1
|
Asadi M, Ghorbani SH, Mahdavian L, Aghamohammadi M. Graphene-based hybrid composites for cancer diagnostic and therapy. J Transl Med 2024; 22:611. [PMID: 38956651 PMCID: PMC11218089 DOI: 10.1186/s12967-024-05438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
The application of graphene-based nanocomposites for therapeutic and diagnostic reasons has advanced considerably in recent years due to advancements in the synthesis and design of graphene-based nanocomposites, giving rise to a new field of nano-cancer diagnosis and treatment. Nano-graphene is being utilized more often in the field of cancer therapy, where it is employed in conjunction with diagnostics and treatment to address the complex clinical obstacles and problems associated with this life-threatening illness. When compared to other nanomaterials, graphene derivatives stand out due to their remarkable structural, mechanical, electrical, optical, and thermal capabilities. The high specific surface area of these materials makes them useful as carriers in controlled release systems that respond to external stimuli; these compounds include drugs and biomolecules like nucleic acid sequences (DNA and RNA). Furthermore, the presence of distinctive sheet-like nanostructures and the capacity for photothermal conversion have rendered graphene-based nanocomposites highly favorable for optical therapeutic applications, including photothermal treatment (PTT), photodynamic therapy (PDT), and theranostics. This review highlights the current state and benefits of using graphene-based nanocomposites in cancer diagnosis and therapy and discusses the obstacles and prospects of their future development. Then we focus on graphene-based nanocomposites applications in cancer treatment, including smart drug delivery systems, PTT, and PDT. Lastly, the biocompatibility of graphene-based nanocomposites is also discussed to provide a unique overview of the topic.
Collapse
Affiliation(s)
- Mahnaz Asadi
- Department of Chemistry, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | | | - Leila Mahdavian
- Department of Chemistry, Doroud Branch, Islamic Azad University, Doroud, Iran.
| | | |
Collapse
|
2
|
Sun H, Li X, Liu Q, Sheng H, Zhu L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J Drug Target 2024; 32:672-706. [PMID: 38682299 DOI: 10.1080/1061186x.2024.2349124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Recent advances in the field of drug delivery have opened new avenues for the development of novel nanodrug delivery systems (NDDS) in cancer therapy. Self-assembled nanoparticles (SANPs) based on tumour microenvironment have great advantages in improving antitumor effect, and pH-responsive SANPs prepared by the combination of pH-responsive nanomaterials and self-assembly technology can effectively improve the efficacy and reduce the systemic toxicity of antitumor drugs. In this review, we describe the characteristics of self-assembly and its driving force, the mechanism of pH-responsive NDDS, and the nanomaterials for pH-responsive SANPs type. A series of pH-responsive SANPs for tumour-targeted drug delivery are discussed, with an emphasis on the relation between structural features and theranostic performance.
Collapse
Affiliation(s)
- Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Indla NR, Maruthi Y, Rawat R, Sandeep Kumar T, Ramesh Reddy N, Sharma M, Aminabhavi TM, Kakarla RR, Sainath AVS. Synthesis and biological properties of novel glucose-based fluoro segmented macromolecular architectures. Int J Biol Macromol 2024; 268:131724. [PMID: 38653427 DOI: 10.1016/j.ijbiomac.2024.131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The emergence of novel well-defined biological macromolecular architectures containing fluorine moieties displaying superior functionalities can satisfactorily address many biomedical challenges. In this research, ABA- and AB-type glucose-based biological macromolecules were synthesized using acryl-2,3,4,6-tetra-O-acetyl-D-glucopyranoside with pentafluorophenyl (FPM), pentafluorobenzyl (FBM), phenyl (PM) and benzyl (BM) methacrylate-based macro-RAFT agents following RAFT polymerization. The macro-RAFT agents and the corresponding copolymers were characterized by 19F, 1H, and 13C NMR and FTIR spectroscopic techniques to understand the chemical structure, molecular weight by size-exclusion chromatography, thermal analysis by TGA and DSC. Thermal stability (Td5%) of the FPM and FBM fluoro-based polymers was observed in the range of 219-267 °C, while the non-fluoro PM and BM polymers exhibited in the range of 216-264 °C. Among the macro-RAFT agents, PFPM (107 °C, ΔH: 0.613 J/g) and PPM (103 °C, ΔH: 0.455 J/g) showed higher Tm values, while among the block copolymers, PFBM-b-PG (123 °C, ΔH: 0.412 J/g) and PG-b-PFPM-b-PG (126 °C, ΔH: 0.525 J/g) exhibited higher Tm values. PFBMT and PPM macro-RAFT agents, PPM-b-PG and PG-b-PPM-b-PG copolymer spin-coated films showed the highest hydrophobicity (120°) among the synthesized polymers. The block copolymers exhibited self-assembled segregation by using relatively hydrophobic segments as the core and hydrophilic moieties as the corona. Synthesized biological macromolecules exhibit maximum antibacterial activity towards S. aureus than E. coli bacteria. Fluorophenyl (PFPM) and non-fluorobenzyl-based (PBMT) macro-RAFT agents exhibit low IC50 values, suggesting high cytotoxicity. All the triblock copolymers exhibit lesser cytotoxicity than the di-block polymers.
Collapse
Affiliation(s)
- Nagamalleswara Rao Indla
- Fluoro-Agrochemicals, Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yeggada Maruthi
- Fluoro-Agrochemicals, Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Reetika Rawat
- Banasthali Vidyapith, Department of Pharm, Banasthali 304022, Rajasthan, India
| | - T Sandeep Kumar
- Fluoro-Agrochemicals, Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - N Ramesh Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Manu Sharma
- Banasthali Vidyapith, Department of Pharm, Banasthali 304022, Rajasthan, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, Karnataka, India; Korea University, Seoul, Republic of Korea.
| | - Raghava Reddy Kakarla
- School Chemical Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Annadanam V Sesha Sainath
- Fluoro-Agrochemicals, Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Carobeli LR, Santos ABC, Martins LBM, Damke E, Consolaro MEL. Recent advances in photodynamic therapy combined with chemotherapy for cervical cancer: a systematic review. Expert Rev Anticancer Ther 2024; 24:263-282. [PMID: 38549400 DOI: 10.1080/14737140.2024.2337259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Despite the evidence that photodynamic therapy (PDT) associated with chemotherapy presents great potential to overcome the limitations of monotherapy, little is known about the current status of this combination against cervical cancer. This systematic review aimed to address the currently available advances in combining PDT and chemotherapy in different research models and clinical trials of cervical cancer. METHODS We conducted a systematic review based on PRISMA Statement and Open Science Framework review protocol using PubMed, Web of Science, Embase, Scopus, LILACS, and Cochrane databases. We selected original articles focusing on 'Uterine Cervical Neoplasms' and 'Photochemotherapy and Chemotherapy' published in the last 10 years. The risk of bias in the studies was assessed using the CONSORT and SYRCLE tools. RESULTS Twenty-three original articles were included, focusing on HeLa cells, derived from endocervical adenocarcinoma and on combinations of several chemotherapeutics. Most of the combinations used modern drug delivery systems for improved simultaneous delivery and presented promising results with increased cytotoxicity compared to monotherapy. CONCLUSION Despite the scarcity of animal studies and the absence of clinical studies, the combination of chemotherapy with PDT presents a potential option for cervical cancer therapy requiring additional studies. OSF REGISTRATION https://doi.org/10.17605/OSF.IO/WPHN5 [Figure: see text].
