1
|
Adesina A, Skouta R. Diversity-Orientated Synthesis and Biological Properties of Compounds Based on the N-Phenylquinoneimine Scaffold. Molecules 2024; 29:249. [PMID: 38202832 PMCID: PMC10780808 DOI: 10.3390/molecules29010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The N-phenylquinoneimine scaffold is a versatile synthetic platform that has gained significant attention in the field of drug discovery due to its structural diversity and capacity to interact with biologically relevant targets. This review explores established synthetic methodologies and highlights the significant biological activities exhibited by compounds derived from this scaffold, their implications for medicinal chemistry, and the development of novel therapeutics.
Collapse
Affiliation(s)
- Adebimpe Adesina
- Department of Chemistry, Federal University of Agriculture, Abeokuta 111101, Nigeria;
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Wijesundara YH, Herbert FC, Kumari S, Howlett T, Koirala S, Trashi O, Trashi I, Al-Kharji NM, Gassensmith JJ. Rip it, stitch it, click it: A Chemist's guide to VLP manipulation. Virology 2022; 577:105-123. [PMID: 36343470 DOI: 10.1016/j.virol.2022.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Viruses are some of nature's most ubiquitous self-assembled molecular containers. Evolutionary pressures have created some incredibly robust, thermally, and enzymatically resistant carriers to transport delicate genetic information safely. Virus-like particles (VLPs) are human-engineered non-infectious systems that inherit the parent virus' ability to self-assemble under controlled conditions while being non-infectious. VLPs and plant-based viral nanoparticles are becoming increasingly popular in medicine as their self-assembly properties are exploitable for applications ranging from diagnostic tools to targeted drug delivery. Understanding the basic structure and principles underlying the assembly of higher-order structures has allowed researchers to disassemble (rip it), reassemble (stitch it), and functionalize (click it) these systems on demand. This review focuses on the current toolbox of strategies developed to manipulate these systems by ripping, stitching, and clicking to create new technologies in the biomedical space.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Thomas Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Shailendra Koirala
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Noora M Al-Kharji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA; Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA.
| |
Collapse
|
3
|
Pei X, Luo Z, Qiao L, Xiao Q, Zhang P, Wang A, Sheldon RA. Putting precision and elegance in enzyme immobilisation with bio-orthogonal chemistry. Chem Soc Rev 2022; 51:7281-7304. [PMID: 35920313 DOI: 10.1039/d1cs01004b] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The covalent immobilisation of enzymes generally involves the use of highly reactive crosslinkers, such as glutaraldehyde, to couple enzyme molecules to each other or to carriers through, for example, the free amino groups of lysine residues, on the enzyme surface. Unfortunately, such methods suffer from a lack of precision. Random formation of covalent linkages with reactive functional groups in the enzyme leads to disruption of the three dimensional structure and accompanying activity losses. This review focuses on recent advances in the use of bio-orthogonal chemistry in conjunction with rec-DNA to affect highly precise immobilisation of enzymes. In this way, cost-effective combination of production, purification and immobilisation of an enzyme is achieved, in a single unit operation with a high degree of precision. Various bio-orthogonal techniques for putting this precision and elegance into enzyme immobilisation are elaborated. These include, for example, fusing (grafting) peptide or protein tags to the target enzyme that enable its immobilisation in cell lysate or incorporating non-standard amino acids that enable the application of bio-orthogonal chemistry.
