1
|
Sternstein C, Böhm TM, Fink J, Meyr J, Lüdemann M, Krug M, Kriukov K, Gurdap CO, Sezgin E, Ebert R, Seibel J. Development of an Effective Functional Lipid Anchor for Membranes (FLAME) for the Bioorthogonal Modification of the Lipid Bilayer of Mesenchymal Stromal Cells. Bioconjug Chem 2023; 34:1221-1233. [PMID: 37328799 DOI: 10.1021/acs.bioconjchem.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The glycosylation of cellular membranes is crucial for the survival and communication of cells. As our target is the engineering of the glycocalyx, we designed a functionalized lipid anchor for the introduction into cellular membranes called Functional Lipid Anchor for MEmbranes (FLAME). Since cholesterol incorporates very effectively into membranes, we developed a twice cholesterol-substituted anchor in a total synthesis by applying protecting group chemistry. We labeled the compound with a fluorescent dye, which allows cell visualization. FLAME was successfully incorporated in the membranes of living human mesenchymal stromal cells (hMSC), acting as a temporary, nontoxic marker. The availability of an azido function─a bioorthogonal reacting group within the compound─enables the convenient coupling of alkyne-functionalized molecules, such as fluorophores or saccharides. After the incorporation of FLAME into the plasma membrane of living hMSC, we were able to successfully couple our molecule with an alkyne-tagged fluorophore via click reaction. This suggests that FLAME is useful for the modification of the membrane surface. Coupling FLAME with a galactosamine derivative yielded FLAME-GalNAc, which was incorporated into U2OS cells as well as in giant unilamellar vesicles (GUVs) and cell-derived giant plasma membrane vesicles (GPMVs). With this, we have shown that FLAME-GalNAc is a useful tool for studying the partitioning in the liquid-ordered (Lo) and the liquid-disordered (Ld) phases. The molecular tool can also be used to analyze the diffusion behavior in the model and the cell membranes by fluorescence correlation spectroscopy (FCS).
Collapse
Affiliation(s)
- Christine Sternstein
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa-Maria Böhm
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jessica Meyr
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Lüdemann
- Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Würzburg, Brettreichstr. 11, 97074 Würzburg, Germany
| | - Melanie Krug
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Kirill Kriukov
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Cenk O Gurdap
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
2
|
Jiang Z, Liu Y, Shi R, Feng X, Xu W, Zhuang X, Ding J, Chen X. Versatile Polymer-Initiating Biomineralization for Tumor Blockade Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110094. [PMID: 35202501 DOI: 10.1002/adma.202110094] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Tumor blockade therapy is a promising penetration-independent antitumor modality, which effectively inhibits the exchange of nutrients, oxygen, and information between the tumor and surrounding microenvironments. However, the current blockade therapy strategies have limited antitumor efficacy due to defects of inadequate tumor obstruction, possible side effects, and short duration. For these reasons, a facilely synthesized versatile polymer 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-alendronate (DSPE-PEG-ALN, DPA) is developed to initiate the formation of biomineral shell around osteosarcoma as a potent physical barrier. The DSPE moiety shares a similar chemical structure with the cytomembrane, allowing the membrane insertion of DPA. The bisphosphonic acid groups in ALN attract ions to realize biomineralization around cells. After injection in the invasive osteosarcoma tissue, DPA inserts into the cytomembrane, induces continuous mineral deposition, and ultimately builds a physical barrier around the tumor. Meanwhile, ALN in DPA alleviates bone destruction by suppressing the activity of osteoclasts. Through hindering the exchange of necessary substances, the biomineralization coating inhibits the growth of primary osteosarcoma and pulmonary metastasis simultaneously. Therefore, the multifunctional polymer-initiating blockade therapy provides a promising modality for tumor inhibition in clinics with high efficacy and negligible side effects.