Collapse
Affiliation(s)
- Lucimara Rodrigues Carobeli
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
- Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| | - Ana Beatriz Camillo Santos
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
- Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Edilson Damke
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
- Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
5
|
Mai S, Inkielewicz-Stepniak I. Graphene Oxide Nanoparticles and Organoids: A Prospective Advanced Model for Pancreatic Cancer Research. Int J Mol Sci 2024; 25:1066. [PMID: 38256139 PMCID: PMC10817028 DOI: 10.3390/ijms25021066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pancreatic cancer, notorious for its grim 10% five-year survival rate, poses significant clinical challenges, largely due to late-stage diagnosis and limited therapeutic options. This review delves into the generation of organoids, including those derived from resected tissues, biopsies, pluripotent stem cells, and adult stem cells, as well as the advancements in 3D printing. It explores the complexities of the tumor microenvironment, emphasizing culture media, the integration of non-neoplastic cells, and angiogenesis. Additionally, the review examines the multifaceted properties of graphene oxide (GO), such as its mechanical, thermal, electrical, chemical, and optical attributes, and their implications in cancer diagnostics and therapeutics. GO's unique properties facilitate its interaction with tumors, allowing targeted drug delivery and enhanced imaging for early detection and treatment. The integration of GO with 3D cultured organoid systems, particularly in pancreatic cancer research, is critically analyzed, highlighting current limitations and future potential. This innovative approach has the promise to transform personalized medicine, improve drug screening efficiency, and aid biomarker discovery in this aggressive disease. Through this review, we offer a balanced perspective on the advancements and future prospects in pancreatic cancer research, harnessing the potential of organoids and GO.
Collapse
Affiliation(s)
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
6
|
Gatou MA, Vagena IA, Pippa N, Gazouli M, Pavlatou EA, Lagopati N. The Use of Crystalline Carbon-Based Nanomaterials (CBNs) in Various Biomedical Applications. CRYSTALS 2023; 13:1236. [DOI: 10.3390/cryst13081236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
This review study aims to present, in a condensed manner, the significance of the use of crystalline carbon-based nanomaterials in biomedical applications. Crystalline carbon-based nanomaterials, encompassing graphene, graphene oxide, reduced graphene oxide, carbon nanotubes, and graphene quantum dots, have emerged as promising materials for the development of medical devices in various biomedical applications. These materials possess inorganic semiconducting attributes combined with organic π-π stacking features, allowing them to efficiently interact with biomolecules and present enhanced light responses. By harnessing these unique properties, carbon-based nanomaterials offer promising opportunities for future advancements in biomedicine. Recent studies have focused on the development of these nanomaterials for targeted drug delivery, cancer treatment, and biosensors. The conjugation and modification of carbon-based nanomaterials have led to significant advancements in a plethora of therapies and have addressed limitations in preclinical biomedical applications. Furthermore, the wide-ranging therapeutic advantages of carbon nanotubes have been thoroughly examined in the context of biomedical applications.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Min SH, Lei W, Jun CJ, Yan ZS, Guang YX, Tong Z, Yong ZP, Hui LZ, Xing H. Design strategy and research progress of multifunctional nanoparticles in lung cancer therapy. Expert Opin Investig Drugs 2023; 32:723-739. [PMID: 37668152 DOI: 10.1080/13543784.2023.2254683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Lung cancer is one of the cancer types with the highest mortality rate, exploring a more effective treatment modality that improves therapeutic efficacy while mitigating side effects is now an urgent requirement. Designing multifunctional nanoparticles can be used to overcome the limitations of drugs and conventional drug delivery systems. Nanotechnology has been widely researched, and through different needs, suitable nanocarriers can be selected to load anti-cancer drugs to improve the therapeutic effect. It is foreseeable that with the rapid development of nanotechnology, more and more lung cancer patients will benefit from nanotechnology. This paper reviews the merits of various multifunctional nanoparticles in the treatment of lung cancer to provide novel ideas for lung cancer treatment. AREAS COVERED This review focuses on summarizing various nanoparticles for targeted lung cancer therapy and their advantages and disadvantages, using nanoparticles loaded with anti-cancer drugs, delivered to lung cancer sites, enhancing drug half-life, improving anti-cancer drug efficacy and reducing side effects. EXPERT OPINION The delivery mode of nanoparticles with superior pharmacokinetic properties in the in vivo circulation enhances the half-life of the drug, and provides tissue-targeted selectivity and the ability to overcome biological barriers, bringing a revolution in the field of oncology.
Collapse
Affiliation(s)
- Shen Hui Min
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Lei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Jia Jun
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang Shao Yan
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Xu Guang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang Tong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Pei Yong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Zhen Hui
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huang Xing
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Bargathulla I, Babu AA, Shanavas A, Vellaichamy E, Nasar AS. PEGylated bis-indolyl polyurethane dendrimers with anti-cancer activity as carriers for doxorubicin to treat lung cancer cells. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Effect of Poly(methacrylic acid) on the Cytokine Level in an In Vivo Tumor Model. Molecules 2022; 27:molecules27144572. [PMID: 35889444 PMCID: PMC9316288 DOI: 10.3390/molecules27144572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is a leading cause of mortality globally. Despite remarkable improvements in cancer-treatment approaches, disease recurrence and progression remain major obstacles to therapy. While chemotherapy is still a first-line treatment for a variety of cancers, the focus has shifted to the development and application of new approaches to therapy. Nevertheless, the relationship between immune response, neoplastic diseases and treatment efficiency is not fully understood. Therefore, the aim of the study was to investigate the immunopharmacological effects of methacrylic acid homopolymer in an in vivo tumor model. Materials and methods: Monomeric methacrylic acid was used to synthesize polymers. Methacrylic acid was polymerized in dioxane in the presence of 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid. To study the molecular weight characteristics of PMAA by GPC, carboxyl groups were preliminarily methylated with diazomethane. An experimental cancer model was obtained by grafting RMK1 breast cancer cells. The serum levels of IL-6, IL-10, IL-17, transforming growth factor β1 (TGF-β1), and tumor necrosis factor α (TNF-α) were measured by ELISA. Results: The effect of PMAA on the serum concentrations of several cytokines was studied upon its single administration to laboratory animals in early neoplastic process. The IL-6, IL-17 and TGF-β1 concentrations were found to change significantly and reach the level observed in intact rats. The IL-10 concentration tended to normalize. Conclusion: The positive results obtained are the basis for further studies on the effect of methacrylic-acid polymers with different molecular-weight characteristics on the neoplastic process.
Collapse
|
10
|
Khursheed R, Dua K, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR, Hansbro PM, Chellappan DK, Singh SK. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Pharmacotherapy 2022; 150:112951. [PMID: 35447546 DOI: 10.1016/j.biopha.2022.112951] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
The current advancements in nanotechnology are as an outcome of the development of engineered nanoparticles. Various metallic nanoparticles have been extensively explored for various biomedical applications. They attract lot of attention in biomedical field due to their significant inert nature, and nanoscale structures, with size similar to many biological molecules. Their intrinsic characteristics which include electronic, optical, physicochemical and, surface plasmon resonance, that can be changed by altering certain particle characteristics such as size, shape, environment, aspect ratio, ease of synthesis and functionalization properties have led to numerous applications in various fields of biomedicine. These include targeted drug delivery, sensing, photothermal and photodynamic therapy, imaging, as well as the modulation of two or three applications. The current article also discusses about the various properties of metallic nanoparticles and their applications in cancer imaging and therapeutics. The associated bottlenecks related to their clinical translation are also discussed.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | | | - Fayez Ghadeer Alanazi
- Lemon Pharmacies, Eastern region, Kingdom of Saudi Arabia, Hafr Al Batin 39957, Saudi Arabia
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
11
|
Lai WF, Obireddy SR, Zhang H, Zhang D, Wong WT. Advances in analysis of pharmaceuticals by using graphene-based sensors. ChemMedChem 2022; 17:e202200111. [PMID: 35618680 DOI: 10.1002/cmdc.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Indexed: 11/10/2022]
Abstract
Safe and effective use of drugs relies on proper pharmaceutical analysis. Graphene has been extensively used to construct sensors for this purpose. Over the years, a large variety of pharmaceutical sensors have been developed from graphene or its derivatives. This articles reviews the current status of sensor development from graphene and its derivatives, and discusses the use of graphene-based sensors in pharmaceutical analysis. It is hoped that this article cannot only offer a snapshot of recent advances in the fabrication and use of graphene-based sensors, but can also provide insights into future engineering and optimization of the sensors for effective pharmaceutical analysis.
