1
|
de Roode KE, Joosten L, Behe M. Towards the Magic Radioactive Bullet: Improving Targeted Radionuclide Therapy by Reducing the Renal Retention of Radioligands. Pharmaceuticals (Basel) 2024; 17:256. [PMID: 38399470 PMCID: PMC10892921 DOI: 10.3390/ph17020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Targeted radionuclide therapy (TRT) is an emerging field and has the potential to become a major pillar in effective cancer treatment. Several pharmaceuticals are already in routine use for treating cancer, and there is still a high potential for new compounds for this application. But, a major issue for many radiolabeled low-to-moderate-molecular-weight molecules is their clearance via the kidneys and their subsequent reuptake. High renal accumulation of radioactive compounds may lead to nephrotoxicity, and therefore, the kidneys are often the dose-limiting organs in TRT with these radioligands. Over the years, different strategies have been developed aiming for reduced kidney retention and enhanced therapeutic efficacy of radioligands. In this review, we will give an overview of the efforts and achievements of the used strategies, with focus on the therapeutic potential of low-to-moderate-molecular-weight molecules. Among the strategies discussed here is coadministration of compounds that compete for binding to the endocytic receptors in the proximal tubuli. In addition, the influence of altering the molecular design of radiolabeled ligands on pharmacokinetics is discussed, which includes changes in their physicochemical properties and implementation of cleavable linkers or albumin-binding moieties. Furthermore, we discuss the influence of chelator and radionuclide choice on reabsorption of radioligands by the kidneys.
Collapse
Affiliation(s)
- Kim E. de Roode
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
2
|
Trachsel B, Valpreda G, Lutz A, Schibli R, Mu L, Béhé M. Reducing kidney uptake of radiolabelled exendin-4 using variants of the renally cleavable linker MVK. EJNMMI Radiopharm Chem 2023; 8:21. [PMID: 37665477 PMCID: PMC10477158 DOI: 10.1186/s41181-023-00206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Peptidic radiotracers are preferentially excreted through the kidneys, which often results in high persistent renal retention of radioactivity, limiting or even preventing therapeutic clinical translation of these radiotracers. Exendin-4, which targets the glucagon-like-peptide 1 receptor (GLP-1R) overexpressed in insulinomas and in congenital hyperinsulinism, is an example thereof. The use of the tripeptide MVK, which is readily cleaved between methionine and valine by neprilysin at the renal brush border membrane, already showed promising results in reducing kidney uptake as reported in the literature. Based on our previous findings we were interested how linker variants with multiple copies of the MV-motive influence renal washout of radiolabelled exendin-4. RESULTS Three exendin-4 derivatives, carrying either one MVK, a MV-MVK or a MVK-MVK linker were synthesized and compared to a reference compound lacking a cleavable linker. In vivo results of a biodistribution in GLP-1R overexpressing tumour bearing mice at 24 h post-injection demonstrated a significant reduction (at least 57%) of renal retention of all 111In-labeled exendin-4 compounds equipped with a cleavable linker compared to the reference compound. While the insertion of the single linker MVK led to a reduction in kidney uptake of 70%, the dual approach with the linker MV-MVK slightly, but not significantly enhanced this effect, with 77% reduction in kidney uptake compared to the reference. In vitro IC50 and cell uptake studies were conducted and demonstrated that though the cleavable linkers negatively influenced the affinity towards the GLP-1R, cell uptake remained largely unaffected, except for the MV-MVK cleavable linker conjugate, which displayed lower cell uptake than the other compounds. Importantly, the tumour uptake in the biodistribution study was not significantly affected with 2.9, 2.5, 3.2 and 1.5% iA/g for radiolabelled Ex4, MVK-Ex4, MV-MVK-Ex4 and MVK-MVK-Ex4, respectively. CONCLUSION Cleavable linkers are highly efficient in reducing the radioactivity burden in the kidney. Though the dual linker approach using the instillation of MV-MVK or MVK-MVK between exendin-4 and the radiometal chelator did not significantly outperform the single cleavable linker MVK, further structural optimization or the combination of different cleavable linkers could be a stepping stone in reducing radiation-induced nephrotoxicity.