Collapse
Affiliation(s)
- Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Yang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, P. R. China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- School of Life Science and Technology, South Campus, Changchun University of Science and Technology, 7168 Weixing Street, Changchun, 130022, P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
3
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
4
|
Sayed SM, Jia HR, Jiang YW, Zhu YX, Ma L, Yin F, Hussain I, Khan A, Ma Q, Wu FG, Lu X. Photostable AIE probes for wash-free, ultrafast, and high-quality plasma membrane staining. J Mater Chem B 2021; 9:4303-4308. [PMID: 33908594 DOI: 10.1039/d1tb00049g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasma membrane (PM), a fundamental building component of a cell, is responsible for a variety of cell functions and biological processes. However, it is still challenging to acquire its morphology and morphological variation information via an effective approach. Herein, we report a PM imaging study regarding an aggregation-induced emission luminogen (AIEgen) called tetraphenylethylene-naphthalimide+ (TPE-NIM+), which is derived from our previously reported tetraphenylethylene-naphthalimide (TPE-NIM). The designed AIEgen (TPE-NIM+) shows significant characteristics of ultrafast staining, high photostability, wash-free property, and long retention time at the PM, which can structurally be correlated with its positively charged quaternary amine and hydrophobic moiety. TPE-NIM+ is further applied for staining of different cell lines, proving its universal PM imaging capability. Most importantly, we demonstrate that TPE-NIM+ can clearly delineate the contours of densely packed living cells with high cytocompatibility. Therefore, TPE-NIM+ as a PM imaging reagent superior to currently available commercial PM dyes shall find a number of applications in the biological/biomedical fields and even beyond.
Collapse
Affiliation(s)
- Sayed Mir Sayed
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Liang Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Feifei Yin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Imtiaz Hussain
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Arshad Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Qian Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| |
Collapse
|
5
|
Liu C, Gao X, Yuan J, Zhang R. Advances in the development of fluorescence probes for cell plasma membrane imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Jiang W, Zhang Z, Wang Q, Dou J, Zhao Y, Ma Y, Liu H, Xu H, Wang Y. Tumor Reoxygenation and Blood Perfusion Enhanced Photodynamic Therapy using Ultrathin Graphdiyne Oxide Nanosheets. NANO LETTERS 2019; 19:4060-4067. [PMID: 31136712 DOI: 10.1021/acs.nanolett.9b01458] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both diffusion-limited and perfusion-limited hypoxia are associated with tumor progression, metastasis, and the resistance to therapeutic modalities. A strategy that can efficiently overcome both types of hypoxia to enhance the efficacy of cancer treatment has not been reported yet. Here, it is shown that by using biomimetic ultrathin graphdiyne oxide (GDYO) nanosheets, both types of hypoxia can be simultaneously addressed toward an ideal photodynamic therapy (PDT). The GDYO nanosheets, which are oxidized and exfoliated from graphdiyne (GDY), are able to efficiently catalyze water oxidation to release O2 and generate singlet oxygen (1O2) using near-infrared irradiation. Meanwhile, GDYO nanosheets also exhibit excellent light-to-heat conversion performance with a photothermal conversion efficiency of 60.8%. Thus, after the GDYO nanosheets are coated with iRGD peptide-modified red blood membrane (i-RBM) to achieve tumor targeting, the biomimetic GDYO@i-RBM nanosheets can simultaneously enhance tumor reoxygenation and blood perfusion for PDT. This study provides new insights into utilizing novel water-splitting materials to relieve both diffusion- and perfusion-limited hypoxia for the development of a novel therapeutic platform.
Collapse
Affiliation(s)
- Wei Jiang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Zhen Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Qin Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Jiaxiang Dou
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Yangyang Zhao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Yinchu Ma
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Huarong Liu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Hangxun Xu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yucai Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory , Guangzhou , Guangdong 510005 , China
| |
Collapse
|
7
|
Nagai H, Hatanaka W, Matsuda M, Kishimura A, Katayama Y, Mori T. Folate receptor-specific cell-cell adhesion by using a folate-modified peptide-based anchor. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:983-993. [PMID: 31064276 DOI: 10.1080/09205063.2019.1616975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report here a folate-modified membrane anchor for cell surface modification to induce cell adhesion to target cells. The membrane anchor region, which was consisted of cationic lysine residues and palmitoyl group-modified residues, was modified with folate through an oligoethlene glycol linker. The peptide anchor was modified on to the cell membrane by using β-cyclodextrin as a solubilizer of the peptide anchor. After modification, the peptide anchor disappeared from the cell membrane via endocytotic uptake or dissociation from the cell membrane. However, the endocytosed peptide was represented on the cell surface via recycling endosome pathway. The obtained folate-modified cells successfully adhered on to target cells which expressed folate receptor α via ligand-receptor specific interaction and adhesion continued at least 4 hours.
