Potential of Activated Carbon as Support, and the Importance of Modifying Supports for Immobilization. BIOTECH 2024; 13:13. [PMID: 38804295 PMCID: PMC11130871 DOI: 10.3390/biotech13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Although enzymes have been used for thousands of years, their application in industrial processes has gained importance since the 20th century due to technological and scientific advances in several areas, including biochemistry [...].
Collapse
Affiliation(s)
- Mateus Pereira Flores Santos
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos (PPGBBM), Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus 45662-900, Bahia, Brazil;
| | - Evaldo Cardozo de Souza Junior
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Carolina Villadóniga
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Diego Vallés
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Susana Castro-Sowinski
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Renata Cristina Ferreira Bonomo
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Cristiane Martins Veloso
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| |
Collapse
|
2
|
Mishra S, Hansda B, Ghosh A, Mondal S, Mandal B, Kumari P, Das B, Mondal TK, Biswas T. Multipoint Immobilization at Inert Center of Papain on Homo-Functional Diazo-Activated Silica Support: A Way of Restoring "Above Room-Temperature" Bio-Catalytic Sustainability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5710-5726. [PMID: 37039774 DOI: 10.1021/acs.langmuir.2c03466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although enzymes play a significant role in industrial applications, their potential usage at high-level efficiency, particularly above room temperature, has not yet been fully harnessed. It brings above room-temperature catalytic sustainability of an immobilized (imm.) bio-catalyst as a long pending issue to improve enzyme stability, activity, specificity, or selectivity, particularly the enantio-selectivity over the native-enzymes. At this juncture, in a robust methodology, a heterogeneous solid phase bio-catalyst, {Si(OSi)4(H2O)1.03}n=328{OSi(CH3)2-NH-C6H4-N═N}4{papain}(H2O)251, has efficiently been prepared by immobilizing papain on homo-functionalized SG (silica-gel) via multipoint covalent attachment. The bio-catalyst is easy to be recovered and reused multiple times. The homo-functional -N═N+, which appears on the SG-surface, makes the multipoint diazo-links with the inert center of the tyrosine-moiety to couple the enzyme where all the amino, thiol, phenol, and so forth, groups of the protein, including those that belong to the active-site, remain intact. The immobilized enzyme (13.9 μmol g-1) swims in pore-water within the pore-channel, remains stable up to 70 ± 5 °C, and exhibits wider temperature adaptability in performing its hydrolyzing activities. The relative activity, 78 ± 2% at 27 °C, remains quantitative for 60 days and can be reused for 60 cycles with 53% activity at room-temperature. The thermal (relative activity: 87%; incubated at 70 ± 5 °C for 24 h) and mechanical (relative activity: 92%; incubated at 2500 rpm for 2 h at 27 °C) stability was outstanding.
Collapse
Affiliation(s)
- Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Sneha Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Pallavi Kumari
- University Department of Chemistry, T.M.B.U., Bhagalpur, Bihar 812007, India
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Tanay Kumar Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| |
Collapse
|
3
|
A Convenient U-Shape Microreactor for Continuous Flow Biocatalysis with Enzyme-Coated Magnetic Nanoparticles-Lipase-Catalyzed Enantiomer Selective Acylation of 4-(Morpholin-4-yl)butan-2-ol. Catalysts 2022. [DOI: 10.3390/catal12091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study implements a convenient microreactor for biocatalysis with enzymes immobilized on magnetic nanoparticles (MNPs). The enzyme immobilized onto MNPs by adsorption or by covalent bonds was lipase B from Candida antarctica (CaLB). The MNPs for adsorption were obtained by covering the magnetite core with a silica shell and later with hexadecyltrimethoxysilane, while for covalent immobilization, the silica-covered MNPs were functionalized by a layer forming from mixtures of hexadecyl- and 3-(2-aminoethylamino)propyldimethoxymethylsilanes in 16:1 molar ratio, which was further activated with neopentyl glycol diglycidyl ether (NGDE). The resulting CaLB-MNPs were tested in a convenient continuous flow system, created by 3D printing to hold six adjustable permanent magnets beneath a polytetrafluoroethylene tube (PTFE) to anchor the MNP biocatalyst inside the tube reactor. The anchored CaLB-MNPs formed reaction chambers in the tube for passing the fluid through and above the MNP biocatalysts, thus increasing the mixing during the fluid flow and resulting in enhanced activity of CaLB on MNPs. The enantiomer selective acylation of 4-(morpholin-4-yl)butan-2-ol (±)-1, being the chiral alcohol constituent of the mucolytic drug Fedrilate, was carried out by CaLB-MNPs in the U-shape reactor. The CaLB-MNPs in the U-shape reactor were compared in batch reactions to the lyophilized CaLB and to the CaLB-MNPs using the same reaction composition, and the same amounts of CaLB showed similar or higher activity in flow mode and superior activity as compared to the lyophilized powder form. The U-shape permanent magnet design represents a general and easy-to-access implementation of MNP-based flow microreactors, being useful for many biotransformations and reducing costly and time-consuming downstream processes.