Collapse
Affiliation(s)
- Wing-Fu Lai
- The Chinese University of Hong Kong, School of Life and Health Sciences, 518172, Shenzhen, CHINA
| | - Sreekanth Reddy Obireddy
- Sri Krishnadevaraya University, Chemistry, TIRUPATI NATIONAL HIGHWAY, ITUKALAPALLI, 515004, India, 515003, ANANTHAPURAMU, INDIA
| | - Haotian Zhang
- The Chinese University of Hong Kong, School of Life and Health Sciences, CHINA
| | | | - Wing-Tak Wong
- The Hong Kong Polytechnic University, Applied Biology and Chemical Technology, CHINA
| |
Collapse
|
12
|
Yousuf S, Siddique HR, Arjmand F, Tabassum S. Functionalized graphene oxide loaded GATPT as rationally designed vehicle for cancer-targeted drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Lopez RM, White JR, Truong L, Tanguay RL. Size- and Oxidation-Dependent Toxicity of Graphene Oxide Nanomaterials in Embryonic Zebrafish. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1050. [PMID: 35407167 PMCID: PMC9000472 DOI: 10.3390/nano12071050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/13/2022] [Accepted: 03/19/2022] [Indexed: 11/29/2022]
Abstract
Graphene oxides (GOs) are a popular graphene alternative. The goal of this study was to compare the biocompatibility of a diversity of well-characterized GOs. Our previous work advanced developmental zebrafish as a model to interrogate the interactions and biological responses following exposures to engineered nanomaterials (ENMs). Here, we investigated GO 250 nm × 250 nm (sGO), 400 nm × 400 nm (mGO), and 1 μm × 1 μm (lGO), partially reduced GO (prGO) 400 nm × 400 nm, and reduced GO (rGO) 400 nm × 400 nm and 2 μm × 2 μm, which first underwent extensive characterization under the support of the Nanomaterials Health Implications Research (NHIR) Consortium. GOs were stabilized in water (GOs), while prGO and rGOs were dispersed in sodium cholate. Zebrafish were statically exposed to up to 50 μg/mL of each material from 6 h post-fertilization (hpf) until 120 hpf. Toxicity was dependent on GO properties. mGO was the most toxic material; its effects manifested in the yolk syncytial layer (YSL). Additionally, sodium cholate stabilization significantly increased GO toxicity. The observed effects were size- and oxidation-state-dependent, revealing the importance of identifying the structure-specific toxicity of GOs.
Collapse
Affiliation(s)
| | | | | | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (R.M.L.); (J.R.W.); (L.T.)
| |
Collapse
|
14
|
Carrageenan‐based Hybrids with Biopolymers and Nano‐structured Materials for Biomimetic Applications. STARCH-STARKE 2022. [DOI: 10.1002/star.202200018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Ashrafizadeh M, Saebfar H, Gholami MH, Hushmandi K, Zabolian A, Bikarannejad P, Hashemi M, Daneshi S, Mirzaei S, Sharifi E, Kumar AP, Khan H, Heydari Sheikh Hossein H, Vosough M, Rabiee N, Thakur Kumar V, Makvandi P, Mishra YK, Tay FR, Wang Y, Zarrabi A, Orive G, Mostafavi E. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv 2022; 19:355-382. [PMID: 35152815 DOI: 10.1080/17425247.2022.2041598] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. AREAS COVERED The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer is discussed. The GO-mediated photothermal therapy and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. EXPERT OPINION Graphene oxide nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Apart from DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation in cancer cells, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Further development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. Doxorubicin-loaded GO nanoparticles have demonstrated theranostic potential for simultaneous diagnosis and therapy. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Alan Prem Kumar
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Vijay Thakur Kumar
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHUFundación Eduardo Anitua). Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Das S, Singh B, Fadikar P, Barman PD, Paira R. Application of recyclable base-washed graphene oxide for one-pot conversion of 2-aminopyridines into 5-iodo-imidazo[1,2-a]pyridines at room temperature in water. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
Burdanova MG, Kharlamova MV, Kramberger C, Nikitin MP. Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3020. [PMID: 34835783 PMCID: PMC8626004 DOI: 10.3390/nano11113020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
This review is dedicated to a comprehensive description of the latest achievements in the chemical functionalization routes and applications of carbon nanomaterials (CNMs), such as carbon nanotubes, graphene, and graphene nanoribbons. The review starts from the description of noncovalent and covalent exohedral modification approaches, as well as an endohedral functionalization method. After that, the methods to improve the functionalities of CNMs are highlighted. These methods include the functionalization for improving the hydrophilicity, biocompatibility, blood circulation time and tumor accumulation, and the cellular uptake and selectivity. The main part of this review includes the description of the applications of functionalized CNMs in bioimaging, drug delivery, and biosensors. Then, the toxicity studies of CNMs are highlighted. Finally, the further directions of the development of the field are presented.
Collapse
Affiliation(s)
- Maria G. Burdanova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
- Department of Physics, Moscow Region State University, Very Voloshinoy Street, 24, 141014 Mytishi, Russia
| | - Marianna V. Kharlamova
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/BC/2, 1060 Vienna, Austria
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria;
| | - Maxim P. Nikitin
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
| |
Collapse
|
18
|
Nanomaterial conjugated lignocellulosic waste: cost-effective production of sustainable bioenergy using enzymes. 3 Biotech 2021; 11:480. [PMID: 34790504 DOI: 10.1007/s13205-021-03002-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/26/2021] [Indexed: 01/28/2023] Open
Abstract
The demand for novel and renewable sources of energy has increased as a result of rapid population growth, limited sources of bioenergy, and environmental pollution, caused by excessive use of fossil fuels. The need to meet future energy demands have motivated researchers to search for alternative and sustainable sources of energy. The bioconversion of lignocellulosic waste (agricultural and food waste) into biofuels shows competitive promises. Lignocellulosic waste is easily accessible and has a large enzyme system that can be immobilised onto nano-matrices. Consequently, resulting in higher biofuel production and process efficiency. However, the excessive production cost of the current procedures, which involve physical, chemical, and enzymatic reactions, is limited. The use of nanomaterials has recently been shown to concentrate lignocellulosic waste, therefore, reviewing the quest for efficient production of sustainable and cost-effective development of bioenergy from lignocellulosic wastes. This review paper explores the advanced strategies of using nanobiotechnology to combine enzyme-conjugated nanosystems for the cost-effective production of sustainable bioenergy solutions. This research will help to develop an inexpensive, eco-friendly technology for biofuels production and also help overcome the environmental burden of lignocellulosic waste worldwide.
Collapse
|
19
|
Lu T, Wei L, Huang X, Li Y, Li G, Qin Q, Pan M, Tang B, Pan X, Wei M, Nong Z, Meng F, Li X. A potentially valuable nano graphene oxide/USPIO tumor diagnosis and treatment system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112293. [PMID: 34474844 DOI: 10.1016/j.msec.2021.112293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/13/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Due to increased requirements for precision cancer treatment, cancer chemotherapy and combination therapies have gradually developed in the direction of diagnosis and treatment integration. In this study, a non-toxic nano carrier that demonstrates integrated MRI signal enhancing performance, as well as better chemotherapy and photothermal conversion performance, was prepared and characterized. Furthermore, the carrier was used to construct an integrated system of tumor diagnosis and treatment. Our in vitro studies showed that this system has a considerable inhibition effect on tumor cells during the treatment of chemotherapy when combined with PTT, and in vivo studies showed that the system could improve the MRI signal of the tumor site with application of a safe dosage. Thus, this system based on NGO/USPIO has the potential to be a multi-functional nano drug delivery system integrating diagnosis and treatment benefits and applications that are worthy of further research.
