1
|
Oprea I, Smith TK. Click Chemistry Methodology: The Novel Paintbrush of Drug Design. ACS Chem Biol 2025; 20:19-32. [PMID: 39730316 PMCID: PMC11744672 DOI: 10.1021/acschembio.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024]
Abstract
Click chemistry is an immensely powerful technique for the synthesis of reliable and efficient covalent linkages. When undertaken in living cells, the concept is thereby coined bioorthogonal chemistry. Used in conjunction with the photo-cross-linking methodology, it serves as a sound strategy in the exploration of biological processes and beyond. Its broad scope has led to widespread use in many disciplines; however, this Review focuses on the use of click and bioorthogonal chemistry within medicinal chemistry, specifically with regards to drug development applications, namely, the use of DNA-encoded libraries as a novel technique for lead compound discovery, as well as the synthesis of antisense oligonucleotides and protein-drug conjugates. This Review aims to provide a critical perspective and a future outlook of this methodology, such as potential widespread use in cancer therapy and personalized medicine.
Collapse
Affiliation(s)
- Ioana Oprea
- Biomedical Science Research Complex,
Schools of Biology and Chemistry, University
of Saint Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom of Great Britain
and Northern Ireland
| | - Terry K. Smith
- Biomedical Science Research Complex,
Schools of Biology and Chemistry, University
of Saint Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom of Great Britain
and Northern Ireland
| |
Collapse
|
2
|
Kohn EM, Konovalov K, Gomez CA, Hoover GN, Yik AKH, Huang X, Martell JD. Terminal Alkyne-Modified DNA Aptamers with Enhanced Protein Binding Affinities. ACS Chem Biol 2023; 18:1976-1984. [PMID: 37531184 DOI: 10.1021/acschembio.3c00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nucleic acid-based receptors, known as aptamers, are relatively fast to discover and manufacture but lack the diverse functional groups of protein receptors (e.g., antibodies). The binding properties of DNA aptamers can be enhanced by attaching abiotic functional groups; for example, aromatic groups such as naphthalene slow dissociation from proteins. Although the terminal alkyne is a π-electron-rich functional group that has been used in small molecule drugs to enhance binding to proteins through noncovalent interactions, it remains unexplored for enhancing DNA aptamer binding affinity. Here, we demonstrate the utility of the terminal alkyne for improving the binding of DNA to proteins. We prepared a library of 256 terminal-alkyne-bearing variants of HD22, a DNA aptamer that binds the protein thrombin with nanomolar affinity. After a one-step thrombin-binding selection, a high-affinity aptamer containing two alkynes was discovered, exhibiting 3.2-fold tighter thrombin binding than the corresponding unmodified sequence. The tighter binding was attributable to a slower rate of dissociation from thrombin (5.2-fold slower than HD22). Molecular dynamics simulations with enhanced sampling by Replica Exchange with Solute Tempering (REST2) suggest that the π-electron-rich alkyne interacts with an asparagine side chain N-H group on thrombin, forming a noncovalent interaction that stabilizes the aptamer-protein interface. Overall, this work represents the first case of terminal alkynes enhancing the binding properties of an aptamer and underscores the utility of the terminal alkyne as an atom economical π-electron-rich functional group to enhance binding affinity with minimal steric perturbation.
Collapse
Affiliation(s)
- Eric M Kohn
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kirill Konovalov
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christian A Gomez
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gillian N Hoover
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew Kai-Hei Yik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuhui Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey D Martell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
3
|
Xie R, Han Y, Luo W, Zhao Q, Li Y, Chen G. Palladium-Catalyzed C-H Olefination for Nucleic Acid Production. Curr Protoc 2023; 3:e829. [PMID: 37498139 DOI: 10.1002/cpz1.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The palladium-catalyzed direct C-H olefination of unprotected uridine, 2'-deoxyuridine, uridine monophosphate, and uridine analogues are described here. This protocol provides an efficient, atom-economical, and environmentally friendly method for the introduction of an alkenyl group at the C5 position of the uracil without pre-functionalization. A series of C5-alkenylated uridine analogues, including some biologically significant compounds and potential pharmaceutical candidates, were synthesized with exposed hydroxyl groups on the ribose. © 2023 Wiley Periodicals LLC. Basic Protocol 1: The reaction of uridine, 2'-deoxyuridine, and sofosbuvir for the C-H olefination with methyl acrylate Basic Protocol 2: The reaction of uridine and 2'-deoxyuridine for the C-H olefination with styrene.