Collapse
|
4
|
Bilal M, Iqbal HM, Adil SF, Shaik MR, Abdelgawad A, Hatshan MR, Khan M. Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-A review. J Adv Res 2022; 38:157-177. [PMID: 35572403 PMCID: PMC9091734 DOI: 10.1016/j.jare.2021.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Enzymes based bio-catalysis has wide range of applications in various chemical and biological processes. Thus, the process of enzymes immobilization on suitable support to obtain highly active and stable bio-catalysts has great potential in industrial applications. Particularly, surface-modified magnetic nanomaterials have garnered a special interest as versatile platforms for biomolecules/enzyme immobilization. AIM OF REVIEW This review spotlights recent progress in the immobilization of various enzymes onto surface-coated multifunctional magnetic nanostructured materials and their derived nano-constructs for multiple applications. Conclusive remarks, technical challenges, and insightful opinions on this field of research which are helpful to expand the application prospects of these materials are also given with suitable examples. KEY SCIENTIFIC CONCEPTS OF REVIEW Nanostructured materials, including surface-coated magnetic nanoparticles have recently gained immense significance as suitable support materials for enzyme immobilization, due to their large surface area, unique functionalities, and high chemical and mechanical stability. Besides, magnetic nanoparticles are less expensive and offers great potential in industrial applications due to their easy recovery and separation form their enzyme conjugates with an external magnetic field. Magnetic nanoparticles based biocatalytic systems offer a wide-working temperature, pH range, increased storage and thermal stabilities. So far, several studies have documented the application of a variety of surface modification and functionalization techniques to circumvent the aggregation and oxidation of magnetic nanoparticles. Surface engineering of magnetic nanoparticles (MNPs) helps to improve the dispersion stability, enhance mechanical and physicochemical properties, upgrade the surface activity and also increases enzyme immobilization capabilities and biocompatibility of the materials. However, several challenges still need to be addressed, such as controlled synthesis of MNPs and clinical aspects of these materials require consistent research from multidisciplinary scientists to realize its practical applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Corresponding authors.
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
- Corresponding authors.
| | - Abdelatty Abdelgawad
- Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
- Corresponding authors.
| |
Collapse
|
5
|
Federsel HJ, Moody TS, Taylor SJ. Recent Trends in Enzyme Immobilization-Concepts for Expanding the Biocatalysis Toolbox. Molecules 2021; 26:molecules26092822. [PMID: 34068706 PMCID: PMC8126217 DOI: 10.3390/molecules26092822] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/03/2022] Open
Abstract
Enzymes have been exploited by humans for thousands of years in brewing and baking, but it is only recently that biocatalysis has become a mainstream technology for synthesis. Today, enzymes are used extensively in the manufacturing of pharmaceuticals, food, fine chemicals, flavors, fragrances and other products. Enzyme immobilization technology has also developed in parallel as a means of increasing enzyme performance and reducing process costs. The aim of this review is to present and discuss some of the more recent promising technical developments in enzyme immobilization, including the supports used, methods of fabrication, and their application in synthesis. The review highlights new support technologies such as the use of well-established polysaccharides in novel ways, the use of magnetic particles, DNA, renewable materials and hybrid organic–inorganic supports. The review also addresses how immobilization is being integrated into developing biocatalytic technology, for example in flow biocatalysis, the use of 3D printing and multi-enzymatic cascade reactions.