Collapse
Affiliation(s)
- Xiaolin Pei
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Zhiyuan Luo
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Li Qiao
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Qinjie Xiao
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Pengfei Zhang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Anming Wang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050, Johannesburg, South Africa. .,Department of Biotechnology, Section BOC, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
4
|
Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials. Polymers (Basel) 2022; 14:polym14061221. [PMID: 35335551 PMCID: PMC8956086 DOI: 10.3390/polym14061221] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is an important branch of science in therapies known as “nanomedicine” and is the junction of various fields such as material science, chemistry, biology, physics, and optics. Nanomaterials are in the range between 1 and 100 nm in size and provide a large surface area to volume ratio; thus, they can be used for various diseases, including cardiovascular diseases, cancer, bacterial infections, and diabetes. Nanoparticles play a crucial role in therapy as they can enhance the accumulation and release of pharmacological agents, improve targeted delivery and ultimately decrease the intensity of drug side effects. In this review, we discussthe types of nanomaterials that have various biomedical applications. Biomolecules that are often conjugated with nanoparticles are proteins, peptides, DNA, and lipids, which can enhance biocompatibility, stability, and solubility. In this review, we focus on bioconjugation and nanoparticles and also discuss different types of nanoparticles including micelles, liposomes, carbon nanotubes, nanospheres, dendrimers, quantum dots, and metallic nanoparticles and their crucial role in various diseases and clinical applications. Additionally, we review the use of nanomaterials for bio-imaging, drug delivery, biosensing tissue engineering, medical devices, and immunoassays. Understandingthe characteristics and properties of nanoparticles and their interactions with the biological system can help us to develop novel strategies for the treatment, prevention, and diagnosis of many diseases including cancer, pulmonary diseases, etc. In this present review, the importance of various kinds of nanoparticles and their biomedical applications are discussed in much detail.
Collapse
|
5
|
Ramsey AV, Bischoff AJ, Francis MB. Enzyme Activated Gold Nanoparticles for Versatile Site-Selective Bioconjugation. J Am Chem Soc 2021; 143:7342-7350. [PMID: 33939917 DOI: 10.1021/jacs.0c11678] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new enzymatic method is reported for constructing protein- and DNA-AuNP conjugates. The strategy relies on the initial functionalization of AuNPs with phenols, followed by activation with the enzyme tyrosinase. Using an oxidative coupling reaction, the activated phenols are coupled to proteins bearing proline, thiol, or aniline functional groups. Activated phenol-AuNPs are also conjugated to a small molecule biotin and commercially available thiol-DNA. Advantages of this approach for AuNP bioconjugation include: (1) initial formation of highly stable AuNPs that can be selectively activated with an enzyme, (2) the ability to conjugate either proteins or DNA through a diverse set of functional handles, (3) site-specific immobilization, and (4) facile conjugation that is complete within 2 h at room temperature under aqueous conditions. The enzymatic oxidative coupling on AuNPs is applied to the construction of tobacco mosaic virus (TMV)-AuNP conjugates, and energy transfer between the AuNPs and fluorophores on TMV is demonstrated.
Collapse
Affiliation(s)
- Alexandra V Ramsey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Amanda J Bischoff
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Bensana A, Achi F. Analytical performance of functional nanostructured biointerfaces for sensing phenolic compounds. Colloids Surf B Biointerfaces 2020; 196:111344. [PMID: 32877829 DOI: 10.1016/j.colsurfb.2020.111344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
Electrochemical biointerfaces are constructed with a wide range of nanomaterials and conducting polymers that strongly affect the analytical performance of biosensors. The analysis of progress toward electrochemical sensing platforms offers opportunities to provide devices for commercial use. The investigation of different methods for the synthesis of phenol biointerfaces leads to design challenges in the field of monitoring phenolic compounds. This paper review the innovative strategies and feature techniques in the construction of phenolic compound biosensors. The focus was made on the preparation methods of nanostructures and nanomaterials design for catalytic improvements of sensing interfaces. The paper also provides a comprehensive overview in the field of enzyme immobilization approaches at solid supports and technical formation of polymer nanocomposites, as well as applications of hybrid organic-inorganic nanocomposites in phenolic biosensors. This review also highlights the recent progress in the electrochemical detection of phenolic compounds and summarizes analytical performance parameters including sensitivity, storage stability, limit of detection, linear range, and Michaelis-Menten kinetic analysis. It also emphasizes advances from the past decade including technical challenges for the construction of suitable biointerfaces for monitoring phenolic compounds.