Collapse
Affiliation(s)
- Ruoqian Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yunxi Han
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenhao Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qin Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Kumar S, Arora A, Kumar R, Senapati NN, Singh BK. Recent advances in synthesis of sugar and nucleoside coumarin conjugates and their biological impact. Carbohydr Res 2023; 530:108857. [PMID: 37343455 DOI: 10.1016/j.carres.2023.108857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Naturally occurring coumarin and sugar molecules have a diverse range of applications along with superior biocompatibility. Coumarin, a member of the benzopyrone family, exhibits a wide spectrum of medicinal properties, such as anti-coagulant, anti-bacterial, anti-tumor, anti-oxidant, anti-cancer, anti-inflammatory and anti-viral activities. The sugar moiety functions as the central scaffold for the synthesis of complex molecules, attributing to their excellent biocompatibility, well-defined stereochemistry, benign nature and outstanding aqueous solubility. When the coumarin moiety is conjugated with the sugar or nucleoside molecule, the resulting conjugates exhibit significant biological properties. Due to the remarkable growth of such bioconjugates in the field of science over the last decade, owing to their future prospect as a potential bioactive core, an update to this area is very much needed. The present review focusses on the synthesis, characterization and the various therapeutic applications of coumarin conjugates, i.e., sugar and nucleoside coumarin conjugates along with their perspective for future research.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry and Environmental Science, Medgar Evers College, City University of New York, Brooklyn, NY, 11225, USA
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Rajesh Kumar
- P.G. Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur, 842002, India.
| | | | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
5
|
Zhao Q, Xie R, Zeng Y, Li W, Xiao G, Li Y, Chen G. Palladium-catalyzed C-H olefination of uridine, deoxyuridine, uridine monophosphate and uridine analogues. RSC Adv 2022; 12:24930-24934. [PMID: 36199883 PMCID: PMC9434382 DOI: 10.1039/d2ra03681a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
The palladium-catalyzed oxidative C-H olefinations of uridine, deoxyuridine, uridine monophosphate and uridine analogues are reported herein. This protocol provides an efficient, atom-economic and environmentally friendly approach to the synthesis of biologically important C5-alkene modified uracil/uridine-containing derivatives and pharmaceutical candidates.
Collapse
Affiliation(s)
- Qin Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Ruoqian Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Yuxiao Zeng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Wanlu Li
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 People's Republic of China
| | - Guolan Xiao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 People's Republic of China
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425199 People's Republic of China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 People's Republic of China
| |
Collapse
|
6
|
Zhang A, Leonard P, Seela F. Anomeric DNA: Functionalization of α-d Anomers of 7-Deaza-2'-deoxyadenosine and 2'-Deoxyuridine with Clickable Side Chains and Click Adducts in Homochiral and Heterochiral Double Helices. Chemistry 2022; 28:e202103872. [PMID: 34878201 PMCID: PMC9304229 DOI: 10.1002/chem.202103872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/21/2022]
Abstract
Anomeric base pairs in heterochiral DNA with strands in the α-d and β-d configurations and homochiral DNA with both strands in α-d configuration were functionalized. The α-d anomers of 2'-deoxyuridine and 7-deaza-2'-deoxyadenosine were synthesized and functionalized with clickable octadiynyl side chains. Nucleosides were protected and converted to phosphoramidites. Solid-phase synthesis furnished 12-mer oligonucleotides, which were hybridized. Pyrene click adducts display fluorescence, a few of them with excimer emission. Tm values and thermodynamic data revealed the following order of duplex stability α/α-d≫β/β-d≥α/β-d. CD spectra disclosed that conformational changes occur during hybridization. Functionalized DNAs were modeled and energy minimized. Clickable side chains and bulky click adducts are well accommodated in the grooves of anomeric DNA. The investigation shows for the first time that anomeric DNAs can be functionalized in the same way as canonical DNA for potential applications in nucleic acid chemistry, chemical biology, and DNA material science.
Collapse
Affiliation(s)
- Aigui Zhang
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
- Laboratorium für Organische und Bioorganische ChemieInstitut für Chemie neuer MaterialienUniversität OsnabrückBarbarastrasse 749069OsnabrückGermany
| |
Collapse
|
7
|
Bujalska A, Basran K, Luedtke NW. [4+2] and [2+4] cycloaddition reactions on single- and double-stranded DNA: a dual-reactive nucleoside. RSC Chem Biol 2022; 3:698-701. [PMID: 35755194 PMCID: PMC9175100 DOI: 10.1039/d2cb00062h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Here we report dual reactivity of diene-modified duplex DNA containing 5-(1,3-butadienyl)-2'-deoxyuridine “BDdU”. Regular-electron demand [4+2] cycloaddition proceeded upon addition of a maleimide, whereas inversed-electron demand [2+4] cycloaddition occurred upon addition...