Collapse
Affiliation(s)
- Belinda Trachsel
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giulia Valpreda
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Alexandra Lutz
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland.
| |
Collapse
|
3
|
Wilbs J, Raavé R, Boswinkel M, Glendorf T, Rodríguez D, Fernandes EF, Heskamp S, Bjørnsdottir I, Gustafsson MBF. New Long-Acting [ 89Zr]Zr-DFO GLP-1 PET Tracers with Increased Molar Activity and Reduced Kidney Accumulation. J Med Chem 2023; 66:7772-7784. [PMID: 36995126 PMCID: PMC10292199 DOI: 10.1021/acs.jmedchem.2c02073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 03/31/2023]
Abstract
Positron emission tomography (PET) imaging is used in drug development to noninvasively measure biodistribution and receptor occupancy. Ideally, PET tracers retain target binding and biodistribution properties of the investigated drug. Previously, we developed a zirconium-89 PET tracer based on a long-circulating glucagon-like peptide 1 receptor agonist (GLP-1RA) using desferrioxamine (DFO) as a chelator. Here, we aimed to develop an improved zirconium-89-labeled GLP-1RA with increased molar activity to increase the uptake in low receptor density tissues, such as brain. Furthermore, we aimed at reducing tracer accumulation in the kidneys. Introducing up to four additional Zr-DFOs resulted in higher molar activity and stability, while retaining potency. Branched placement of DFOs was especially beneficial. Tracers with either two or four DFOs had similar biodistribution as the tracer with one DFO in vivo, albeit increased kidney and liver uptake. Reduced kidney accumulation was achieved by introducing an enzymatically cleavable Met-Val-Lys (MVK) linker motif between the chelator and the peptide.
Collapse
Affiliation(s)
- Jonas Wilbs
- Global
Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - René Raavé
- Department
of Medical Imaging−Nuclear Medicine, Radboudumc, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Milou Boswinkel
- Department
of Medical Imaging−Nuclear Medicine, Radboudumc, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Tine Glendorf
- Global
Drug Discovery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - David Rodríguez
- Digital
Science and Innovation, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | - Sandra Heskamp
- Department
of Medical Imaging−Nuclear Medicine, Radboudumc, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
4
|
Synthesis and evaluation of a para-carboxylated benzyl-DOTA for labeling peptides and polypeptides. Nucl Med Biol 2022; 114-115:18-28. [PMID: 36088873 DOI: 10.1016/j.nucmedbio.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Radiolabeled peptides and low-molecular-weight (LMW) polypeptides show high and persistent radioactivity levels in the kidney. To develop a DOTA-based bifunctional chelating agent that provides a radiometabolite with a rapid elimination rate from the kidney, a para-carboxyl Bn-DOTA (p-COOH-Bn-DOTA) was designed, synthesized, and evaluated. METHODS A precursor compound, p-COOH-Bn-DOTA(tBu)4, was synthesized in 9 steps using N-Boc-p-iodo-L-phenylalanine as the starting material. A synthetic somatostatin analog (TOC) was used as a representative peptide metabolized in the renal lysosomes. p-COOH-Bn-DOTA-conjugated TOC (DOTA-Bn-TOC) was synthesized by the conventional solid-phase peptide synthesis using p-COOH-Bn-DOTA(tBu)4. DOTA-tris(tBu ester) was also conjugated with TOC to prepare DOTATOC. 111In-labeling of the peptides was conducted under similar conditions. The radiochemical conversions, stability against apo-transferrin (apoTf), and in vivo behaviors were compared. RESULTS [111In]In-DOTA-Bn-TOC was obtained with higher radiochemical conversions than [111In]In-DOTATOC. Both 111In-labeled TOC derivatives remained stable against apoTf. In biodistribution studies, [111In]In-DOTA-Bn-TOC exhibited higher initial uptake in the kidney, followed by a faster elimination rate of radioactivity into the urine than [111In]In-DOTATOC. The metabolic studies showed that the shorter residence time of the radiometabolite from [111In]In-DOTA-Bn-TOC was responsible for the renal radioactivity decline. CONCLUSION p-COOH-Bn-DOTA provides stable 111In-labeled peptides in high yields at low peptide concentrations. p-COOH-Bn-DOTA also provides a radiometabolite with a short residence time in the kidney. Such characteristics would render p-COOH-Bn-DOTA useful to the future application to radiolabeled LMW polypeptides with low renal radioactivity levels.