Collapse
Affiliation(s)
- Taicheng Lu
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Liying Wei
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xiaoqing Huang
- Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Department of Experimental Pathology, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Yin Li
- Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Department of Experimental Pathology, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Guo Li
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Qixiao Qin
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Meishi Pan
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Bingling Tang
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Mei Wei
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Zhenzhen Nong
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Fayan Meng
- Frostburg State University, Chemistry Department, 101 Braddock Rd, Frostburg, MD 21532, USA.
| | - Xuehua Li
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| |
Collapse
|
20
|
Galactopolymer architectures/functionalized graphene oxide nanocomposites for antimicrobial applications. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Sadighian S, Bayat N, Najaflou S, Kermanian M, Hamidi M. Preparation of Graphene Oxide/Fe
3
O
4
Nanocomposite as a Potential Magnetic Nanocarrier and MRI Contrast Agent. ChemistrySelect 2021. [DOI: 10.1002/slct.202100195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Somayeh Sadighian
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
- Department of Pharmaceutical Biomaterials School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Nahid Bayat
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Sahar Najaflou
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Mehraneh Kermanian
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
- Department of Pharmaceutical Biomaterials School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| |
Collapse
|
22
|
Sajjadi M, Nasrollahzadeh M, Jaleh B, Soufi GJ, Iravani S. Carbon-based nanomaterials for targeted cancer nanotherapy: recent trends and future prospects. J Drug Target 2021; 29:716-741. [PMID: 33566719 DOI: 10.1080/1061186x.2021.1886301] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon-based nanomaterials are becoming attractive materials due to their unique structural dimensions and promising mechanical, electrical, thermal, optical and chemical characteristics. Carbon nanotubes, graphene, graphene oxide, carbon and graphene quantum dots have numerous applications in diverse areas, including biosensing, drug/gene delivery, tissue engineering, imaging, regenerative medicine, diagnosis, and cancer therapy. Cancer remains one of the major health problems all over the world, and several therapeutic approaches are focussed on designing targeted anticancer drug delivery nanosystems by applying benign and less hazardous resources with high biocompatibility, ease of functionalization, remarkable targeted therapy issues, and low adverse effects. This review highlights the recent development on these carbon based-nanomaterials in the field of targeted cancer therapy and discusses their possible and promising diagnostic and therapeutic applications for the treatment of cancers.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | | | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Tufano I, Vecchione R, Netti PA. Methods to Scale Down Graphene Oxide Size and Size Implication in Anti-cancer Applications. Front Bioeng Biotechnol 2020; 8:613280. [PMID: 33425877 PMCID: PMC7785890 DOI: 10.3389/fbioe.2020.613280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Despite considerable progress in the comprehension of the mechanisms involved in the origin and development of cancer, with improved diagnosis and treatment, this disease remains a major public health challenge with a considerable impact on the social and economic system, as well as on the individual. One way to improve effectiveness and reduce side effects is to consider responsive stimuli delivery systems that provide tailor-made release profiles with excellent spatial and temporal control. 2D nanomaterials possess special physicochemical properties (e.g., light, ultrasonic and magnetic responses) and biological behaviors such as endocytosis, biodistribution, biodegradation, and excretory pathways, which lead to their use in various biomedical applications. In particular, among 2D nanomaterials, graphene and its derivatives, namely graphene oxide (GO) nanomaterials, have attracted enormous attention in cancer diagnosis and therapy because they combine, in a unique material, extremely small size, NIR absorption, delocalized electrons, extremely high surface area, and versatile surface functionality. Taking into account the fundamental role played by GO size, in this review, we summarize the main methods employed to reduce and homogenize in nanometric scale the lateral dimensions of graphene oxide produced by chemical exfoliation of graphite, as well as post-synthesis separation techniques to uniform the size. We also discuss the implication of the small size in cancer treatment by exploiting GO nanocarriers as an effective theranostic tool.
Collapse
Affiliation(s)
- Immacolata Tufano
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, University of Naples Federico II, Naples, Italy
| |
Collapse
|
24
|
Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, Akbarian M, Farjadian F, Karimi M. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? Int J Nanomedicine 2020; 15:9469-9496. [PMID: 33281443 PMCID: PMC7710865 DOI: 10.2147/ijn.s265876] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Graphene, a wonder material, has made far-reaching developments in many different fields such as materials science, electronics, condensed physics, quantum physics, energy systems, etc. Since its discovery in 2004, extensive studies have been done for understanding its physical and chemical properties. Owing to its unique characteristics, it has rapidly became a potential candidate for nano-bio researchers to explore its usage in biomedical applications. In the last decade, remarkable efforts have been devoted to investigating the biomedical utilization of graphene and graphene-based materials, especially in smart drug and gene delivery as well as cancer therapy. Inspired by a great number of successful graphene-based materials integrations into the biomedical area, here we summarize the most recent developments made about graphene applications in biomedicine. In this paper, we review the up-to-date advances of graphene-based materials in drug delivery applications, specifically targeted drug/ gene delivery, delivery of antitumor drugs, controlled and stimuli-responsive drug release, photodynamic therapy applications and optical imaging and theranostics, as well as investigating the future trends and succeeding challenges in this topic to provide an outlook for future researches.
Collapse
Affiliation(s)
- Mojtaba Hoseini-Ghahfarokhi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Mirkiani
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Naeimeh Mozaffari
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra2601, Australia
| | | | - Amir Ghasemi
- Department of Engineering, Durham University, Durham DH1 3LE, United Kingdom
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Abbaspour
- Department of Engineering, Durham University, Durham DH1 3LE, United Kingdom
| | - Mohsen Akbarian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Karimi
- Iran Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Chen J, Wu W, Zhang F, Zhang J, Liu H, Zheng J, Guo S, Zhang J. Graphene quantum dots in photodynamic therapy. NANOSCALE ADVANCES 2020; 2:4961-4967. [PMID: 36132896 PMCID: PMC9419651 DOI: 10.1039/d0na00631a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 06/16/2023]
Abstract
Graphene quantum dots (GQDs) have shown great promise in a variety of medical applications. Recently, it has been found that GQDs are also beneficial for photodynamic therapy (PDT). However, the findings of GQDs as PDT agents have been controversial in the literature. Herein, we investigate the photoactivity of single-atomic-layered GQDs by examining their ability to generate singlet oxygen (1O2) under irradiation and their effects on the photoactivity of photosensitizers. We demonstrate that the GQDs with lateral sizes of ∼5 or 20 nm are photo-inactive for they cannot generate 1O2 under irradiation of either a 660 nm laser (105 mW cm-2) or a halogen light. Moreover, the GQDs inhibit the photoactivity of two classical photosensitizers, namely, methylene blue and methylene violet. The stronger interaction between the GQDs and the photosensitizer results in greater inhibition of GQDs. Besides, the large-sized GQDs exhibit stronger inhibition than the small-sized GQDs. The inhibitory effect of the GQDs on the photoactivity of photosensitizers is consistent with their photo-cytotoxicity. These results indicate that the single-atomic-layered GQDs are not potential PDT agents, but they may be helpful for photosensitizers by delivering them into the cells. The discrepancy between the current work and the literature is probably associated with the GQDs used.