Collapse
Affiliation(s)
- Anna Bujalska
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Kaleena Basran
- Department of Chemistry, McGill University 801 Sherbrooke St. West Montréal Québec H3A 0B8 Canada
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190 8057 Zurich Switzerland
- Department of Chemistry, McGill University 801 Sherbrooke St. West Montréal Québec H3A 0B8 Canada
| |
Collapse
|
8
|
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021; 9:628. [PMID: 34073038 PMCID: PMC8229351 DOI: 10.3390/biomedicines9060628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | | |
Collapse
|
9
|
Fantoni NZ, El-Sagheer AH, Brown T. A Hitchhiker's Guide to Click-Chemistry with Nucleic Acids. Chem Rev 2021; 121:7122-7154. [PMID: 33443411 DOI: 10.1021/acs.chemrev.0c00928] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Click chemistry is an immensely powerful technique for the fast and efficient covalent conjugation of molecular entities. Its broad scope has positively impacted on multiple scientific disciplines, and its implementation within the nucleic acid field has enabled researchers to generate a wide variety of tools with application in biology, biochemistry, and biotechnology. Azide-alkyne cycloadditions (AAC) are still the leading technology among click reactions due to the facile modification and incorporation of azide and alkyne groups within biological scaffolds. Application of AAC chemistry to nucleic acids allows labeling, ligation, and cyclization of oligonucleotides efficiently and cost-effectively relative to previously used chemical and enzymatic techniques. In this review, we provide a guide to inexperienced and knowledgeable researchers approaching the field of click chemistry with nucleic acids. We discuss in detail the chemistry, the available modified-nucleosides, and applications of AAC reactions in nucleic acid chemistry and provide a critical view of the advantages, limitations, and open-questions within the field.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
10
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
11
|
Paprocki D, Koszelewski D, Madej A, Brodzka A, Walde P, Ostaszewski R. Evaluation of Biodegradable Glucose Based Surfactants as a Promoting Medium for the Synthesis of Peptidomimetics with the Coumarin Scaffold. ChemistrySelect 2020. [DOI: 10.1002/slct.202002266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Paprocki
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01–224 Warsaw Poland
| | - Dominik Koszelewski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01–224 Warsaw Poland
| | - Arleta Madej
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01–224 Warsaw Poland
| | - Anna Brodzka
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01–224 Warsaw Poland
| | - Peter Walde
- Laboratory for Multifunctional MaterialsDepartment of Materials, ETH Zurich, Vladimir-Prelog-Weg 5 8093 Zurich Switzerland
| | - Ryszard Ostaszewski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01–224 Warsaw Poland
| |
Collapse
|
12
|
Leonard P, Kondhare D, Jentgens X, Daniliuc C, Seela F. Nucleobase-Functionalized 5-Aza-7-deazaguanine Ribo- and 2′-Deoxyribonucleosides: Glycosylation, Pd-Assisted Cross-Coupling, and Photophysical Properties. J Org Chem 2019; 84:13313-13328. [DOI: 10.1021/acs.joc.9b01347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Xenia Jentgens
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Constantin Daniliuc
- Institut für Organische Chemie, Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
13
|
Müller SL, Zhou X, Leonard P, Korzhenko O, Daniliuc C, Seela F. Functionalized Silver‐Ion‐Mediated α‐dC/β‐dC Hybrid Base Pairs with Exceptional Stability: α‐d‐5‐Iodo‐2′‐Deoxycytidine and Its Octadiynyl Derivative in Metal DNA. Chemistry 2019; 25:3077-3090. [DOI: 10.1002/chem.201805299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/04/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Sebastian Lars Müller
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for Nanotechnology Heisenbergstrasse 11 48149 Münster Germany
| | - Xinglong Zhou
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for Nanotechnology Heisenbergstrasse 11 48149 Münster Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for Nanotechnology Heisenbergstrasse 11 48149 Münster Germany
| | - Oxana Korzhenko
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for Nanotechnology Heisenbergstrasse 11 48149 Münster Germany
| | - Constantin Daniliuc
- Institut für Organische ChemieUniversität Münster Corrensstrasse 40 48149 Münster Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for Nanotechnology Heisenbergstrasse 11 48149 Münster Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für, Chemie neuer MaterialienUniversität Osnabrück Barbarastrasse 7 49069 Osnabrück Germany
| |
Collapse
|
14
|
Wu Y, Guo G, Zheng J, Xing D, Zhang T. Fluorogenic "Photoclick" Labeling and Imaging of DNA with Coumarin-Fused Tetrazole in Vivo. ACS Sens 2019; 4:44-51. [PMID: 30540170 DOI: 10.1021/acssensors.8b00565] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoclickable fluorogenic probes will enable visualization of specific biomolecules with precise spatiotemporal control in their native environment. However, the fluorogenic tagging of DNA with current photocontrolled clickable probes is still challenging. Herein, we demonstrated the fast (19.5 ± 2.5 M-1 s-1) fluorogenic labeling and imaging of DNA in vitro and in vivo with rationally designed coumarin-fused tetrazoles under UV LED photoirradiation. With a water-soluble, nuclear-specific coumarin-fused tetrazole (CTz-SO3), the metabolically synthesized DNA in cultured cells was effectively labeled and visualized, without fixation, via "photoclick" reaction. Moreover, the photoclickable CTz-SO3 enabled real-time, spatially controlled imaging of DNA in live zebrafish.