Collapse
|
5
|
Dual MVK cleavable linkers effectively reduce renal retention of 111In-fibronectin-binding peptides. Bioorg Med Chem 2022; 73:117040. [DOI: 10.1016/j.bmc.2022.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
|
6
|
Suzuki H, Kise S, Kaizuka Y, Watanabe R, Sugawa T, Furukawa T, Fujii H, Uehara T. Copper-64-Labeled Antibody Fragments for Immuno-PET/Radioimmunotherapy with Low Renal Radioactivity Levels and Amplified Tumor-Kidney Ratios. ACS OMEGA 2021; 6:21556-21562. [PMID: 34471758 PMCID: PMC8388099 DOI: 10.1021/acsomega.1c02516] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 06/01/2023]
Abstract
Copper-64 (64Cu)-labeled antibody fragments such as Fab are useful for molecular imaging (immuno-PET) and radioimmunotherapy. However, these fragments cause high and persistent localization of radioactivity in the kidneys after injection. To solve this problem, this study assessed the applicability of a molecular design to 64Cu, which reduces renal radioactivity levels by liberating a urinary excretory radiometabolite from antibody fragments at the renal brush border membrane (BBM). Since 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) forms a stable complex with Cu, NOTA-conjugated Met-Val-Lys-maleimide (NOTA-MVK-Mal), which is a radio-gallium labeling agent for antibody fragments, was evaluated for applicability to 64Cu. The MVK linkage was recognized by the BBM enzymes to liberate [64Cu]Cu-NOTA-Met although the recognition of the MVK sequence for the [64Cu]Cu-NOTA-MVK derivative was reduced compared with that of its [67Ga]Ga-counterpart, probably due to the difference in the charge of the metal-NOTA complexes. When injected into mice, [64Cu]Cu-NOTA-MVK-Fab resulted in similar renal radioactivity levels to the 67Ga-labeled counterpart. In addition, [64Cu]Cu-NOTA-MVK-Fab resulted in lower renal radioactivity levels than those from 64Cu-labeled Fab using a conventional method, without a reduction in the tumor radioactivity levels. These findings indicate that our approach to reducing renal radioactivity levels by liberating a radiolabeled compound from antibody fragments at the renal BBM for urinary excretion is applicable to 64Cu-labeled antibody fragments and useful for immuno-PET and radioimmunotherapy.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Laboratory
of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8675 Japan
| | - Shota Kise
- Laboratory
of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8675 Japan
| | - Yuta Kaizuka
- Laboratory
of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8675 Japan
| | - Reo Watanabe
- Laboratory
of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8675 Japan
| | - Tsubasa Sugawa
- Laboratory
of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8675 Japan
| | - Takako Furukawa
- Nagoya
University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Hirofumi Fujii
- Division
of Functional Imaging, Exploratory Oncology Research and Clinical
Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Tomoya Uehara
- Laboratory
of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8675 Japan
| |
Collapse
|
7
|
Arano Y. Renal brush border strategy: A developing procedure to reduce renal radioactivity levels of radiolabeled polypeptides. Nucl Med Biol 2021; 92:149-155. [PMID: 32169305 DOI: 10.1016/j.nucmedbio.2020.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/22/2022]
Abstract
The high and persistent radioactivity levels in the kidney constitute a long-unsettled problem of radiolabeled peptides and low molecular weight (LMW) polypeptides, especially when they are labeled with metallic radionuclides. To address the issue, we proposed an approach to liberate a radiometabolite of urinary excretion from covalently conjugated antibody Fab fragments, used as a representative LMW polypeptide, by the action of enzymes present on the brush border membrane of renal tubules. In this review, The history of our approach, starting from radioiodine to metallic radionuclides such as 188Re, 99mTc, 67/68Ga, and 111In, will be briefly described. The future perspective of this approach will also be described.