Collapse
Affiliation(s)
- Amira Bensana
- Departement of Process Engineering, Laboratoire de Génie des Procédés Chimiques (LGPC), Faculty of Technology, Ferhat Abbas University Sétif-1-, Setif, 19000, Algeria
| | - Fethi Achi
- Laboratory of Valorisation and Promotion of Saharian Ressources (VPSR), Kasdi Merbah University, Ouargla, 30000, Algeria.
| |
Collapse
|
7
|
Maza JC, Bader DLV, Xiao L, Marmelstein AM, Brauer DD, ElSohly AM, Smith MJ, Krska SW, Parish CA, Francis MB. Enzymatic Modification of N-Terminal Proline Residues Using Phenol Derivatives. J Am Chem Soc 2019; 141:3885-3892. [DOI: 10.1021/jacs.8b10845] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Johnathan C. Maza
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Daniel L. V. Bader
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lifeng Xiao
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alan M. Marmelstein
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Daniel D. Brauer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Adel M. ElSohly
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew J. Smith
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Shane W. Krska
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Craig A. Parish
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Hartman EC, Lobba MJ, Favor AH, Robinson SA, Francis MB, Tullman-Ercek D. Experimental Evaluation of Coevolution in a Self-Assembling Particle. Biochemistry 2018; 58:1527-1538. [DOI: 10.1021/acs.biochem.8b00948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Emily C. Hartman
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Marco J. Lobba
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Andrew H. Favor
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Stephanie A. Robinson
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
| |
Collapse
|
9
|
Lee W, Kasanmascheff M, Huynh M, Quartararo A, Costentin C, Bejenke I, Nocera DG, Bennati M, Tommos C, Stubbe J. Properties of Site-Specifically Incorporated 3-Aminotyrosine in Proteins To Study Redox-Active Tyrosines: Escherichia coli Ribonucleotide Reductase as a Paradigm. Biochemistry 2018; 57:3402-3415. [PMID: 29630358 DOI: 10.1021/acs.biochem.8b00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Aminotyrosine (NH2Y) has been a useful probe to study the role of redox active tyrosines in enzymes. This report describes properties of NH2Y of key importance for its application in mechanistic studies. By combining the tRNA/NH2Y-RS suppression technology with a model protein tailored for amino acid redox studies (α3X, X = NH2Y), the formal reduction potential of NH2Y32(O•/OH) ( E°' = 395 ± 7 mV at pH 7.08 ± 0.05) could be determined using protein film voltammetry. We find that the Δ E°' between NH2Y32(O•/OH) and Y32(O•/OH) when measured under reversible conditions is ∼300-400 mV larger than earlier estimates based on irreversible voltammograms obtained on aqueous NH2Y and Y. We have also generated D6-NH2Y731-α2 of ribonucleotide reductase (RNR), which when incubated with β2/CDP/ATP generates the D6-NH2Y731•-α2/β2 complex. By multifrequency electron paramagnetic resonance (35, 94, and 263 GHz) and 34 GHz 1H ENDOR spectroscopies, we determined the hyperfine coupling (hfc) constants of the amino protons that establish RNH2• planarity and thus minimal perturbation of the reduction potential by the protein environment. The amount of Y in the isolated NH2Y-RNR incorporated by infidelity of the tRNA/NH2Y-RS pair was determined by a generally useful LC-MS method. This information is essential to the utility of this NH2Y probe to study any protein of interest and is employed to address our previously reported activity associated with NH2Y-substituted RNRs.