Collapse
Affiliation(s)
- Yunxia Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Guanlun Guo
- Hubei Key Laboratory of Advanced Technology for Automotive Components & Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Judun Zheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| |
Collapse
|
15
|
Kumar S, Mukesh K, Harjai K, Singh V. Synthesis of coumarin based Knoevenagel-Ugi adducts by a sequential one pot five-component reaction and their biological evaluation as anti-bacterial agents. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.11.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Liu J, Leonard P, Müller SL, Daniliuc C, Seela F. Nucleoside macrocycles formed by intramolecular click reaction: efficient cyclization of pyrimidine nucleosides decorated with 5'-azido residues and 5-octadiynyl side chains. Beilstein J Org Chem 2018; 14:2404-2410. [PMID: 30254706 PMCID: PMC6142766 DOI: 10.3762/bjoc.14.217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/22/2018] [Indexed: 02/05/2023] Open
Abstract
Copper(I)-promoted "click" cyclization in the presence of TBTA afforded nucleoside macrocycles in very high yields (≈70%) without using protecting groups. To this end, dU and dC derivatives functionalized at the 5-position of the nucleobase with octadiynyl side chains and with azido groups at the 5'-position of the sugar moieties were synthesized. The macrocycles display freely accessible Watson-Crick recognition sites. The conformation of the 16-membered macrocycle was deduced from X-ray analysis and 1H,1H-NMR coupling constants. The sugar conformation (N vs S) was different in solution as compared to the solid state.
Collapse
Affiliation(s)
- Jiang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Medicine of West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, P. R. China.,Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Sebastian L Müller
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Constantin Daniliuc
- Institut für Organische Chemie, Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
17
|
Tera M, Glasauer SMK, Luedtke NW. In Vivo Incorporation of Azide Groups into DNA by Using Membrane-Permeable Nucleotide Triesters. Chembiochem 2018; 19:1939-1943. [PMID: 29953711 DOI: 10.1002/cbic.201800351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 12/27/2022]
Abstract
Metabolic incorporation of bioorthogonal functional groups into cellular nucleic acids can be impeded by insufficient phosphorylation of nucleosides. Previous studies found that 5azidomethyl-2'-deoxyuridine (AmdU) was incorporated into the DNA of HeLa cells expressing a low-fidelity thymidine kinase, but not by wild-type HeLa cells. Here we report that membrane-permeable phosphotriester derivatives of AmdU can exhibit enhanced incorporation into the DNA of wild-type cells and animals. AmdU monophosphate derivatives bearing either 5'-bispivaloyloxymethyl (POM), 5'-bis-(4-acetoxybenzyl) (AB), or "Protide" protective groups were used to mask the phosphate group of AmdU prior to its entry into cells. The POM derivative "POM-AmdU" exhibited better chemical stability, greater metabolic incorporation efficiency, and lower toxicity than "AB-AmdU". Remarkably, the addition of POM-AmdU to the water of zebrafish larvae enabled the biosynthesis of azide-modified DNA throughout the body.
Collapse
Affiliation(s)
- Masayuki Tera
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seikacho, Soraku, 619-0284, Kyoto, Japan
| | - Stella M K Glasauer
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
18
|
Krömer M, Bártová K, Raindlová V, Hocek M. Synthesis of Dihydroxyalkynyl and Dihydroxyalkyl Nucleotides as Building Blocks or Precursors for Introduction of Diol or Aldehyde Groups to DNA for Bioconjugations. Chemistry 2018; 24:11890-11894. [PMID: 29790604 DOI: 10.1002/chem.201802282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 01/18/2023]
Abstract
(3,4-Dihydroxybut-1-ynyl)uracil, -cytosine and -7-deazaadenine 2'-deoxyribonucleoside triphosphates (dNTPs) were prepared by direct aqueous Sonogashira cross-coupling of halogenated dNTPs with dihydroxybut-1-yne and converted to 3,4-dihydroxybutyl dNTPs through catalytic hydrogenation. Sodium periodate oxidative cleavage of dihydroxybutyl-dUTP gave the desired aliphatic aldehyde-linked dUTP, whereas the oxidative cleavage of the corresponding deazaadenine dNTP gave a cyclic aminal. All dihydroxyalkyl or -alkynyl dNTPs and the formylethyl-dUTP were good substrates for DNA polymerases and were used for synthesis of diol- or aldehyde-linked DNA. The aldehyde linked DNA was used for the labelling or bioconjugations through hydrazone formation or reductive aminations.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
19
|
Panattoni A, Pohl R, Hocek M. Flexible Alkyne-Linked Thymidine Phosphoramidites and Triphosphates for Chemical or Polymerase Synthesis and Fast Postsynthetic DNA Functionalization through Copper-Catalyzed Alkyne–Azide 1,3-Dipolar Cycloaddition. Org Lett 2018; 20:3962-3965. [DOI: 10.1021/acs.orglett.8b01533] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Panattoni
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
20
|
Suzol S, Howlader AH, Wen Z, Ren Y, Laverde EE, Garcia C, Liu Y, Wnuk SF. Pyrimidine Nucleosides with a Reactive (β-Chlorovinyl)sulfone or (β-Keto)sulfone Group at the C5 Position, Their Reactions with Nucleophiles and Electrophiles, and Their Polymerase-Catalyzed Incorporation into DNA. ACS OMEGA 2018; 3:4276-4288. [PMID: 29732453 PMCID: PMC5928487 DOI: 10.1021/acsomega.8b00584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 05/28/2023]
Abstract
Transition-metal-catalyzed chlorosulfonylation of 5-ethynylpyrimidine nucleosides provided (E)-5-(β-chlorovinyl)sulfones A, which undergo nucleophilic substitution with amines or thiols affording B. The treatment of vinyl sulfones A with ammonia followed by acid-catalyzed hydrolysis of the intermediary β-sulfonylvinylamines gave 5-(β-keto)sulfones C. The latter reacts with electrophiles, yielding α-carbon-alkylated or -sulfanylated analogues D. The 5'-triphosphates of A and C were incorporated into double-stranded DNA, using open and one-nucleotide gap substrates, by human or Escherichia coli DNA-polymerase-catalyzed reactions.