Collapse
Affiliation(s)
- Hans-Jürgen Federsel
- RISE Research Institutes of Sweden, Department of Chemical Process and Pharmaceutical Development, P.O. Box 5607, S-114 86 Stockholm, Sweden
- Correspondence: (H.-J.F.); (T.S.M.); Tel.: +46-70-311-55-53 (H.-J.F.); +44-28-3833-2200 (T.S.M.)
| | - Thomas S. Moody
- Almac Sciences Ltd., 20 Seagoe Industrial Estate, Craigavon BT63 5QD, UK;
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, N37 DN24 Athlone, Ireland
- Correspondence: (H.-J.F.); (T.S.M.); Tel.: +46-70-311-55-53 (H.-J.F.); +44-28-3833-2200 (T.S.M.)
| | - Steve J.C. Taylor
- Almac Sciences Ltd., 20 Seagoe Industrial Estate, Craigavon BT63 5QD, UK;
| |
Collapse
|
6
|
Wu T, Fitchett CM, Brooksby PA, Downard AJ. Building Tailored Interfaces through Covalent Coupling Reactions at Layers Grafted from Aryldiazonium Salts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11545-11570. [PMID: 33683855 DOI: 10.1021/acsami.0c22387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aryldiazonium ions are widely used reagents for surface modification. Attractive aspects of their use include wide substrate compatibility (ranging from plastics to carbons to metals and metal oxides), formation of stable covalent bonding to the substrate, simplicity of modification methods that are compatible with organic and aqueous solvents, and the commercial availability of many aniline precursors with a straightforward conversion to the active reagent. Importantly, the strong bonding of the modifying layer to the surface makes the method ideally suited to further on-surface (postfunctionalization) chemistry. After an initial grafting from a suitable aryldiazonium ion to give an anchor layer, a target species can be coupled to the layer, hugely expanding the range of species that can be immobilized. This strategy has been widely employed to prepare materials for numerous applications including chemical sensors, biosensors, catalysis, optoelectronics, composite materials, and energy conversion and storage. In this Review our goal is first to summarize how a target species with a particular functional group may be covalently coupled to an appropriate anchor layer. We then review applications of the resulting materials.
Collapse
Affiliation(s)
- Ting Wu
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand
| | - Christopher M Fitchett
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand
| | - Paula A Brooksby
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Alison J Downard
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
7
|
Bilal M, Iqbal HMN. Armoring bio-catalysis via structural and functional coordination between nanostructured materials and lipases for tailored applications. Int J Biol Macromol 2021; 166:818-838. [PMID: 33144258 DOI: 10.1016/j.ijbiomac.2020.10.239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
Abstract
Nanostructured materials represent an interesting and novel class of support matrices for the immobilization of different enzymes. Owing to the high surface area, robust mechanical stability, outstanding optical, thermal, and electrical properties, nanomaterials have been rightly perceived as desired immobilization matrices for lipases immobilization with a wide array of biotechnological applications such as dairy, food technology, fine chemical, pharmaceutical, detergent, and oleochemical industries. Lipases immobilized on nanomaterials have demonstrated superior attributes than free counterparts, such as aggrandized pH and thermal stability, robustness, long-term stability, and the possibility of reuse and recycling in several times. Here we review current and state-of-the-art literature on the use of nanomaterials as novel platforms for the immobilization of lipase enzymes. The physicochemical properties and exploitation of a large number of new nanostructured materials such as carbon nanotubes, nano-silica, graphene/graphene oxide, metal nanoparticles, magnetic nanostructures, metal-organic frameworks, and hybrid nanoflowers as a host matrix to constitute robust lipases-based nanobiocatalytic systems are discussed. Conclusive remarks, trends, and future recommendations for nanomaterial immobilized enzymes are also given.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
8
|
Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry. Catalysts 2020. [DOI: 10.3390/catal10091032] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lipases are one of the most used enzymes in the pharmaceutical industry due to their efficiency in organic syntheses, mainly in the production of enantiopure drugs. From an industrial viewpoint, the selection of an efficient expression system and host for recombinant lipase production is highly important. The most used hosts are Escherichia coli and Komagataella phaffii (previously known as Pichia pastoris) and less often reported Bacillus and Aspergillus strains. The use of efficient expression systems to overproduce homologous or heterologous lipases often require the use of strong promoters and the co-expression of chaperones. Protein engineering techniques, including rational design and directed evolution, are the most reported strategies for improving lipase characteristics. Additionally, lipases can be immobilized in different supports that enable improved properties and enzyme reuse. Here, we review approaches for strain and protein engineering, immobilization and the application of lipases in the pharmaceutical industry.