Collapse
Affiliation(s)
- Hiroko Nagai
- a Graduate School of Systems Life Sciences, Kyushu University , Fukuoka , Japan
| | - Wataru Hatanaka
- b Department of Applied Chemistry , Faculty of Engineering, Kyushu University , Fukuoka , Japan
| | - Masayoshi Matsuda
- a Graduate School of Systems Life Sciences, Kyushu University , Fukuoka , Japan
| | - Akihiro Kishimura
- a Graduate School of Systems Life Sciences, Kyushu University , Fukuoka , Japan.,b Department of Applied Chemistry , Faculty of Engineering, Kyushu University , Fukuoka , Japan.,c Center for Future Chemistry , Kyushu University , Fukuoka , Japan.,d International Research Center for Molecular Systems , Kyushu University , Fukuoka , Japan
| | - Yoshiki Katayama
- a Graduate School of Systems Life Sciences, Kyushu University , Fukuoka , Japan.,b Department of Applied Chemistry , Faculty of Engineering, Kyushu University , Fukuoka , Japan.,c Center for Future Chemistry , Kyushu University , Fukuoka , Japan.,d International Research Center for Molecular Systems , Kyushu University , Fukuoka , Japan.,e Department of Biomedical Engineering , Chung Yuan Christian University , Chung Li , ROC , Taiwan
| | - Takeshi Mori
- a Graduate School of Systems Life Sciences, Kyushu University , Fukuoka , Japan.,b Department of Applied Chemistry , Faculty of Engineering, Kyushu University , Fukuoka , Japan.,c Center for Future Chemistry , Kyushu University , Fukuoka , Japan
| |
Collapse
|
8
|
Zhang W, Mao S, He Z, Wu Z, Lin JM. In Situ Monitoring of Fluid Shear Stress Enhanced Adherence of Bacteria to Cancer Cells on Microfluidic Chip. Anal Chem 2019; 91:5973-5979. [PMID: 30950599 DOI: 10.1021/acs.analchem.9b00394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanosensing mechanisms for surface recognition by bacteria play an important role in inflammation and phagocytosis. Here, we describe a set of DNA probes for revealing microbe adherence to cancer cells under fluid shear stress. DNA probes modified with a biotin group, an azido group, and hexadecanoic acid were indiscriminately anchored to the cell surface, acting as indicators for the membrane proteins, cell-surface carbohydrate, and phospholipids. When cancer cells were exposed to bacteria in fluid, enhanced accumulation of membrane proteins was indicated by the strong fluorescence aggregation, meanwhile the weakened accumulation of cell-surface carbohydrate and phospholipids indication was indicated by attenuated fluorescence. Further research demonstrates that this mechanosensing strategy was applicable to different bacterial-cancer cell interactions. This study not only uncovered new cellular mechanotransduction mechanisms, but also provided a versatile method that enabled in situ and dynamic indication of cancer cell responses to mechanical stimuli.
Collapse
Affiliation(s)
- Wanling Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Ziyi He
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Zengnan Wu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
9
|
Hatanaka W, Takeuchi H, Koga M, Ryujin TA, Kishimura A, Katayama Y, Tsukiji S, Mori T. Synthesis of Transmembrane Molecules by Click Chemistry. CHEM LETT 2019. [DOI: 10.1246/cl.190009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wataru Hatanaka
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroki Takeuchi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Minaho Koga
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Taka-aki Ryujin
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, 32023 ROC, Taiwan
| | - Shinya Tsukiji
- Frontier Research Institute for Materials Science (FRIMS), Department of Life Science and Applied Chemistry, Department of Nanopharmaceutical Sciences Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Jia HR, Zhu YX, Xu KF, Pan GY, Liu X, Qiao Y, Wu FG. Efficient cell surface labelling of live zebrafish embryos: wash-free fluorescence imaging for cellular dynamics tracking and nanotoxicity evaluation. Chem Sci 2019; 10:4062-4068. [PMID: 31015947 PMCID: PMC6461115 DOI: 10.1039/c8sc04884c] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/23/2019] [Indexed: 12/18/2022] Open
Abstract
Imaging the dynamics and behaviors of plasma membranes is at the leading edge of life science research. We report here the development of a universal red-fluorescent probe Chol-PEG-Cy5 for wash-free plasma membrane labelling both in vitro and in vivo. In aqueous solutions, the fluorescence of Chol-PEG-Cy5 is significantly quenched due to the intermolecular resonance energy transfer (RET) between neighbouring Cy5 moieties; however, upon membrane anchoring, the probes undergo lateral diffusion in lipid bilayers, resulting in weakened RET and turn-on fluorescence emission. We demonstrate that Chol-PEG-Cy5 enables rapid, stable and high-quality in vitro cell surface imaging in a variety of mammalian cells. Additionally, with the assistance of three-dimensional (3D) image reconstruction, we achieve for the first time the whole-mount in situ fluorescence imaging of the epidermal cell surfaces of live zebrafish embryos, which cannot be realized by conventional plasma membrane probes due to the presence of the surface-covering mucus barrier. This novel technique encourages us to track the cellular dynamics of the epidermis during embryonic development with 3D visualization. Moreover, we also develop a new method to evaluate the epidermal toxicity of nanomaterials (e.g., gold nanoparticles and graphene oxide nanosheets) toward zebrafish embryos using this fluorescent probe.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| | - Guang-Yu Pan