Collapse
Affiliation(s)
- Sazzad
H. Suzol
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - A. Hasan Howlader
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Zhiwei Wen
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Yaou Ren
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Eduardo E. Laverde
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Carol Garcia
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Yuan Liu
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Stanislaw F. Wnuk
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
21
|
Ziarani GM, Moradi R, Lashgari N, Kruger HG. Coumarin Dyes. METAL-FREE SYNTHETIC ORGANIC DYES 2018:117-125. [DOI: 10.1016/b978-0-12-815647-6.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
22
|
Kapadiya K, Jadeja Y, Khunt R. Synthesis of Purine-based Triazoles by Copper (I)-catalyzed Huisgen Azide-Alkyne Cycloaddition Reaction. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Khushal Kapadiya
- School of Science, Department of Chemistry; RK University; Rajkot Gujarat India
| | - Yashwantsinh Jadeja
- Center of Excellence, NFDD Center; Saurashtra University; Rajkot Gujarat India
| | - Ranjan Khunt
- Chemical Research Laboratory, Department of Chemistry; Saurashtra University; Rajkot Gujarat India
| |
Collapse
|
23
|
Naik A, Alzeer J, Triemer T, Bujalska A, Luedtke NW. Chemoselective Modification of Vinyl DNA by Triazolinediones. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anu Naik
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Jawad Alzeer
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Therese Triemer
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Anna Bujalska
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
24
|
Naik A, Alzeer J, Triemer T, Bujalska A, Luedtke NW. Chemoselective Modification of Vinyl DNA by Triazolinediones. Angew Chem Int Ed Engl 2017; 56:10850-10853. [PMID: 28561928 DOI: 10.1002/anie.201702554] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/09/2017] [Indexed: 11/10/2022]
Abstract
A new method for the post-synthetic modification of nucleic acids was developed that involves mixing a phenyl triazolinedione (PTAD) derivative with DNA containing a vinyl nucleobase. The resulting reactions proceeded through step-wise mechanisms, giving either a formal [4+2] cycloaddition product, or, depending on the context of nucleobase, PTAD addition along with solvent trapping to give a secondary alcohol in water. Catalyst-free addition between PTAD and the terminal alkene of 5-vinyl-2'-deoxyuridine (VdU) was exceptionally fast, with a second-order rate constant of 2×103 m-1 s-1 . PTAD derivatives selectively reacted with VdU-containing oligonucleotides in a conformation-selective manner, with higher yields observed for G-quadruplex versus duplex DNA. These results demonstrate a new strategy for copper-free bioconjugation of DNA that can potentially be used to probe nucleic acid conformations in cells.