Collapse
Affiliation(s)
- Yasushi Arano
- Chiba University, 260-8675, Graduate School of Pharmaceutical Sciences, 1-8-1 Inohana, Chuo-ku, Chiba, Japan.
| |
Collapse
|
8
|
Uehara T, Kanazawa N, Suzuki C, Mizuno Y, Suzuki H, Hanaoka H, Arano Y. Renal Handling of 99mTc-Labeled Antibody Fab Fragments with a Linkage Cleavable by Enzymes on Brush Border Membrane. Bioconjug Chem 2020; 31:2618-2627. [DOI: 10.1021/acs.bioconjchem.0c00541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Naoki Kanazawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Chie Suzuki
- Preeminent Medical Photonics, Education & Research Center, Hamamatsu University, School of Medicine, 1-20-1, Higashi-ku, Hamamtsu, Shizuoka 431-3192, Japan
| | - Yuki Mizuno
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hirofumi Hanaoka
- Department of Bioimaging Information Analysis, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Yasushi Arano
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
9
|
KARIYAWASAM K, GHATTAS W, DE LOS SANTOS YL, DOUCET N, GAILLARD S, RENAUD JL, AVENIER F, MAHY JP, RICOUX R. Artificial iron hydrogenase made by covalent grafting of Knölker's complex into xylanase: Application in asymmetric hydrogenation of an aryl ketone in water. Biotechnol Appl Biochem 2020; 67:563-573. [PMID: 32134142 PMCID: PMC7483719 DOI: 10.1002/bab.1906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
Abstract
We report a new artificial hydrogenase made by covalent anchoring of the iron Knölker's complex to a xylanase S212C variant. This artificial metalloenzyme was found to be able to catalyze efficiently the transfer hydrogenation of the benchmark substrate trifluoroacetophenone by sodium formate in water, yielding the corresponding secondary alcohol as a racemic. The reaction proceeded more than threefold faster with the XlnS212CK biohybrid than with the Knölker's complex alone. In addition, efficient conversion of trifluoroacetophenone to its corresponding alcohol was reached within 60 H with XlnS212CK, whereas a ≈2.5-fold lower conversion was observed with Knölker's complex alone as catalyst. Moreover, the data were rationalized with a computational strategy suggesting the key factors of the selectivity. These results suggested that the Knölker's complex was most likely flexible and could experience free rotational reorientation within the active-site pocket of Xln A, allowing it to access the subsite pocket populated by trifluoroacetophenone.
Collapse
Affiliation(s)
- Kalani KARIYAWASAM
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405 Orsay cedex, France
| | - Wadih GHATTAS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405 Orsay cedex, France
| | - Yossef López DE LOS SANTOS
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Réseau International des Instituts Pasteur, 531 Boulevard des Prairies, Laval (Québec) H7V 1B7 Canada
| | - Nicolas DOUCET
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Réseau International des Instituts Pasteur, 531 Boulevard des Prairies, Laval (Québec) H7V 1B7 Canada
| | - Sylvain GAILLARD
- Université de Caen-Ecole Nationale Supérieure d’Ingénieurs de Caen Laboratoire de Chimie Moléculaire et Thioorganique - UMR CNRS 6507, 6 bd du Maréchal Juin,14050 Caen, France
| | - Jean-Luc RENAUD
- Université de Caen-Ecole Nationale Supérieure d’Ingénieurs de Caen Laboratoire de Chimie Moléculaire et Thioorganique - UMR CNRS 6507, 6 bd du Maréchal Juin,14050 Caen, France
| | - Frédéric AVENIER
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405 Orsay cedex, France
| | - Jean-Pierre MAHY
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405 Orsay cedex, France
| | - Rémy RICOUX
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405 Orsay cedex, France
| |
Collapse
|
10
|