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| | - Ying Qiao
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| |
Collapse
|
11
|
Liu H, Jiang W, Wang Q, Hang L, Wang Y, Wang Y. ROS-sensitive biomimetic nanocarriers modulate tumor hypoxia for synergistic photodynamic chemotherapy. Biomater Sci 2019; 7:3706-3716. [DOI: 10.1039/c9bm00634f] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biomimetic NPs@i-RBM have the potential to overcome hypoxia-limited PDT, and significantly improve the anticancer efficacy by synergistic PDT and hypoxia-activated chemotherapy.
Collapse
Affiliation(s)
- Hang Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Wei Jiang
- Division of Molecular Medicine
- Hefei National Laboratory for Physical Sciences at Microscale
- CAS Key Laboratory of Innate Immunity and Chronic Disease
- School of Life Sciences
- University of Science and Technology of China
| | - Qin Wang
- Division of Molecular Medicine
- Hefei National Laboratory for Physical Sciences at Microscale
- CAS Key Laboratory of Innate Immunity and Chronic Disease
- School of Life Sciences
- University of Science and Technology of China
| | - Lifeng Hang
- Division of Molecular Medicine
- Hefei National Laboratory for Physical Sciences at Microscale
- CAS Key Laboratory of Innate Immunity and Chronic Disease
- School of Life Sciences
- University of Science and Technology of China
| | - Yucai Wang
- Division of Molecular Medicine
- Hefei National Laboratory for Physical Sciences at Microscale
- CAS Key Laboratory of Innate Immunity and Chronic Disease
- School of Life Sciences
- University of Science and Technology of China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
12
|
Design and synthesis of PEGylated amphiphilic block oligomers as membrane anchors for stable binding to lipid bilayer membranes. Polym J 2018. [DOI: 10.1038/s41428-018-0055-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Nobori T, Tosaka K, Kawamura A, Joichi T, Kamino K, Kishimura A, Baba E, Mori T, Katayama Y. Alkaline Phosphatase-Catalyzed Amplification of a Fluorescence Signal for Flow Cytometry. Anal Chem 2017; 90:1059-1062. [DOI: 10.1021/acs.analchem.7b03893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Takanobu Nobori
- Department
of Applied Chemistry, Faculty of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenta Tosaka
- Graduate
School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akira Kawamura
- Graduate
School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Taisei Joichi
- Graduate
School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenta Kamino
- Graduate
School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akihiro Kishimura
- Department
of Applied Chemistry, Faculty of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Graduate
School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International
Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Eishi Baba
- Department
of Comprehensive Clinical Oncology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Mori
- Department
of Applied Chemistry, Faculty of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Graduate
School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshiki Katayama
- Department
of Applied Chemistry, Faculty of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Graduate
School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International
Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center
for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department
of Biomedical Engineering, Chung Yuan Christian University, 200 Chung
Pei Road, Chung Li, 32023 ROC, Taiwan
| |
Collapse
|
14
|
Capicciotti CJ, Zong C, Sheikh MO, Sun T, Wells L, Boons GJ. Cell-Surface Glyco-Engineering by Exogenous Enzymatic Transfer Using a Bifunctional CMP-Neu5Ac Derivative. J Am Chem Soc 2017; 139:13342-13348. [PMID: 28858492 PMCID: PMC5705004 DOI: 10.1021/jacs.7b05358] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell-surface engineering strategies that permit long-lived display of well-defined, functionally active molecules are highly attractive for eliciting desired cellular responses and for understanding biological processes. Current methodologies for the exogenous introduction of synthetic biomolecules often result in short-lived presentations, or require genetic manipulation to facilitate membrane attachment. Herein, we report a cell-surface engineering strategy that is based on the use of a CMP-Neu5Ac derivative that is modified at C-5 by a bifunctional entity composed of a complex synthetic heparan sulfate (HS) oligosaccharide and biotin. It is shown that recombinant ST6GAL1 can readily transfer the modified sialic acid to N-glycans of glycoprotein acceptors of living cells resulting in long-lived display. The HS oligosaccharide is functionally active, can restore protein binding, and allows activation of cell signaling events of HS-deficient cells. The cell-surface engineering methodology can easily be adapted to any cell type and is highly amenable to a wide range of complex biomolecules.