Collapse
Affiliation(s)
- Jiayi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Wentian Wu
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Fangwei Zhang
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jiali Zhang
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hui Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jing Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Shouwu Guo
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jingyan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
26
|
Facile preparation of pH-sensitive chitosan microspheres for delivery of curcumin; characterization, drug release kinetics and evaluation of anticancer activity. Int J Biol Macromol 2020; 162:501-511. [PMID: 32574741 DOI: 10.1016/j.ijbiomac.2020.06.183] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Abstract
Curcumin (CUR) is a lowly water-soluble natural polyphenol with chemopreventive and chemotherapeutic activities. Hence, to achieve the system with good CUR loading ability, porous MIL-88 (Fe) was prepared in the presence of the presynthesized graphene quantum dots (GQDs) (GQDs@MIL-88 (Fe)). In the following, CUR loaded in the fabricated GQDs@MIL-88 (Fe) nanohybrid. The characterization techniques; Fourier transform infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL), and Brunauer-Emmett-Teller (BET) analysis showed success in the synthesis of GQDs@MIL-88 (Fe). Moreover, the FT-IR analysis displayed the loading of CUR and the formation of CUR@GQDs@MIL-88(Fe). Chitosan (CS) was used as a green coating to enhance the biocompatibility of the prepared system (CS/CUR@GQDs@MIL-88(Fe). The fabricated microspheres showed pH-sensitive swelling behavior and released 38.3% of CUR in pH 5.0 which is better fitted with the First-order kinetic model (R2 = 0.9726). In comparison with CUR@GQDs@MIL-88(Fe), the MTT and DAPI assay exhibited less toxic effect for CS/CUR@GQDs@MIL-88(Fe) against MDA-MB 231 cells. Moreover, the safety of the CS/CUR@GQDs@MIL-88(Fe) confirmed after incubation against MCF 10A as a model of the normal cell line. The results conveyed a new concept that the CS/CUR@GQDs@MIL-88(Fe) is a potential candidate for using as a biocompatible carrier with controlled drug delivery ability.
Collapse
|
27
|
Islam MS, Renner F, Azizighannad S, Mitra S. Direct incorporation of nano graphene oxide (nGO) into hydrophobic drug crystals for enhanced aqueous dissolution. Colloids Surf B Biointerfaces 2020; 189:110827. [PMID: 32028132 PMCID: PMC7160045 DOI: 10.1016/j.colsurfb.2020.110827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 01/14/2023]
Abstract
This paper reports the development of a successful anti-solvent method that incorporates colloidal nano scale graphene oxide (nGO) directly into hydrophobic drug crystals. The nGO dispersed in solution acted as nucleating sites for crystallization and were embedded into the drug crystals without altering its structure or physical properties such as melting point. Several composites of drugs Sulfamethoxazole and Griseofulvin were synthesized with nGO concentration ranging between 0.2 and 1.0 %. The presence of nGO dramatically enhanced the dissolution rate. The time needed to reach a 50 % release (T50) reduced from 42-14 min with the integration of 0.8 % nGO in SMZ, while in GF the reduction was from 44-27 min with 0.5 % nGO. Increased release rates are attributed to the presence of the hydrophilic nGO which hydrogen bond more so with the aqueous mediums. Therefore, the incorporation of nGO into poorly soluble drugs is an effective approach towards drug delivery and bioavailability improvement and opens a new approach to high performance drug delivery.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Faradae Renner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Samar Azizighannad
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
28
|
Xiaoli F, Qiyue C, Weihong G, Yaqing Z, Chen H, Junrong W, Longquan S. Toxicology data of graphene-family nanomaterials: an update. Arch Toxicol 2020; 94:1915-1939. [DOI: 10.1007/s00204-020-02717-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
|
29
|
Anirudhan TS, Chithra Sekhar V, Athira VS. Graphene oxide based functionalized chitosan polyelectrolyte nanocomposite for targeted and pH responsive drug delivery. Int J Biol Macromol 2020; 150:468-479. [PMID: 32044367 DOI: 10.1016/j.ijbiomac.2020.02.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
Graphene oxide (GO) was first modified to amine functionalized GO (AGO) and acts as a cationic polyelectrolyte. Chitosan (CS) was conjugated with folic acid (FA) through N, N´ -Dicyclohexylcarbodiimide coupling to form FA-CS. After this, itaconic acid and acrylic acid monomers are grafted to the hydroxyl group of CS using ethyleneglycol dimethacrylate as cross linker and potassium peroxydisulfate as an initiator to generate -COOH functional groups and forming chemically modified chitosan (CMCS). Further doxorubicin (DOX) loaded into the FA-CMCS/AGO through π-π stacking interactions. The resulting nanocomposite was characterized by FTIR, SEM, TEM, Raman, AFM, DLS and ZP. The drug loading capacity was as high as 95.0% and the drug release rate at pH 5.3 was significantly higher than that under physiological conditions of pH 7.4. Cell viability of L929, HeLa and MCF7 cells was studied. The studies suggest the drug carrier has potential clinical applications for anticancer drug delivery.
Collapse
Affiliation(s)
- T S Anirudhan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Trivandrum 695 581, India.
| | - V Chithra Sekhar
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Trivandrum 695 581, India
| | - V S Athira
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Trivandrum 695 581, India
| |
Collapse
|
30
|
Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids Surf B Biointerfaces 2020; 185:110596. [DOI: 10.1016/j.colsurfb.2019.110596] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/22/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
|
31
|
Wang H, Kalubowilage M, Bossmann SH, Amama PB. Design of highly porous Fe 3O 4@reduced graphene oxide via a facile PMAA-induced assembly. RSC Adv 2019; 9:27927-27936. [PMID: 35530471 PMCID: PMC9070823 DOI: 10.1039/c9ra04980k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/26/2019] [Indexed: 12/05/2022] Open
Abstract
Advances in the synthesis and processing of graphene-based materials have presented the opportunity to design novel lithium-ion battery (LIB) anode materials that can meet the power requirements of next-generation power devices. In this work, a poly(methacrylic acid) (PMAA)-induced self-assembly process was used to design super-mesoporous Fe3O4 and reduced-graphene-oxide (Fe3O4@RGO) anode materials. We demonstrate the relationship between the media pH and Fe3O4@RGO nanostructure, in terms of dispersion state of PMAA-stabilized Fe3O4@GO sheets at different surrounding pH values, and porosity of the resulted Fe3O4@RGO anode. The anode shows a high surface area of 338.8 m2 g-1 with a large amount of 10-40 nm mesopores, which facilitates the kinetics of Li-ions and electrons, and improves electrode durability. As a result, Fe3O4@RGO delivers high specific-charge capacities of 740 mA h g-1 to 200 mA h g-1 at various current densities of 0.5 A g-1 to 10 A g-1, and an excellent capacity-retention capability even after long-term charge-discharge cycles. The PMAA-induced assembly method addresses the issue of poor dispersion of Fe3O4-coated graphene materials-which is a major impediment in the synthesis process-and provides a facile synthetic pathway for depositing Fe3O4 and other metal oxide nanoparticles on highly porous RGO.