Collapse
Affiliation(s)
- Anu Naik
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jawad Alzeer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Therese Triemer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anna Bujalska
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
25
|
Wen Z, Suzol SH, Peng J, Liang Y, Snoeck R, Andrei G, Liekens S, Wnuk SF. Antiviral and Cytostatic Evaluation of 5-(1-Halo-2-sulfonylvinyl)- and 5-(2-Furyl)uracil Nucleosides. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201700023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Zhiwei Wen
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| | - Sazzad H. Suzol
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| | - Jufang Peng
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| | - Yong Liang
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| | - Robert Snoeck
- Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Sandra Liekens
- Rega Institute for Medical Research; KU Leuven; Leuven Belgium
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| |
Collapse
|
26
|
Yang H, Seela F. "Bis-Click" Ligation of DNA: Template-Controlled Assembly, Circularisation and Functionalisation with Bifunctional and Trifunctional Azides. Chemistry 2017; 23:3375-3385. [PMID: 27869337 DOI: 10.1002/chem.201604857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 12/14/2022]
Abstract
Ligation and circularisation of oligonucleotides containing terminal triple bonds was performed with bifunctional or trifunctional azides. Both reactions are high yielding. Template-assisted bis-click ligation of two individual non-complementary oligonucleotide strands was accomplished to yield heterodimers exclusively. In this context, the template fulfils two functions: it accelerates the ligation reaction and controls product assembly (heterodimer vs. homodimer formation). Intermolecular bis-click circularisation of one oligonucleotide strand took place without template assistance. For construction of oligonucleotides with terminal triple bonds in the nucleobase side chain, 7- or 5-functionalised 7-deaza-dA and dU residues were used. These oligonucleotides are directly accessible by solid-phase synthesis. When trifunctional azides were employed instead of bifunctional linkers, functionalisation of the remaining azido group was performed with small molecules such as 1-ethynyl pyrene, biotin propargyl amide or with ethynylated oligonucleotides. By this means, branched DNA was constructed.
Collapse
Affiliation(s)
- Haozhe Yang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| |
Collapse
|
27
|
Fonvielle M, Sakkas N, Iannazzo L, Le Fournis C, Patin D, Mengin-Lecreulx D, El-Sagheer A, Braud E, Cardon S, Brown T, Arthur M, Etheve-Quelquejeu M. Electrophilic RNA for Peptidyl-RNA Synthesis and Site-Specific Cross-Linking with tRNA-Binding Enzymes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matthieu Fonvielle
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Nicolas Sakkas
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Chloé Le Fournis
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Delphine Patin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Afaf El-Sagheer
- Department of Chemistry; University of Oxford, Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
- Chemistry Branch, Dept. of Science and Mathematics, Faculty of Petroleum and Mining Engineering; Suez Canal University; Suez 43721 Egypt
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Sébastien Cardon
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Tom Brown
- Department of Chemistry; University of Oxford, Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Michel Arthur
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| |
Collapse
|
28
|
Fonvielle M, Sakkas N, Iannazzo L, Le Fournis C, Patin D, Mengin-Lecreulx D, El-Sagheer A, Braud E, Cardon S, Brown T, Arthur M, Etheve-Quelquejeu M. Electrophilic RNA for Peptidyl-RNA Synthesis and Site-Specific Cross-Linking with tRNA-Binding Enzymes. Angew Chem Int Ed Engl 2016; 55:13553-13557. [PMID: 27667506 DOI: 10.1002/anie.201606843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/03/2016] [Indexed: 12/12/2022]
Abstract
RNA functionalization is challenging due to the instability of RNA and the limited range of available enzymatic reactions. We developed a strategy based on solid phase synthesis and post-functionalization to introduce an electrophilic site at the 3' end of tRNA analogues. The squarate diester used as an electrophile enabled sequential amidation and provided asymmetric squaramides with high selectivity. The squaramate-RNAs specifically reacted with the lysine of UDP-MurNAc-pentapeptide, a peptidoglycan precursor used by the aminoacyl-transferase FemXWv for synthesis of the bacterial cell wall. The peptidyl-RNA obtained with squaramate-RNA and unprotected UDP-MurNAc-pentapeptide efficiently inhibited FemXWv . The squaramate unit also promoted specific cross-linking of RNA to the catalytic Lys of FemXWv but not to related transferases recognizing different aminoacyl-tRNAs. Thus, squaramate-RNAs provide specificity for cross-linking with defined groups in complex biomolecules due to its unique reactivity.
Collapse
Affiliation(s)
- Matthieu Fonvielle
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Nicolas Sakkas
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Chloé Le Fournis
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Delphine Patin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Afaf El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.,Chemistry Branch, Dept. of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez, 43721, Egypt
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Sébastien Cardon
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Michel Arthur
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France.
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France. .,CNRS UMR 8601, Paris, F-75006, France.
| |
Collapse
|
29
|
Olszewska A, Pohl R, Brázdová M, Fojta M, Hocek M. Chloroacetamide-Linked Nucleotides and DNA for Cross-Linking with Peptides and Proteins. Bioconjug Chem 2016; 27:2089-94. [PMID: 27479485 DOI: 10.1021/acs.bioconjchem.6b00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleotides, 2'-deoxyribonucleoside triphosphates (dNTPs), and DNA probes bearing reactive chloroacetamido group linked to nucleobase (cytosine or 7-deazadaenine) through a propargyl tether were prepared and tested in cross-linking with cysteine- or histidine-containing peptides and proteins. The chloroacetamide-modifed dNTPs proved to be good substrates for DNA polymerases in the enzymatic synthesis of modified DNA probes. Modified nucleotides and DNA reacted efficiently with cysteine and cysteine-containing peptides, whereas the reaction with histidine was sluggish and low yielding. The modified DNA efficiently cross-linked with p53 protein through alkylation of cysteine and showed potential for cross-linking with histidine (in C277H mutant of p53).