Collapse
Affiliation(s)
- Chantelle J. Capicciotti
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - M. Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Tiantian Sun
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
15
|
Hatanaka W, Kawaguchi M, Sun X, Nagao Y, Ohshima H, Hashida M, Higuchi Y, Kishimura A, Katayama Y, Mori T. Use of Membrane Potential to Achieve Transmembrane Modification with an Artificial Receptor. Bioconjug Chem 2017; 28:296-301. [DOI: 10.1021/acs.bioconjchem.6b00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | | | - Hiroyuki Ohshima
- Faculty
of
Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8501, Japan
| | - Mitsuru Hashida
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yuriko Higuchi
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
16
|
Kobayashi S, Terai T, Yoshikawa Y, Ohkawa R, Ebihara M, Hayashi M, Takiguchi K, Nemoto N. In vitro selection of random peptides against artificial lipid bilayers: a potential tool to immobilize molecules on membranes. Chem Commun (Camb) 2017; 53:3458-3461. [DOI: 10.1039/c7cc00099e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first in vitro selection of binding peptides against artificial lipid membranes was performed using a cDNA display method.
Collapse
Affiliation(s)
- Shota Kobayashi
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Takuya Terai
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Yuki Yoshikawa
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Ryoya Ohkawa
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Mika Ebihara
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Masahito Hayashi
- Division of Biological Science
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Kingo Takiguchi
- Division of Biological Science
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Naoto Nemoto
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| |
Collapse
|
17
|
Chen X, Zhang X, Wang HY, Chen Z, Wu FG. Subcellular Fate of a Fluorescent Cholesterol-Poly(ethylene glycol) Conjugate: An Excellent Plasma Membrane Imaging Reagent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10126-10135. [PMID: 27597442 DOI: 10.1021/acs.langmuir.6b02288] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cholesterol-containing molecules or nanoparticles play a significant role in achieving favorable plasma membrane imaging and efficient cellular uptake of drugs by the excellent membrane anchoring capability of the cholesterol moiety. By linking cholesterol to a water-soluble component (such as poly(ethylene glycol), PEG), the resulting cholesterol-PEG conjugate can form micelles in aqueous solution through self-assembly, and such a micellar structure represents an important drug delivery vehicle in which hydrophobic drugs can be encapsulated. However, the understanding of the subcellular fate and cytotoxicity of cholesterol-PEG conjugates themselves remains elusive. Herein, by using cholesterol-PEG2000-fluorescein isothiocyanate (Chol-PEG-FITC) as a model system, we found that the Chol-PEG-FITC molecules could attach to the plasma membranes of mammalian cells within 10 min and such a firm membrane attachment could last at least 1 h, displaying excellent plasma membrane staining performance that surpassed that of commonly used commercial membrane dyes such as DiD and CellMask. Besides, we systematically studied the endocytosis pathway and intracellular distribution of Chol-PEG-FITC and found that the cell surface adsorption and endocytosis processes of Chol-PEG-FITC molecules were lipid-raft-dependent. After internalization, the Chol-PEG-FITC molecules gradually reached many organelles with membrane structures. At 5 h, they were mainly distributed in lysosomes and the Golgi apparatus, with some in the endoplasmic reticulum (ER) and very few in the mitochondrion. At 12 h, the Chol-PEG-FITC molecules mostly aggregated in the Golgi apparatus and ER close to the nucleus. Finally, we demonstrated that Chol-PEG-FITC was toxic to mammalian cells only at concentrations above 50 μM. In summary, Chol-PEG-FITC can be a promising plasma membrane imaging reagent to avoid the fast cellular internalization and quick membrane detachment problems faced by commercial membrane dyes. We believe that the investigation of the dynamic subcellular fate of Chol-PEG-FITC can provide important knowledge to facilitate the use of cholesterol-PEG conjugates in fields such as cell surface engineering and drug delivery.