Collapse
|
9
|
Ariaeenejad S, Lanjanian H, Motamedi E, Kavousi K, Moosavi-Movahedi AA, Hosseini Salekdeh G. The Stabilizing Mechanism of Immobilized Metagenomic Xylanases on Bio-Based Hydrogels to Improve Utilization Performance: Computational and Functional Perspectives. Bioconjug Chem 2020; 31:2158-2171. [DOI: 10.1021/acs.bioconjchem.0c00361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, 31359, Iran
| | - Hossein Lanjanian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, 13145, Iran
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, 31359, Iran
| | - Kaveh Kavousi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, 13145, Iran
| | | | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, 31359, Iran
- Department of Molecular Sciences, Macquarie University, Sydney, 2109, New South Wales, Australia
| |
Collapse
|
10
|
Doswald S, Stark WJ, Beck-Schimmer B. Biochemical functionality of magnetic particles as nanosensors: how far away are we to implement them into clinical practice? J Nanobiotechnology 2019; 17:73. [PMID: 31151445 PMCID: PMC6544934 DOI: 10.1186/s12951-019-0506-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
Magnetic nanosensors have become attractive instruments for the diagnosis and treatment of different diseases. They represent an efficient carrier system in drug delivery or in transporting contrast agents. For such purposes, magnetic nanosensors are used in vivo (intracorporeal application). To remove specific compounds from blood, magnetic nanosensors act as elimination system, which represents an extracorporeal approach. This review discusses principles, advantages and risks on recent advances in the field of magnetic nanosensors. First, synthesis methods for magnetic nanosensors and possibilities for enhancement of biocompatibility with different coating materials are addressed. Then, attention is devoted to clinical applications, in which nanosensors are or may be used as carrier- and elimination systems in the near future. Finally, risk considerations and possible effects of nanomaterials are discussed when working towards clinical applications with magnetic nanosensors.
Collapse
Affiliation(s)
- Simon Doswald
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Wendelin Jan Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Beatrice Beck-Schimmer
- Institute of Anesthesiology, University of Zurich and University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
11
|
Shemsi AM, Khanday FA, Qurashi A, Khalil A, Guerriero G, Siddiqui KS. Site-directed chemically-modified magnetic enzymes: fabrication, improvements, biotechnological applications and future prospects. Biotechnol Adv 2019; 37:357-381. [DOI: 10.1016/j.biotechadv.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/13/2019] [Accepted: 02/08/2019] [Indexed: 02/08/2023]
|
12
|
Conjugation of carbon coated-iron nanoparticles with biomolecules for NMR-based assay. Colloids Surf B Biointerfaces 2019; 176:256-264. [DOI: 10.1016/j.colsurfb.2019.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022]
|
13
|
Kasprzak A, Bystrzejewski M, Poplawska M. Ferrocene-Labeled Carbon-Encapsulated Iron Nanoparticles: The First Magnetic Nanocatalysts for C–H Arylation toward 1,1′-Biphenyl Formation. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| | - Michał Bystrzejewski
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, 02-093 Warsaw, Poland
| | - Magdalena Poplawska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| |
Collapse
|
14
|
Mondal S, Malik S, Sarkar R, Roy D, Saha S, Mishra S, Sarkar A, Chatterjee M, Mandal B. Exuberant Immobilization of Urease on an Inorganic SiO2 Support Enhances the Enzymatic Activities by 3-fold for Perennial Utilization. Bioconjug Chem 2018; 30:134-147. [DOI: 10.1021/acs.bioconjchem.8b00796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sneha Mondal
- Department of Chemistry, Visva-Bharati, Santiniketan 731235, India
| | - Susanta Malik
- Department of Chemistry, Visva-Bharati, Santiniketan 731235, India
| | - Rimi Sarkar
- Department of Chemistry, Visva-Bharati, Santiniketan 731235, India
| | - Dipika Roy
- Department of Chemistry, Visva-Bharati, Santiniketan 731235, India
| | - Sanchari Saha
- Department of Chemistry, Visva-Bharati, Santiniketan 731235, India