Collapse
Affiliation(s)
- Huan Wang
- Tim Taylor Department of Chemical Engineering, Kansas State University Manhattan KS 66506 USA
| | | | - Stefan H Bossmann
- Department of Chemistry, Kansas State University Manhattan KS 66506 USA
| | - Placidus B Amama
- Tim Taylor Department of Chemical Engineering, Kansas State University Manhattan KS 66506 USA
| |
Collapse
|
32
|
Cytotoxicity and in vitro evaluation of whey protein-based hydrogels for diabetes mellitus treatment. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2019. [DOI: 10.1007/s40090-019-0185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Al-Ani LA, Yehye WA, Kadir FA, Hashim NM, AlSaadi MA, Julkapli NM, Hsiao VKS. Hybrid nanocomposite curcumin-capped gold nanoparticle-reduced graphene oxide: Anti-oxidant potency and selective cancer cytotoxicity. PLoS One 2019; 14:e0216725. [PMID: 31086406 PMCID: PMC6516671 DOI: 10.1371/journal.pone.0216725] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/28/2019] [Indexed: 12/27/2022] Open
Abstract
Nanotechnology-based antioxidants and therapeutic agents are believed to be the next generation tools to face the ever-increasing cancer mortality rates. Graphene stands as a preferred nano-therapeutic template, due to the advanced properties and cellular interaction mechanisms. Nevertheless, majority of graphene-based composites suffer from hindered development as efficient cancer therapeutics. Recent nano-toxicology reviews and recommendations emphasize on the preliminary synthetic stages as a crucial element in driving successful applications results. In this study, we present an integrated, green, one-pot hybridization of target-suited raw materials into curcumin-capped gold nanoparticle-conjugated reduced graphene oxide (CAG) nanocomposite, as a prominent anti-oxidant and anti-cancer agent. Distinct from previous studies, the beneficial attributes of curcumin are employed to their fullest extent, such that they perform dual roles of being a natural reducing agent and possessing antioxidant anti-cancer functional moiety. The proposed novel green synthesis approach secured an enhanced structure with dispersed homogenous AuNPs (15.62 ± 4.04 nm) anchored on reduced graphene oxide (rGO) sheets, as evidenced by transmission electron microscopy, surpassing other traditional chemical reductants. On the other hand, safe, non-toxic CAG elevates biological activity and supports biocompatibility. Free radical DPPH inhibition assay revealed CAG antioxidant potential with IC50 (324.1 ± 1.8%) value reduced by half compared to that of traditional citrate-rGO-AuNP nanocomposite (612.1 ± 10.1%), which confirms the amplified multi-potent antioxidant activity. Human colon cancer cell lines (HT-29 and SW-948) showed concentration- and time-dependent cytotoxicity for CAG, as determined by optical microscopy images and WST-8 assay, with relatively low IC50 values (~100 μg/ml), while preserving biocompatibility towards normal human colon (CCD-841) and liver cells (WRL-68), with high selectivity indices (≥ 2.0) at all tested time points. Collectively, our results demonstrate effective green synthesis of CAG nanocomposite, free of additional stabilizing agents, and its bioactivity as an antioxidant and selective anti-colon cancer agent.
Collapse
Affiliation(s)
- Lina A. Al-Ani
- Institute of Postgraduate Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Wageeh A. Yehye
- Institute of Postgraduate Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Farkaad A. Kadir
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Najihah M. Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Products and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammed A. AlSaadi
- Institute of Postgraduate Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, Malaysia
- National Chair of Materials Sciences and Metallurgy, University of Nizwa, Nizwa, Sultanate of Oman
| | - Nurhidayatullaili M. Julkapli
- Institute of Postgraduate Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Vincent K. S. Hsiao
- Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou, Taiwan
| |
Collapse
|
34
|
Maiti D, Tong X, Mou X, Yang K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front Pharmacol 2019; 9:1401. [PMID: 30914959 PMCID: PMC6421398 DOI: 10.3389/fphar.2018.01401] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
The study of carbon-based nanomaterials (CBNs) for biomedical applications has attracted great attention due to their unique chemical and physical properties including thermal, mechanical, electrical, optical and structural diversity. With the help of these intrinsic properties, CBNs, including carbon nanotubes (CNT), graphene oxide (GO), and graphene quantum dots (GQDs), have been extensively investigated in biomedical applications. This review summarizes the most recent studies in developing of CBNs for various biomedical applications including bio-sensing, drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Debabrata Maiti
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xiaozhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
35
|
Gu Z, Zhu S, Yan L, Zhao F, Zhao Y. Graphene-Based Smart Platforms for Combined Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800662. [PMID: 30039878 DOI: 10.1002/adma.201800662] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/25/2018] [Indexed: 06/08/2023]
Abstract
The extensive research of graphene and its derivatives in biomedical applications during the past few years has witnessed its significance in the field of nanomedicine. Starting from simple drug delivery systems, the application of graphene and its derivatives has been extended to a versatile platform of multiple therapeutic modalities, including photothermal therapy, photodynamic therapy, magnetic hyperthermia therapy, and sonodynamic therapy. In addition to monotherapy, graphene-based materials are widely applied in combined therapies for enhanced anticancer activity and reduced side effects. In particular, graphene-based materials are often designed and fabricated as "smart" platforms for stimuli-responsive nanocarriers, whose therapeutic effects can be activated by the tumor microenvironment, such as acidic pH and elevated glutathione (termed as "endogenous stimuli"), or light, magnetic, or ultrasonic stimuli (termed as "exogenous stimuli"). Herein, the recent advances of smart graphene platforms for combined therapy applications are presented, starting with the principle for the design of graphene-based smart platforms in combined therapy applications. Next, recent advances of combined therapies contributed by graphene-based materials, including chemotherapy-based, photothermal-therapy-based, and ultrasound-therapy-based synergistic therapy, are outlined. In addition, current challenges and future prospects regarding this promising field are discussed.
Collapse
Affiliation(s)
- Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
36
|
Mousavi SM, Hashemi SA, Ghasemi Y, Amani AM, Babapoor A, Arjmand O. Applications of graphene oxide in case of nanomedicines and nanocarriers for biomolecules: review study. Drug Metab Rev 2019; 51:12-41. [PMID: 30741033 DOI: 10.1080/03602532.2018.1522328] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this Review article, recent progress in matter of graphene oxide (GO) synthesis and its functionalization via a vast range of materials, including small molecules, polymers, and biomolecules, were reported and systematically summarized in order to overcome the inherent drawbacks of GO nanocarriers and thereby make these nanocarriers suitable for delivering chemotherapeutic agents, genes, and short interfering RNAs. Briefly, this work describes current strategies for the large scale production of GO and modification of graphene-based nanocarriers surfaces through practical chemical approaches, improving their biocompatibility and declining their toxicity. It also describes the most relevant cases of study suitable to demonstrate the role of graphene and graphene derivatives (GD) as nanocarrier for anti-cancer drugs and genes (e.g. miRNAs). Moreover, the controlled release mechanisms within the cell compartments and blood pH for targeted therapeutics release in the acidic environment of tumor cells or in intracellular compartments are mentioned and explored.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Seyyed Alireza Hashemi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Younes Ghasemi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Ali Mohammad Amani
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Aziz Babapoor
- b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran.,c Department of Chemical Engineering , University of Mohaghegh Ardabili (UMA) , Ardabil , Iran
| | - Omid Arjmand
- d Department of Chemical Engineering, South Tehran Branch , Islamic Azad University , Tehran , Iran
| |
Collapse
|
37
|
Joshi K, Mazumder B, Chattopadhyay P, Bora NS, Goyary D, Karmakar S. Graphene Family of Nanomaterials: Reviewing Advanced Applications in Drug delivery and Medicine. Curr Drug Deliv 2019; 16:195-214. [DOI: 10.2174/1567201815666181031162208] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Graphene in nano form has proven to be one of the most remarkable materials. It has a single
atom thick molecular structure and it possesses exceptional physical strength, electrical and electronic
properties. Applications of the Graphene Family of Nanomaterials (GFNs) in different fields of therapy
have emerged, including for targeted drug delivery in cancer, gene delivery, antimicrobial therapy, tissue
engineering and more recently in more diseases including HIV. This review seeks to analyze current
advances of potential applications of graphene and its family of nano-materials for drug delivery and
other major biomedical purposes. Moreover, safety and toxicity are the major roadblocks preventing the
use of GFNs in therapeutics. This review intends to analyze the safety and biocompatibility of GFNs
along with the discussion on the latest techniques developed for toxicity reduction and biocompatibility
enhancement of GFNs. This review seeks to evaluate how GFNs in future will serve as biocompatible
and useful biomaterials in therapeutics.