Collapse
Affiliation(s)
| | - Müge Kasanmascheff
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Michael Huynh
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States
| | | | - Cyrille Costentin
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States.,Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS No 7591 , Université Paris Diderot, Sorbonne Paris Cité , Bâtiment Lavoisier, 15 rue Jean de Baïf , 75205 Paris Cedex 13 , France
| | - Isabel Bejenke
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Cecilia Tommos
- Department of Biochemistry and Biophysics , University of Pennsylvania Perelman School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | | |
Collapse
|
10
|
Furst AL, Smith MJ, Francis MB. Direct Electrochemical Bioconjugation on Metal Surfaces. J Am Chem Soc 2017; 139:12610-12616. [DOI: 10.1021/jacs.7b06385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ariel L. Furst
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Matthew J. Smith
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
- Materials
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| |
Collapse
|
11
|
Palla KS, Hurlburt TJ, Buyanin AM, Somorjai GA, Francis MB. Site-Selective Oxidative Coupling Reactions for the Attachment of Enzymes to Glass Surfaces through DNA-Directed Immobilization. J Am Chem Soc 2017; 139:1967-1974. [DOI: 10.1021/jacs.6b11716] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kanwal S. Palla
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States,
| | - Tyler J. Hurlburt
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States,
- Chemical
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States, and
| | - Alexander M. Buyanin
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States,
- Materials
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| | - Gabor A. Somorjai
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States,
- Chemical
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States, and
- Materials
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States,
- Materials
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| |
Collapse
|
12
|
Chandrasekar S, Sekar G. An efficient synthesis of iminoquinones by a chemoselective domino ortho-hydroxylation/oxidation/imidation sequence of 2-aminoaryl ketones. Org Biomol Chem 2016; 14:3053-60. [PMID: 26891598 DOI: 10.1039/c5ob02659h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient chemoselective domino oxidative homocoupling of 2-aminoaryl ketones in the presence of 2-iodoxybenzoic acid (IBX) for the synthesis of iminoquinone has been developed. The domino reaction proceeds via three consecutive steps, such as domino ortho-hydroxylation of 2-aminoaryl ketones, oxidation of a phenol derivative to benzoquinone and dimerization through imine formation to yield iminoquinone. Importantly, this reaction allows the recycling of the oxidant IBX by recovering the by-product iodosobenzoic acid (IBA) and oxidizing it back to IBX. A four step domino strategy for the synthesis of iminoquinone through in situ generation of 2-amino benzophenone from (2-amino phenyl)(phenyl)methanol was also developed.
Collapse
Affiliation(s)
- Selvaraj Chandrasekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India.
| | | |
Collapse
|
13
|
Chen Z, Li N, Li S, Dharmarwardana M, Schlimme A, Gassensmith JJ. Viral chemistry: the chemical functionalization of viral architectures to create new technology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:512-34. [DOI: 10.1002/wnan.1379] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/31/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Zhuo Chen
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Na Li
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Shaobo Li
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | | | - Anna Schlimme
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Jeremiah J Gassensmith
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| |
Collapse
|
14
|
Paterson S, de la Rica R. Solution-based nanosensors for in-field detection with the naked eye. Analyst 2015; 140:3308-17. [DOI: 10.1039/c4an02297a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomaterials are revolutionising analytical applications with low-cost tests that enable detecting a target molecule in a few steps and with the naked eye.
Collapse
Affiliation(s)
- S. Paterson
- Centre for Molecular Nanometrology
- WestCHEM
- Pure and Applied Chemistry
- University of Strathclyde
- Glasgow G1 1XL
| | - R. de la Rica
- Centre for Molecular Nanometrology
- WestCHEM
- Pure and Applied Chemistry
- University of Strathclyde
- Glasgow G1 1XL
| |
Collapse
|
15
|
Darsih C, Prachyawarakorn V, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P. Cytotoxic metabolites from the endophytic fungus Penicillium chermesinum: discovery of a cysteine-targeted Michael acceptor as a pharmacophore for fragment-based drug discovery, bioconjugation and click reactions. RSC Adv 2015. [DOI: 10.1039/c5ra13735g] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A novel tetracyclic polyketide uniquely spiro-attached with a γ-lactone ring and a potent cytotoxic agent possessing a thiol-reactive pharmacophore were isolated from the mangrove endophytic fungus Penicillium chermesinum.
Collapse
Affiliation(s)
- Cici Darsih
- Chulabhorn Graduate Institute
- Chemical Biology Program
- Bangkok 10210
- Thailand
| | | | - Suthep Wiyakrutta
- Department of Microbiology
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Chulabhorn Mahidol
- Chulabhorn Graduate Institute
- Chemical Biology Program
- Bangkok 10210
- Thailand
- Chulabhorn Research Institute
| | - Somsak Ruchirawat
- Chulabhorn Graduate Institute
- Chemical Biology Program
- Bangkok 10210
- Thailand
- Chulabhorn Research Institute
| | - Prasat Kittakoop
- Chulabhorn Graduate Institute
- Chemical Biology Program
- Bangkok 10210
- Thailand
- Chulabhorn Research Institute
| |
Collapse
|