| | - Shailja Mishra
- Department of Chemistry, Visva-Bharati, Santiniketan 731235, India
| | - Anindya Sarkar
- Department of Chemistry, Visva-Bharati, Santiniketan 731235, India
| | | | - Bhabatosh Mandal
- Department of Chemistry, Visva-Bharati, Santiniketan 731235, India
| |
Collapse
|
15
|
Kasprzak A, Gunka K, Fronczak M, Bystrzejewski M, Poplawska M. Folic Acid-Navigated and β-Cyclodextrin-Decorated Carbon-Encapsulated Iron Nanoparticles as the Nanotheranostic Platform for Controlled Release of 5-Fluorouracil. ChemistrySelect 2018. [DOI: 10.1002/slct.201802318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry; Warsaw University of Technology, Noakowskiego Str. 3; 00-664 Warsaw Poland
| | - Katarzyna Gunka
- Faculty of Chemistry; Warsaw University of Technology, Noakowskiego Str. 3; 00-664 Warsaw Poland
| | - Maciej Fronczak
- Faculty of Chemistry, University of Warsaw; Pasteura Str. 1 02-093 Warsaw Poland
| | - Michał Bystrzejewski
- Faculty of Chemistry, University of Warsaw; Pasteura Str. 1 02-093 Warsaw Poland
| | - Magdalena Poplawska
- Faculty of Chemistry; Warsaw University of Technology, Noakowskiego Str. 3; 00-664 Warsaw Poland
| |
Collapse
|
16
|
Raynes JK, Domigan LJ, Pearce FG, Gerrard JA. Immobilization of tobacco etch virus (TEV) protease on a high surface area protein nanofibril scaffold. Biotechnol Prog 2018; 34:1506-1512. [DOI: 10.1002/btpr.2670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/25/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Jared K. Raynes
- CSIRO Agriculture and Food, 671 Sneydes Road Werribee Victoria, 3030 Australia
- Biomolecular Interaction Centre and School of Biological Sciences University of Canterbury, Private Bag 4800 Christchurch, 8140 New Zealand
| | - Laura J. Domigan
- School of Biological Sciences University of Auckland Auckland New Zealand
- Biomolecular Interaction Centre, Private Bag 4800 Christchurch, 8140 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington, 6140 New Zealand
| | - F. Grant Pearce
- Biomolecular Interaction Centre, Private Bag 4800 Christchurch, 8140 New Zealand
- School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Juliet A. Gerrard
- Biomolecular Interaction Centre and School of Biological Sciences University of Canterbury, Private Bag 4800 Christchurch, 8140 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington, 6140 New Zealand
- School of Biological Sciences and School of Chemical Sciences University of Auckland, Private Bag 92019 Auckland, 1142 New Zealand
| |
Collapse
|
17
|
Torres JA, Silva MC, Lopes JH, Nogueira AE, Nogueira FGE, Corrêa AD. Development of a reusable and sustainable biocatalyst by immobilization of soybean peroxidase onto magnetic adsorbent. Int J Biol Macromol 2018; 114:1279-1287. [PMID: 29578014 DOI: 10.1016/j.ijbiomac.2018.03.136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Abstract
In this work we synthesized an activated carbon/magnetite composite by a simple co-precipitation method. The activated carbon (AC) was synthesized from the solid waste obtained in the extraction process of the peroxidase enzyme and the magnetic composite was used as support for the immobilization of soybean peroxidase (SP). After the determination of the optimal immobilization parameters, a 100% yield was achieved under the following conditions: support:enzyme proportion of 1.0:0.05 g, equilibration time of 7 h, pH 3.0 (citrate buffer phosphate 0.1 mol L-1) and temperature of 50 °C. The determination of pH to the point of zero charge was also done to assist in the understanding of the immobilization process at different pH values. Several characterization techniques were used, such as thermogravimetric analysis, elemental analysis composition, X-ray powder diffraction, Fourier transform infrared spectroscopy and Scanning electron microscopy. The biocatalyst presented excellent operational stability and was reused for 11 consecutive cycles. The magnetic properties inserted in the AC contributed to the removal of the biocatalyst from the reaction medium without interfering in the adsorptive characteristics of the AC. Thus, the activated carbon/magnetite composite can be applied to different research fields with high performance.