Collapse
Affiliation(s)
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | | | | | | | | |
Collapse
|
38
|
Zhang F, Li S, Zhang Q, Liu J, Zeng S, Liu M, Sun D. Adsorption of different types of surfactants on graphene oxide. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Pourjavadi A, Asgari S, Hosseini SH, Akhlaghi M. Codelivery of Hydrophobic and Hydrophilic Drugs by Graphene-Decorated Magnetic Dendrimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15304-15318. [PMID: 30424605 DOI: 10.1021/acs.langmuir.8b02710] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, a nanocarrier was prepared for the codelivery of a hydrophilic drug (doxorubicin) and a hydrophobic drug (curcumin) to cancer cells. In this nanocarrier, the edges of graphene oxide sheets were decorated with a magnetic-functionalized polyamidoamine dendrimer with hydrazone groups at the end of the polymer. The edge functionalization of graphene sheets not only improved the solubility and dispersibility of graphene sheets but also imparted the magnetic properties to the nanocarrier. The resulting nanocarrier was loaded with doxorubicin through the covalent linkage and curcumin through π-π stacking. The nanocarrier showed a pH-sensitive release for both drugs, and the drug release behavior was also improved by the coimmobilization of both drugs. The cytotoxicity assay of nanocarrier showed low toxicity toward MCF-7 cell compared to unmodified graphene oxide, which was attributed to the presence of a magnetic dendrimer. Besides, the drug-loaded nanocarrier was highly toxic for cells even more than for free drugs. The cellular uptake images revealed higher drug internalization for coloaded nanocarrier than for the nanocarrier loaded with one drug alone. All of the results showed that the codelivery of curcumin and doxorubicin in the presence of the nanocarrier was more effective in chemotherapy than the nanocarrier loaded with one drug.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry , Sharif University of Technology , Tehran 11365-9516 , Iran
| | - Shadi Asgari
- Polymer Research Laboratory, Department of Chemistry , Sharif University of Technology , Tehran 11365-9516 , Iran
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering , University of Science and Technology of Mazandaran , Behshahr 01134 , Iran
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine , Tehran University of Medical Sciences , Tehran 1416753955 , Iran
| |
Collapse
|
40
|
Hosseini SH, Alipour S, Zohreh N. Delivery of Doxorubicin Using Double-Layered Core-Shell Nanocarrier Based on Magnetic Fe 3O 4 Core and Salep Shells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13735-13744. [PMID: 30280900 DOI: 10.1021/acs.langmuir.8b02390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we developed a magnetic drug delivery system based on magnetic Fe3O4 nanoparticles with double shells of modified salep polysaccharide for the delivery of doxorubicin (Dox). The drug-loaded nanocarrier was synthesized in an easy way, and large amounts of drug molecules were loaded into the nanocarrier. The drug-loaded nanocarrier showed excellent pH responsibility in vitro, and large amounts of Dox were released at lower pH (60% release), whereas the nanocarrier was stable at neutral pH. The hemolysis assay results showed that the nanocarrier has negligible hemolytic effects on human red blood cells and showed good biocompatibility. Moreover, the result of coagulation assays showed that the nanocarrier was not active in any coagulation pathways. Cytotoxicity assays of nanocarrier and drug-loaded nanocarrier toward HeLa cells demonstrated that the nanocarrier has negligible toxicity, whereas the drug-loaded nanocarrier kills more than 90% of cells during 48 h. The flow cytometry analysis also showed that the uptake of drug-loaded nanocarrier into the cancerous cells is time-dependent and higher concentrations of drug internalized into the cells at longer incubation time. On the basis of the results, we suggest that the present nanocarrier can be applicable for in vivo drug delivery as an easy-made and cheap nanocarrier.
Collapse
Affiliation(s)
- Seyed Hassan Hosseini
- Department of Chemical Engineering , University of Science and Technology of Mazandaran , Behshahr 4851878195 , Iran
| | - Sakineh Alipour
- Department of Chemistry, Faculty of Science , University of Qom , Qom 4661137161 , Iran
| | - Nasrin Zohreh
- Department of Chemistry, Faculty of Science , University of Qom , Qom 4661137161 , Iran
| |
Collapse
|
41
|
de Melo-Diogo D, Lima-Sousa R, Alves CG, Costa EC, Louro RO, Correia IJ. Functionalization of graphene family nanomaterials for application in cancer therapy. Colloids Surf B Biointerfaces 2018; 171:260-275. [DOI: 10.1016/j.colsurfb.2018.07.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 11/28/2022]
|
42
|
Saleem J, Wang L, Chen C. Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Adv Healthc Mater 2018; 7:e1800525. [PMID: 30073803 DOI: 10.1002/adhm.201800525] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Cancer remains one of the major health problems all over the world and conventional therapeutic approaches have failed to attain an effective cure. Tumor microenvironments (TME) present a unique challenge in tumor therapy due to their complex structures and multiple components, which also serve as the soil for tumor growth, development, invasion, and migration. The complex TME includes immune cells, fibrous collagen structures, and tortuous blood vessels, in which conventional therapeutic approaches are rendered useless. State-of-the-art nanotechnologies have potential to cope with the threats of malignant tumors. With unique physiochemical properties, carbon nanomaterials (CNMs), including graphene, fullerenes, carbon nanotubes, and carbon quantum dots, offer opportunities to resolve the hurdles, by targeting not only cancer cells but also the TME. This review summarizes the progress about CNM-based cancer therapy strategies, which mainly focuses on both the treatment for cancer cells and TME-targeted modulation. In the last, the challenges for TME-based therapy via CNMs are discussed, which will be important in guiding current basic research to clinical translation in the future.
Collapse
Affiliation(s)
- Jabran Saleem
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Chunying Chen
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
| |
Collapse
|
43
|
Havanur S, JagadeeshBabu PE. Role of graphene quantum dots synthesized through pyrolysis in the release behavior of temperature responsive poly (N,N-diethyl acrylamide) hydrogel loaded with doxorubicin. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2018. [DOI: 10.1080/1023666x.2018.1484207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sushma Havanur
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, Karnataka-575025, India
| | - P. E. JagadeeshBabu
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, Karnataka-575025, India
| |
Collapse
|
44
|
Pooresmaeil M, Namazi H. Surface modification of graphene oxide with stimuli-responsive polymer brush containing β-cyclodextrin as a pendant group: Preparation, characterization, and evaluation as controlled drug delivery agent. Colloids Surf B Biointerfaces 2018; 172:17-25. [PMID: 30121487 DOI: 10.1016/j.colsurfb.2018.08.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/30/2018] [Accepted: 08/11/2018] [Indexed: 10/28/2022]
Abstract
In this work, stimuli-responsive graphene oxide/polymer brush nanocomposites (GPBNs) prepared through the polymerization of acrylic acid (AA), N-isopropylacrylamide (NIPAM) and acrylated β-cyclodextrin (Ac-β-CD) from the graphene oxide (GO) surface. The attachment of polymers on the GO surface was approved using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), UV-vis spectroscopy (UV-vis) and thermogravimetric (TGA) analysis. Scanning electron microscopy (SEM) was used to observe the morphological change on the GO surface after polymer grafting. Transition electron microscopy (TEM) showed that polymeric brushes were decorated on the GO surface. The growth of polymer brushes on the GO was further confirmed using atomic force microscopy (AFM). Both hydrophilic (doxorubicin, DOX) and hydrophobic (Methotrexate MTX) drugs were co-loaded in the prepared graphene Oxide/Polyacrylated β-cyclodextrin/polyacrylic acid/poly N-isopropylacrylamide brush nanocomposite (GCANBN). Drug releases from GCANBN were studied using UV-vis. MTT assay was used for the evaluation of in-vitro cytotoxicity of GCANBN. The prepared system showed its efficacy as a nanocarrier for both types of drugs.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
45
|
Michl TD, Jung D, Pertoldi A, Schulte A, Mocny P, Klok HA, Schönherr H, Giles C, Griesser HJ, Coad BR. An Acid Test: Facile SI-ARGET-ATRP of Methacrylic Acid. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas D. Michl
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
| | - Dimitri Jung
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Andrea Pertoldi
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
| | - Anna Schulte