Nakamura S, Matsuno A, Ueda M. Improvement of biodistribution profile of a radiogallium-labeled, αvβ6 integrin-targeting peptide probe by incorporation of negatively charged amino acids. Ann Nucl Med 2020; 34:575-582. [DOI: 10.1007/s12149-020-01483-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/01/2020] [Indexed: 11/24/2022]
|
11
|
Farahani AM, Maleki F, Sadeghzadeh N. The Influence of Different Spacers on Biological Profile of Peptide Radiopharmaceuticals for Diagnosis and Therapy of Human Cancers. Anticancer Agents Med Chem 2020; 20:402-416. [PMID: 31889492 DOI: 10.2174/1871520620666191231161227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cancer is the leading cause of death worldwide. Early detection can reduce the disadvantageous effects of diseases and the mortality in cancer. Nuclear medicine is a powerful tool that has the ability to diagnose malignancy without harming normal tissues. In recent years, radiolabeled peptides have been investigated as potent agents for cancer detection. Therefore, it is necessary to modify radiopeptides in order to achieve more effective agents. OBJECTIVE This review describes modifications in the structure of radioconjugates with spacers who have improved the specificity and sensitivity of the peptides that are used in oncologic diagnosis and therapy. METHODS To improve the biological activity, researchers have conjugated these peptide analogs to different spacers and bifunctional chelators. Many spacers of different kinds, such as hydrocarbon chain, amino acid sequence, and poly (ethyleneglycol) were introduced in order to modify the pharmacokinetic properties of these biomolecules. RESULTS Different spacers have been applied to develop radiolabeled peptides as potential tracers in nuclear medicine. Spacers with different charge and hydrophilicity affect the characteristics of peptide conjugate. For example, the complex with uncharged and hydrophobic spacers leads to increased liver uptake, while the composition with positively charged spacers results in high kidney retention. Therefore, the pharmacokinetics of radio complexes correlates to the structure and total charge of the conjugates. CONCLUSION Radio imaging technology has been successfully applied to detect a tumor in the earliest stage. For this purpose, the assessment of useful agents to diagnose the lesion is necessary. Developing peptide radiopharmaceuticals using spacers can improve in vitro and in vivo behavior of radiotracers leading to better noninvasive detection and monitoring of tumor growth.
Collapse
Affiliation(s)
- Arezou M Farahani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fariba Maleki
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran
| |
Collapse
|
12
|
Gallium-68: methodology and novel radiotracers for positron emission tomography (2012–2017). Pharm Pat Anal 2018; 7:193-227. [DOI: 10.4155/ppa-2018-0016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Commercial 68Ge/68Ga generators provide a means to produce positron emission tomography agents on site without use of a cyclotron. This development has led to a rapid growth of academic literature and patents ongallium-68 (68Ga). As 68Ga positron emission tomography agents usually involve a targeting moiety attached to a metal chelator, the development lends itself to the investigation of theragnostic applications; the 68Ga-based diagnostic is utilized to determine if the biological target is present and, if so, a therapeutic isotope (e.g., 177Lu, 225Ac) can be complexed with the same scaffold to generate a corresponding radiotherapeutic. This review considers patents issued between 2012 and 2017 that contain a 68Ga-labeled molecule indexed by Chemical Abstract Services (a division of the American Chemical Society).