Collapse
Affiliation(s)
- J A Torres
- Department of Chemistry, Universidade Federal de Lavras, Lavras 37200-000, Brazil.
| | - M C Silva
- Department of Chemistry, Universidade Federal de São João Del Rei, 31270-901, Brazil
| | - J H Lopes
- Laboratory of Engineering and Products Chemistry (LEQUIP), Department of Materials Engineering and Bioprocess (DEMBIO), School of Chemical Engineering (FEQ) - UNICAMP, University of Campinas - UNICAMP, 13083-852 Campinas, SP, Brazil
| | - A E Nogueira
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - F G E Nogueira
- Department of Chemistry Engineering, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.
| | - A D Corrêa
- Department of Chemistry, Universidade Federal de Lavras, Lavras 37200-000, Brazil.
| |
Collapse
|
18
|
A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts 2018. [DOI: 10.3390/catal8020092] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Hromadkova L, Kupcik R, Vajrychova M, Prikryl P, Charvatova A, Jankovicova B, Ripova D, Bilkova Z, Slovakova M. Kinase-loaded magnetic beads for sequentialin vitrophosphorylation of peptides and proteins. Analyst 2018; 143:466-474. [DOI: 10.1039/c7an01508a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kinases ERK2 and GSK-3β loaded magnetic beads for sequentialin vitrophosphorylation of peptides and proteins.
Collapse
Affiliation(s)
- Lenka Hromadkova
- Department of Biological and Biochemical Sciences
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| | - Rudolf Kupcik
- Department of Biological and Biochemical Sciences
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| | - Marie Vajrychova
- Biomedical Research Center
- University Hospital Hradec Kralove
- Hradec Kralove 500 05
- Czech Republic
- Department of Molecular Pathology and Biology
| | - Petr Prikryl
- Institute of Pathological Physiology
- First Faculty of Medicine
- Charles University in Prague
- Prague 128 53
- Czech Republic
| | - Andrea Charvatova
- Department of Biological and Biochemical Sciences
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| | - Barbora Jankovicova
- Department of Biological and Biochemical Sciences
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| | - Daniela Ripova
- National Institute of Mental Health
- Klecany 250 67
- Czech Republic
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| | - Marcela Slovakova
- Department of Biological and Biochemical Sciences
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| |
Collapse
|
20
|
Kasprzak A, Bystrzejewski M, Poplawska M. Sulfonated carbon-encapsulated iron nanoparticles as an efficient magnetic nanocatalyst for highly selective synthesis of benzimidazoles. Dalton Trans 2018; 47:6314-6322. [DOI: 10.1039/c8dt00677f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Various benzimidazoles were obtained by applying sulfonated carbon-encapsulated iron nanoparticles as the nanocatalyst.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | | | | |
Collapse
|
21
|
Botta L, Bizzarri BM, Crucianelli M, Saladino R. Advances in biotechnological synthetic applications of carbon nanostructured systems. J Mater Chem B 2017; 5:6490-6510. [PMID: 32264413 DOI: 10.1039/c7tb00764g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the last few years carbon nanostructures have been applied for the immobilization of enzymes and biomimetic organo-metallic species useful for biotechnological applications. The nature of the support and the method of immobilization are responsible for the stability, reactivity and selectivity of the system. In this review, we focus on the recent advances in the use of carbon nanostructures, carbon nanotubes, carbon nanorods, fullerene and graphene for the preparation of biocatalytic and biomimetic systems and for their application in the development of green chemical processes.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy.