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Piotr Mocny
- École Polytechnique Fédérale de Lausanne; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD, Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD, Station 12 CH-1015 Lausanne Switzerland
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Carla Giles
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
| | - Hans J. Griesser
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Bryan R. Coad
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- École Polytechnique Fédérale de Lausanne; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD, Station 12 CH-1015 Lausanne Switzerland
- School of Agriculture, Food & Wine; Food and Wine; University of Adelaide; SA 5005 Adelaide Australia
| |
Collapse
|
46
|
Diaz-Diestra D, Thapa B, Badillo-Diaz D, Beltran-Huarac J, Morell G, Weiner BR. Graphene Oxide/ZnS:Mn Nanocomposite Functionalized with Folic Acid as a Nontoxic and Effective Theranostic Platform for Breast Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E484. [PMID: 29966355 PMCID: PMC6071040 DOI: 10.3390/nano8070484] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 01/18/2023]
Abstract
Nanoparticle-based cancer theranostic agents generally suffer of poor dispersability in biological media, re-agglomeration over time, and toxicity concerns. To address these challenges, we developed a nanocomposite consisting of chemically-reduced graphene oxide combined with manganese-doped zinc sulfide quantum dots and functionalized with folic acid (FA-rGO/ZnS:Mn). We studied the dispersion stability, Doxorubicin (DOX) loading and release efficiency, target specificity, internalization, and biocompatibility of FA-rGO/ZnS:Mn against folate-rich breast cancer cells, and compared to its uncoated counterpart (rGO/ZnS:Mn). The results indicate that DOX is adsorbed on the graphene surface via π⁻π stacking and hydrophobic interaction, with enhanced loading (~35%) and entrapment (~60%) efficiency that are associated to the chelation of DOX and surface Zn2+ ions. DOX release is favored under acidic conditions reaching a release of up to 95% after 70 h. Membrane integrity of the cells assessed by Lactate dehydrogenase (LDH) release indicate that the surface passivation caused by folic acid (FA) functionalization decreases the strong hydrophobic interaction between the cell membrane wall and the edges/corners of graphene flakes. Chemotherapeutic effect assays reveal that the cancer cell viability was reduced up to ~50% at 3 µg/mL of DOX-FA-rGO/ZnS:Mn exposure, which is more pronounced than those obtained for free DOX at the same doses. Moreover, DOX-rGO/ZnS:Mn did not show any signs of toxicity. An opposite trend was observed for cells that do not overexpress the folate receptors, indicating that FA functionalization endows rGO/ZnS:Mn with an effective ability to discriminate positive folate receptor cancerous cells, enhancing its drug loading/release efficiency as a compact drug delivery system (DDS). This study paves the way for the potential use of functionalized rGO/ZnS:Mn nanocomposite as a platform for targeted cancer treatment.
Collapse
Affiliation(s)
- Daysi Diaz-Diestra
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA.
- Department of Chemistry, University of Puerto Rico, San Juan, PR 00925-2534, USA.
| | - Bibek Thapa
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA.
- Department of Physics, University of Puerto Rico, San Juan, PR 00925-2537, USA.
| | - Dayra Badillo-Diaz
- Department of Biology, University of Puerto Rico, San Juan, PR 00925-2537, USA.
| | - Juan Beltran-Huarac
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Gerardo Morell
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA.
- Department of Physics, University of Puerto Rico, San Juan, PR 00925-2537, USA.
| | - Brad R Weiner
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA.
- Department of Chemistry, University of Puerto Rico, San Juan, PR 00925-2534, USA.
| |
Collapse
|
47
|
Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.01.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Zhao X, Wei Z, Zhao Z, Miao Y, Qiu Y, Yang W, Jia X, Liu Z, Hou H. Design and Development of Graphene Oxide Nanoparticle/Chitosan Hybrids Showing pH-Sensitive Surface Charge-Reversible Ability for Efficient Intracellular Doxorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6608-6617. [PMID: 29368916 DOI: 10.1021/acsami.7b16910] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A novel graphene oxide nanoparticle (GON)-based drug delivery system containing GONs as carriers of anticancer drugs and chitosan/dimethylmaleic anhydride-modified chitosan (CS/CS-DMMA) as surface charge-reversible shells is fabricated via the classic self-assembly of the deprotonated carboxyl of GONs and the protonated amine of the CS backbone by electrostatic interaction, and CS-DMMA serves as the outmost layer. In this GON-based drug delivery system, the GON cores as desired carriers might adsorb doxorubicin hydrochloride (DOX) via the π-π stacking interaction between the large π conjugated structures of GO and the aromatic structure of DOX. Meanwhile, the chitosan-based polyelectrolyte shells served as a smart protection screen to evade the premature release of the as-loaded DOX in normal extracellular condition, and then, the release of DOX was accelerated because of the detachment of chitosan coating at low pH. Furthermore, the re-exposure of amino groups after hydrolysis of CS-DMMA endowed the drug delivery system with positive surface charge by taking advantage of the pH difference between physiological conditions and the tumor microenvironment to enhance the cellular uptake. Then, the pH-dependent site-specific drug release was realized. The in vitro investigations confirmed that these promising GON/CS/CS-DMMA hybrids with the charge-reversible character possessed various merits including excellent encapsulation efficiency, high stability under physiological conditions, enhanced cellular uptake by HepG2 cells, and tunable intracellular chemotherapeutic agent release profiles, proving its capability as an intelligent anticancer agent nanocarrier with enhanced therapeutic effects. This smart GON/CS/CS-DMMA vehicle with the surface charge-reversible character may be used as a significant drug delivery system for cancer treatment.
Collapse
Affiliation(s)
- Xubo Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Zhihong Wei
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Zhipeng Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Yalei Miao
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Yudian Qiu
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Wenjing Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450002, China
| | - Xu Jia
- School of Materials and Chemical Engineering, Zhongyuan University of Technology , Zhengzhou 450007, China
| | - Zhongyi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Hongwei Hou
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| |
Collapse
|
49
|
Li B, Zhang L, Zhang Z, Gao R, Li H, Dong Z, Wang Q, Zhou Q, Wang Y. Physiologically stable F127-GO supramolecular hydrogel with sustained drug release characteristic for chemotherapy and photothermal therapy. RSC Adv 2018; 8:1693-1699. [PMID: 35540894 PMCID: PMC9077132 DOI: 10.1039/c7ra12099k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/20/2017] [Indexed: 01/13/2023] Open
Abstract
The F127-GO-DOX supramolecular hydrogel system with sustained drug release characteristic for chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Bingxia Li
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Luna Zhang
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Zichen Zhang
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Ruoqing Gao
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Hongmei Li
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Zhipeng Dong
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Qiyan Wang
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Qingfa Zhou
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Yue Wang
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| |
Collapse
|
50
|
Xing G, Wang W, Wang K, Li P, Chen T. Shape-Controlled Synthesis of Au-Polypyrrole Composites Using Poly(4-vinylpyridine) Brush Grafted on Graphene Oxide as a Reaction Chamber. Chemistry 2017; 23:17549-17555. [PMID: 28990232 DOI: 10.1002/chem.201703183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Guoke Xing
- Faculty of Materials Science and Chemical Engineering; Ningbo University; 818 Fenghua Road Ningbo 315211 China
| | - Wenqin Wang
- Faculty of Materials Science and Chemical Engineering; Ningbo University; 818 Fenghua Road Ningbo 315211 China
| | - Ke Wang
- Faculty of Materials Science and Chemical Engineering; Ningbo University; 818 Fenghua Road Ningbo 315211 China
| | - Ping Li
- Faculty of Materials Science and Chemical Engineering; Ningbo University; 818 Fenghua Road Ningbo 315211 China
| | - Tao Chen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences; 1219 Zhongguan West Road Ningbo 315201 China
| |
Collapse
|