Collapse
Affiliation(s)
- Agata Olszewska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo namesti 2, 166 10 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo namesti 2, 166 10 Prague 6, Czech Republic
| | - Marie Brázdová
- Institute of Biophysics, Czech Academy of Sciences , Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Czech Academy of Sciences , Kralovopolska 135, 612 65 Brno, Czech Republic.,Central European Institute of Technology, Masaryk University , Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo namesti 2, 166 10 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 12843 Prague 2, Czech Republic
| |
Collapse
|
30
|
Ren X, El-Sagheer AH, Brown T. Azide and trans-cyclooctene dUTPs: incorporation into DNA probes and fluorescent click-labelling. Analyst 2016; 140:2671-8. [PMID: 25734317 DOI: 10.1039/c5an00158g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
5-Azidomethyl dUTP and two 5-trans-cyclooctene dUTPs with different linkers between the TCO and the uracil base have been incorporated into DNA by primer extension, reverse-transcription and PCR amplification. For azidomethyl dUTP the PCR reaction was successful even when the modified dUTP was not supplemented with dTTP. In one case 335 azidomethyl dU residues were incorporated into the 523 base pair amplicon using this methodology. 5-Azidomethyl dUTP was found to be a better substrate for DNA polymerases than the trans-cyclooctene dUTPs. However, the inverse electron demand Diels-Alder reaction between cyclooctene DNA and a tetrazine Cy3-dye was more efficient than the strain-promoted reaction between azide DNA and a bicyclo [6.1.0] non-4-yne Cy3 dye.
Collapse
Affiliation(s)
- Xiaomei Ren
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | |
Collapse
|
31
|
Liang Y, Suzol SH, Wen Z, Artiles AG, Mathivathanan L, Raptis RG, Wnuk SF. Uracil Nucleosides with Reactive Group at C5 Position: 5-(1-Halo-2-sulfonylvinyl)uridine Analogues. Org Lett 2016; 18:1418-21. [PMID: 26933954 DOI: 10.1021/acs.orglett.6b00346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The transition-metal-catalyzed or radical-mediated halosulfonylation of 5-ethynyluridine provided (E)-(1-halo-2-tosylvinyl)uridines. These (β-halo)vinyl sulfones undergo efficient stereoselective addition-elimination with amines or thiols to provide Z-β-aminovinyl or E-β-thiovinyl sulfones tethered to the C5 position of the uracil ring.
Collapse
Affiliation(s)
- Yong Liang
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Sazzad H Suzol
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Zhiwei Wen
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Alain G Artiles
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Logesh Mathivathanan
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Raphael G Raptis
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| |
Collapse
|
32
|
Döhler D, Rana S, Rupp H, Bergmann H, Behzadi S, Crespy D, Binder WH. Qualitative sensing of mechanical damage by a fluorogenic “click” reaction. Chem Commun (Camb) 2016; 52:11076-9. [DOI: 10.1039/c6cc05390d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A simple and unique damage-sensing tool mediated by a Cu(i)-catalyzed [3+2] cycloaddition reaction is reported, where a fluorogenic “click”-reaction highlights physical damage by a strong fluorescence increase accompanied by in situ monitoring of localized self-healing.
Collapse
Affiliation(s)
- Diana Döhler
- Faculty of Natural Science II (Chemistry, Physics and Mathematics)
- Institute of Chemistry
- Chair of Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Martin Luther University Halle-Wittenberg
| | - Sravendra Rana
- Faculty of Natural Science II (Chemistry, Physics and Mathematics)
- Institute of Chemistry
- Chair of Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Martin Luther University Halle-Wittenberg
| | - Harald Rupp
- Faculty of Natural Science II (Chemistry, Physics and Mathematics)
- Institute of Chemistry
- Chair of Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Martin Luther University Halle-Wittenberg
| | - Henrik Bergmann
- Faculty of Natural Science II (Chemistry, Physics and Mathematics)
- Institute of Chemistry
- Chair of Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Martin Luther University Halle-Wittenberg
| | - Shahed Behzadi
- Max Planck Institute for Polymer Research
- Physical Chemistry of Polymers
- Mainz D-55128
- Germany
| | - Daniel Crespy
- Max Planck Institute for Polymer Research
- Physical Chemistry of Polymers
- Mainz D-55128
- Germany
- Department of Materials Science and Engineering
| | - Wolfgang H. Binder
- Faculty of Natural Science II (Chemistry, Physics and Mathematics)
- Institute of Chemistry
- Chair of Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Martin Luther University Halle-Wittenberg
| |
Collapse
|
33
|
Shaabani A, Hooshmand SE. Isocyanide and Meldrum's acid-based multicomponent reactions in diversity-oriented synthesis: from a serendipitous discovery towards valuable synthetic approaches. RSC Adv 2016. [DOI: 10.1039/c6ra11701e] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multicomponent reactions, which lead to synthesis of target compounds with inherent molecular diversity, greater efficiency and atom economy, are single step types of reactions made from three or more reactants attract the attention of all chemists.