Collapse
|
13
|
Suzuki C, Uehara T, Kanazawa N, Wada S, Suzuki H, Arano Y. Preferential Cleavage of a Tripeptide Linkage by Enzymes on Renal Brush Border Membrane To Reduce Renal Radioactivity Levels of Radiolabeled Antibody Fragments. J Med Chem 2018; 61:5257-5268. [DOI: 10.1021/acs.jmedchem.8b00198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chie Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba 260-8675, Japan
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba 260-8675, Japan
| | - Naoki Kanazawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba 260-8675, Japan
| | - Shota Wada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba 260-8675, Japan
| | - Hiroyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba 260-8675, Japan
| | - Yasushi Arano
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
14
|
Uehara T, Yokoyama M, Suzuki H, Hanaoka H, Arano Y. A Gallium-67/68–Labeled Antibody Fragment for Immuno-SPECT/PET Shows Low Renal Radioactivity Without Loss of Tumor Uptake. Clin Cancer Res 2018; 24:3309-3316. [DOI: 10.1158/1078-0432.ccr-18-0123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/05/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022]
|
15
|
Štirn Ž, Ručigaj A, Krajnc M. Innovative approach using aminomaleimide for unlocking phenolic diversity in high-performance maleimidobenzoxazine resins. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Spang P, Herrmann C, Roesch F. Bifunctional Gallium-68 Chelators: Past, Present, and Future. Semin Nucl Med 2016; 46:373-94. [DOI: 10.1053/j.semnuclmed.2016.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Dhara S, Gunjal VB, Handore KL, Srinivasa Reddy D. Solution-Phase Synthesis of the Macrocyclic Core of Teixobactin. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600778] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Santu Dhara
- Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
| | - Vidya B. Gunjal
- Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
- Academy of Scientific and Innovative Research (AcSIR); 110025 New Delhi India
| | - Kishor L. Handore
- Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
- Academy of Scientific and Innovative Research (AcSIR); 110025 New Delhi India
| | - D. Srinivasa Reddy
- Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
- Academy of Scientific and Innovative Research (AcSIR); 110025 New Delhi India
| |
Collapse
|
18
|
Abstract
Positron emission tomography (PET) is a powerful noninvasive imaging technique able to measure distinct biological processes in vivo by administration of a radiolabeled probe. Whole-body measurements track the probe accumulation providing a means to measure biological changes such as metabolism, cell location, or tumor burden. PET can also be applied to both preclinical and clinical studies providing three-dimensional information. For immunotherapies (in particular understanding T cell responses), PET can be utilized for spatial and longitudinal tracking of T lymphocytes. Although PET has been utilized clinically for over 30 years, the recent development of additional PET radiotracers have dramatically expanded the use of PET to detect endogenous or adoptively transferred T cells in vivo. Novel probes have identified changes in T cell quantity, location, and function. This has enabled investigators to track T cells outside of the circulation and in hematopoietic organs such as spleen, lymph nodes, and bone marrow, or within tumors. In this review, we cover advances in PET detection of the antitumor T cell response and areas of focus for future studies.
Collapse
|
19
|
Jodal A, Pape F, Becker-Pauly C, Maas O, Schibli R, Béhé M. Evaluation of ¹¹¹in-labelled exendin-4 derivatives containing different meprin β-specific cleavable linkers. PLoS One 2015; 10:e0123443. [PMID: 25855967 PMCID: PMC4391719 DOI: 10.1371/journal.pone.0123443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cleavable linkers, which are specifically cleaved by defined conditions or enzymes, are powerful tools that can be used for various purposes. Amongst other things, they have been successfully used to deliver toxic payloads as prodrugs into target tissues. In this work novel linker sequences targeting meprin β, a metalloprotease expressed in the kidney brush-border membrane, were designed and included in the sequence of three radiolabelled exendin-4 derivatives. As radiolabelled exendin-4 derivatives strongly accumulate in the kidneys, we hypothesised that specific cleavage of the radiolabelled moiety at the kidney brush-border membrane would allow easier excretion of the activity into the urine and therefore improve the pharmacological properties of the peptide. RESULTS The insertion of a cleavable linker did not negatively influence the in vitro properties of the peptides. They showed a good affinity to the GLP-1 receptor expressed in CHL cells, a high internalisation and sufficiently high stability in fresh human blood plasma. In vitro digestion with recombinant meprin β rapidly metabolised the corresponding linker sequences. After 60 min the majority of the corresponding peptides were digested and at the same time the anticipated fragments were formed. The peptides were also quickly metabolised in CD1 nu/nu mouse kidney homogenates. Immunofluorescence staining of meprin β in kidney sections confirmed the expression of the protease in the kidney brush-border membrane. Biodistribution in GLP-1 receptor positive tumour-xenograft bearing mice revealed high specific uptake of the 111In-labelled tracers in receptor positive tissue. Accumulation in the kidneys, however, was still high and comparable to the lead compound 111In-Ex4NOD40. CONCLUSION In conclusion, we show that the concept of cleavable linkers specific for meprin β is feasible, as the peptides are rapidly cleaved by the enzyme while retaining their biological properties.
Collapse
Affiliation(s)
- Andreas Jodal
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Fabienne Pape
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Ole Maas
- Department of Radiology and Nuclear Medicine, Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- * E-mail:
| |
Collapse
|