Collapse
Affiliation(s)
- Xiaokai Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| | - Hong-Yin Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109 United States
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| |
Collapse
|
18
|
Ridgway Z, Picciano AL, Gosavi PM, Moroz YS, Angevine CE, Chavis AE, Reiner JE, Korendovych IV, Caputo GA. Functional characterization of a melittin analog containing a non-natural tryptophan analog. Biopolymers 2016; 104:384-394. [PMID: 25670241 DOI: 10.1002/bip.22624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/13/2015] [Accepted: 01/18/2015] [Indexed: 02/06/2023]
Abstract
Tryptophan (Trp) is a naturally occurring amino acid, which exhibits fluorescence emission properties that are dependent on the polarity of the local environment around the Trp side chain. However, this sensitivity also complicates interpretation of fluorescence emission data. A non-natural analogue of tryptophan, β-(1-azulenyl)-L-alanine, exhibits fluorescence insensitive to local solvent polarity and does not impact the structure or characteristics of several peptides examined. In this study, we investigated the effect of replacing Trp with β-(1-azulenyl)-L-alanine in the well-known bee-venom peptide melittin. This peptide provides a model framework for investigating the impact of replacing Trp with β-(1-azulenyl)-L-alanine in a functional peptide system that undergoes significant shifts in Trp fluorescence emission upon binding to lipid bilayers. Microbiological methods including assessment of the antimicrobial activity by minimal inhibitory concentration (MIC) assays and bacterial membrane permeability assays indicated little difference between the Trp and the β-(1-azulenyl)-L-alanine-substituted versions of melittin. Circular dichroism spectroscopy showed both that peptides adopted the expected α-helical structures when bound to phospholipid bilayers and electrophysiological analysis indicated that both created membrane disruptions leading to significant conductance increases across model membranes. Both peptides exhibited a marked protection of the respective fluorophores when bound to bilayers indicating a similar membrane-bound topology. As expected, while fluorescence quenching and CD indicate the peptides are stably bound to lipid vesicles, the peptide containing β-(1-azulenyl)-L-alanine exhibited no fluorescence emission shift upon binding while the natural Trp exhibited >10 nm shift in emission spectrum barycenter. Taken together, the β-(1-azulenyl)-L-alanine can serve as a solvent insensitive alternative to Trp that does not have significant impacts on structure or function of membrane interacting peptides.
Collapse
Affiliation(s)
- Zachary Ridgway
- Department of Chemistry and Biochemistry, Rowan University, Glassboro NJ 08028
| | - Angela L Picciano
- Department of Chemistry and Biochemistry, Rowan University, Glassboro NJ 08028
| | | | - Yurii S Moroz
- Department of Chemistry, Syracuse University, Syracuse NY 13244.,Present affiliation: ChemBioCenter, Kyiv National Taras Shevchenko University, 61 Chervonotkatska Street, Kyiv 02094, Ukraine
| | | | - Amy E Chavis
- Department of Physics, Virginia Commonwealth University, Richmond VA 23284
| | - Joseph E Reiner
- Department of Physics, Virginia Commonwealth University, Richmond VA 23284
| | | | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro NJ 08028.,School of Biomedical Sciences, Rowan University, Glassboro NJ, 08028
| |
Collapse
|
19
|
Jia HR, Wang HY, Yu ZW, Chen Z, Wu FG. Long-Time Plasma Membrane Imaging Based on a Two-Step Synergistic Cell Surface Modification Strategy. Bioconjug Chem 2016; 27:782-9. [PMID: 26829525 DOI: 10.1021/acs.bioconjchem.6b00003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Hong-Yin Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| |
Collapse
|
20
|
Moreno PMD, Santos JC, Gomes CP, Varela-Moreira A, Costa A, Leiro V, Mansur H, Pêgo AP. Delivery of Splice Switching Oligonucleotides by Amphiphilic Chitosan-Based Nanoparticles. Mol Pharm 2016; 13:344-56. [PMID: 26702499 DOI: 10.1021/acs.molpharmaceut.5b00538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Splice switching oligonucleotides (SSOs) are a class of single-stranded antisense oligonucleotides (ssONs) being used as gene therapeutics and demonstrating great therapeutic potential. The availability of biodegradable and biocompatible delivery vectors that could improve delivery efficiencies, reduce dosage, and, in parallel, reduce toxicity concerns could be advantageous for clinical translation. In this work we explored the use of quaternized amphiphilic chitosan-based vectors in nanocomplex formation and delivery of splice switching oligonucleotides (SSO) into cells, while providing insights regarding cellular uptake of such complexes. Results show that the chitosan amphiphilic character is important when dealing with SSOs, greatly improving colloidal stability under serum conditions, as analyzed by dynamic light scattering, and enhancing cellular association. Nanocomplexes were found to follow an endolysosomal route with a long lysosome residence time. Conjugation of a hydrophobic moiety, stearic acid, to quaternized chitosan was a necessary condition to achieve transfection, as an unmodified quaternary chitosan was completely ineffective. We thus demonstrate that amphiphilic quaternized chitosan is a biomaterial that holds promise and warrants further development as a platform for SSO delivery strategies.