| | | | | | | |
Collapse
|
22
|
Zwyssig A, Schneider EM, Zeltner M, Rebmann B, Zlateski V, Grass RN, Stark WJ. Protein Reduction and Dialysis-Free Work-Up through Phosphines Immobilized on a Magnetic Support: TCEP-Functionalized Carbon-Coated Cobalt Nanoparticles. Chemistry 2017; 23:8585-8589. [DOI: 10.1002/chem.201701162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Adrian Zwyssig
- D-CHAB, ICB; ETH Zurich; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Elia M. Schneider
- D-CHAB, ICB; ETH Zurich; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Martin Zeltner
- D-CHAB, ICB; ETH Zurich; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Balder Rebmann
- Faculty of Biology, and Centre for Biological Signalling Studies; University of Freiburg; Schaenzlestrasse 18 79104 Freiburg Germany
| | - Vladimir Zlateski
- D-CHAB, ICB; ETH Zurich; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Robert N. Grass
- D-CHAB, ICB; ETH Zurich; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Wendelin J. Stark
- D-CHAB, ICB; ETH Zurich; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
23
|
Schneider EM, Zeltner M, Zlateski V, Grass RN, Stark WJ. Click and release: fluoride cleavable linker for mild bioorthogonal separation. Chem Commun (Camb) 2016; 52:938-41. [PMID: 26584274 DOI: 10.1039/c5cc07692g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Herein, we present a water dispersable, magnetic nanoparticle supported "click and release" system. The cleavable linker has been synthesized by using a strain-promoted copper-free "click" reagent to establish the specific link and a fluoride cleavable silane moiety for mild cleavage. Small organic molecules, azide-bearing dyes and functionalized enzymes have been bound to the magnetic particle and released in a bioorthogonal way.
Collapse
Affiliation(s)
- Elia M Schneider
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
| | - Martin Zeltner
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
| | - Vladimir Zlateski
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
| | - Robert N Grass
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
| | - Wendelin J Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
| |
Collapse
|
24
|
Roth H, Schwaminger SP, Peng F, Berensmeier S. Immobilization of Cellulase on Magnetic Nanocarriers. ChemistryOpen 2016; 5:183-187. [PMID: 27957407 PMCID: PMC5130178 DOI: 10.1002/open.201600028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 12/26/2022] Open
Abstract
The constant increase in the number of sustainable products on the global markets demands new biotechnological processing strategies such as the purification and recovery of biocatalysts. Superparamagnetic iron oxide nanoparticles exhibit excellent recovery properties as carrier materials in enzyme catalysis. We present the simple and fast electrostatic assembly of cellulase (CEL) and low-priced silica-coated magnetic nanoparticles, which demonstrates stable enzyme bonding and excellent colloidal stability. The high CEL loading (0.43 g g-1), without leaching of biocatalyst and high recovery yields (75 %), could be sustained over ten magnetic recycling steps. The highlight of this study is the preservation of a high enzymatic activity and, therefore, the outstandingly high lifecycle stability.
Collapse
Affiliation(s)
- Hans‐Christian Roth
- Technical University of MunichBoltzmannstraße 1585748Garching bei MünchenGermany
| | | | - Fei Peng
- Technical University of MunichBoltzmannstraße 1585748Garching bei MünchenGermany
| | - Sonja Berensmeier
- Technical University of MunichBoltzmannstraße 1585748Garching bei MünchenGermany
| |
Collapse
|
25
|
Zhang Q, Zheng Z, Liu C, Liu C, Tan T. Biodiesel production using lipase immobilized on epoxychloropropane-modified Fe 3 O 4 sub-microspheres. Colloids Surf B Biointerfaces 2016; 140:446-451. [DOI: 10.1016/j.colsurfb.2016.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/14/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
|
26
|
Chen R, Huang X, Xu H, Xiong Y, Li Y. Plasmonic Enzyme-Linked Immunosorbent Assay Using Nanospherical Brushes as a Catalase Container for Colorimetric Detection of Ultralow Concentrations of Listeria monocytogenes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:28632-9. [PMID: 26646325 DOI: 10.1021/acsami.5b10181] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plasmonic enzyme-linked immunosorbent assay (pELISA) based on catalase (CAT)-mediated gold nanoparticle growth exhibits ultrahigh sensitivity for detecting disease-related biomarkers using sandwich formats. However, the limit of detection (LOD) of this strategy for Listeria monocytogenes is only around 10(3) CFU/mL, which considerably exceeds the amount of L. monocytogenes commonly present in food products (<100 CFU/g). Herein, we report an improved pELISA method for detection of L. monocytogenes at ultralow concentrations with the sandwich formats using silica nanoparticles carrying poly(acrylic acid) brushes as a "CAT container" to increase enzyme loading for enhancing the detection signal. Under optimal conditions, the proposed pELISA exhibits good specificity and excellent sensitivity for L. monocytogenes with a LOD of 8 × 10(1) CFU/mL in 0.01 M phosphate-buffered saline, via a reaction that can be discriminated by the naked eye. The LOD obtained by this method was 2 and 5 orders of magnitude lower than that of conventional CAT-based pELISA and horseradish peroxidase (HRP)-based conventional ELISA, respectively. Coupled with large-volume immunomagnetic separation, the LOD for L. monocytogenes-spiked lettuce samples reached 8 × 10(1) CFU/g. The improved pELISA also exhibited a great potential in detecting a single cell of L. monocytogenes in 100 μL of solution.
Collapse
Affiliation(s)
- Rui Chen
- College of Life Science, Nanchang University , Nanchang 330031, P. R. China
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Yonghua Xiong
- College of Life Science, Nanchang University , Nanchang 330031, P. R. China
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas , Fayetteville, Arkansas 72701, United States
| |
Collapse
|
27
|
Hofer CJ, Zlateski V, Stoessel PR, Paunescu D, Schneider EM, Grass RN, Zeltner M, Stark WJ. Stable dispersions of azide functionalized ferromagnetic metal nanoparticles. Chem Commun (Camb) 2015; 51:1826-9. [DOI: 10.1039/c4cc06126h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stable dispersions of azide functionalized ferromagnetic metal nanoparticles were synthesized by covalent attachment of a block-copolymer to the nanoparticles surface via SI-ATRP and subsequent post-modification.
Collapse
Affiliation(s)
- C. J. Hofer
- Institute for Chemical and Bioengineering at the Swiss Federal Institute of Technology Zurich
- CH-8093 Zurich
- Switzerland
| | - V. Zlateski
- Institute for Chemical and Bioengineering at the Swiss Federal Institute of Technology Zurich
- CH-8093 Zurich
- Switzerland
| | - P. R. Stoessel
- Institute for Chemical and Bioengineering at the Swiss Federal Institute of Technology Zurich
- CH-8093 Zurich
- Switzerland
| | - D. Paunescu
- Institute for Chemical and Bioengineering at the Swiss Federal Institute of Technology Zurich
- CH-8093 Zurich
- Switzerland
| | - E. M. Schneider
- Institute for Chemical and Bioengineering at the Swiss Federal Institute of Technology Zurich
- CH-8093 Zurich
- Switzerland
| | - R. N. Grass
- Institute for Chemical and Bioengineering at the Swiss Federal Institute of Technology Zurich
- CH-8093 Zurich
- Switzerland
| | - M. Zeltner
- Institute for Chemical and Bioengineering at the Swiss Federal Institute of Technology Zurich
- CH-8093 Zurich
- Switzerland
| | - W. J. Stark
- Institute for Chemical and Bioengineering at the Swiss Federal Institute of Technology Zurich
- CH-8093 Zurich
- Switzerland
| |
Collapse
|