Collapse
Affiliation(s)
- Pedro M D Moreno
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal
| | - Joyce C Santos
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal.,CeNano2I, Department of Metallurgical and Materials Engineering, UFMG, 31270-901 Belo Horizonte, Brazil
| | - Carla P Gomes
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal.,Faculdade de Engenharia da UPorto (FEUP), 4200-319 Porto, Portugal
| | - Aida Varela-Moreira
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal.,Faculdade de Medicina da UPorto (FMUP), 4200-319 Porto, Portugal
| | - Artur Costa
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal
| | - Victoria Leiro
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal
| | - Herman Mansur
- CeNano2I, Department of Metallurgical and Materials Engineering, UFMG, 31270-901 Belo Horizonte, Brazil
| | - Ana P Pêgo
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto (UPorto) , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde , UPorto, 4200-135 Porto, Portugal.,Faculdade de Engenharia da UPorto (FEUP), 4200-319 Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS) , UPorto, 4050-313 Porto, Portugal
| |
Collapse
|
21
|
Hu Y, Sun D, Ding J, Chen L, Chen X. Decorated reduced graphene oxide for photo-chemotherapy. J Mater Chem B 2016; 4:929-937. [PMID: 32263166 DOI: 10.1039/c5tb02359a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The biocompatibility and toxicity are still the key issues for graphene-based nanocarriers in the application of photothermal therapy. Herein, a novel surface modification strategy to prepare dextran decorated reduced graphene oxide (rGO) sheets has been presented. In this strategy, octadecanic acid is conjugated on dextran and used as a hydrophobic anchor to prepare dextran decorated rGO sheets. After being decorated by dextran, rGO sheets not only show excellent biocompatibility but also can load anticancer drugs for photo-chemotherapy. The data of Fourier transform infrared (FT-IR) analysis, Raman spectrum analysis, thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), the transmission electron microscopy (TEM) image and dynamic light scattering (DLS) measurements powerfully prove that the desired rGO compound with the ideal nano-size has been successfully prepared and is stable enough. To verify the photo-chemotherapy, an anticancer drug, doxorubicin (DOX), has been loaded into the decorated rGO sheets (rGO/DOX/C18D). Furthermore, to improve the intracellular uptake, folic acid (FA), as a common target molecule, has been introduced (rGO/DOX/C18DF). Compared with single chemotherapy, rGO/DOX/C18D and rGO/DOX/C18DF combining the local specific chemotherapy and external near-infrared (NIR) photo-thermal therapy show higher therapeutic efficacy, endowing the decorated rGO nanoparticle with great potential for cancer treatments.
Collapse
Affiliation(s)
- Yanfang Hu
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | | | | | | | | |
Collapse
|
22
|
Bosmans RPG, Hendriksen WE, Verheijden M, Eelkema R, Jonkheijm P, van Esch JH, Brunsveld L. Supramolecular Protein Immobilization on Lipid Bilayers. Chemistry 2015; 21:18466-73. [DOI: 10.1002/chem.201502461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 01/08/2023]
|
23
|
Wang HY, Jia HR, Lu X, Chen B, Zhou G, He N, Chen Z, Wu FG. Imaging plasma membranes without cellular internalization: multisite membrane anchoring reagents based on glycol chitosan derivatives. J Mater Chem B 2015; 3:6165-6173. [DOI: 10.1039/c5tb00930h] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Using a multisite membrane anchoring strategy, a new plasma membrane imaging reagent without cellular internalization was designed.
Collapse
Affiliation(s)
- Hong-Yin Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Bo Chen
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Gaoxin Zhou
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Nongyue He
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Zhan Chen
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|