Collapse
Affiliation(s)
- Ahmad Shaabani
- Faculty of Chemistry
- Shahid Beheshti University, G. C
- Tehran
- Iran
| | | |
Collapse
|
34
|
Dadová J, Cahová H, Hocek M. Polymerase Synthesis of Base-Modified DNA. MODIFIED NUCLEIC ACIDS 2016. [DOI: 10.1007/978-3-319-27111-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Yang H, Seela F. Circular DNA by "Bis-Click" Ligation: Template-Independent Intramolecular Circularization of Oligonucleotides with Terminal Alkynyl Groups Utilizing Bifunctional Azides. Chemistry 2015; 22:1435-44. [PMID: 26685101 DOI: 10.1002/chem.201503615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 12/19/2022]
Abstract
A highly effective and convenient "bis-click" strategy was developed for the template-independent circularization of single-stranded oligonucleotides by employing copper(I)-assisted azide-alkyne cycloaddition. Terminal triple bonds were incorporated at both ends of linear oligonucleotides. Alkynylated 7-deaza-2'-deoxyadenosine and 2'-deoxyuridine residues with different side chains were used in solid-phase synthesis with phosphoramidite chemistry. The bis-click ligation of linear 9- to 36-mer oligonucleotides with 1,4-bis(azidomethyl)benzene afforded circular DNA in a simple and selective way; azido modification of the oligonucleotide was not necessary. Short ethynyl side chains were compatible with the circularization of longer oligonucleotides, whereas octadiynyl residues were used for short 9-mers. Compared with linear duplexes, circular bis-click constructs exhibit a significantly increased duplex stability over their linear counterparts. The intramolecular bis-click ligation protocol is not limited to DNA, but may also be suitable for the construction of other macrocycles, such as circular RNAs, peptides, or polysaccharides.
Collapse
Affiliation(s)
- Haozhe Yang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany), Fax: (+49) 251-53406857
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. .,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany), Fax: (+49) 251-53406857.
| |
Collapse
|
36
|
Haldón E, Nicasio MC, Pérez PJ. Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. Org Biomol Chem 2015; 13:9528-50. [PMID: 26284434 DOI: 10.1039/c5ob01457c] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The reactions of organic azides and alkynes catalysed by copper species represent the prototypical examples of click chemistry. The so-called CuAAC reaction (copper-catalysed azide-alkyne cycloaddition), discovered in 2002, has been expanded since then to become an excellent tool in organic synthesis. In this contribution the recent results described in the literature since 2010 are reviewed, classified according to the nature of the catalyst precursor: copper(I) or copper(II) salts or complexes, metallic or nano-particulated copper and several solid-supported copper systems.
Collapse
Affiliation(s)
- Estela Haldón
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química y Ciencias de los Materiales, Campus de El Carmen s/n, Universidad de Huelva, 21007-Huelva, Spain.
| | | | | |
Collapse
|
37
|
Mačková M, Boháčová S, Perlíková P, Poštová Slavětínská L, Hocek M. Polymerase Synthesis and Restriction Enzyme Cleavage of DNA Containing 7-Substituted 7-Deazaguanine Nucleobases. Chembiochem 2015; 16:2225-36. [PMID: 26382079 DOI: 10.1002/cbic.201500315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 01/06/2023]
Abstract
Previous studies of polymerase synthesis of base-modified DNAs and their cleavage by restriction enzymes have mostly related only to 5-substituted pyrimidine and 7-substituted 7-deazaadenine nucleotides. Here we report the synthesis of a series of 7-substituted 7-deazaguanine 2'-deoxyribonucleoside 5'-O-triphosphates (dG(R) TPs), their use as substrates for polymerase synthesis of modified DNA and the influence of the modification on their cleavage by type II restriction endonucleases (REs). The dG(R) TPs were generally good substrates for polymerases but the PCR products could not be visualised on agarose gels by intercalator staining, due to fluorescence quenching. The presence of 7-substituted 7-deazaguanine residues in recognition sequences of REs in most cases completely blocked the cleavage.
Collapse
Affiliation(s)
- Michaela Mačková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic.
| |
Collapse
|
38
|
Dadová J, Vrábel M, Adámik M, Brázdová M, Pohl R, Fojta M, Hocek M. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA–Protein Cross‐Linking. Chemistry 2015; 21:16091-102. [DOI: 10.1002/chem.201502209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Jitka Dadová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Milan Vrábel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Matej Adámik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Marie Brázdová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno (Czech Republic)
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2 (Czech Republic)
| |
Collapse
|
39
|
Busskamp H, Batroff E, Niederwieser A, Abdel-Rahman OS, Winter RF, Wittmann V, Marx A. Efficient labelling of enzymatically synthesized vinyl-modified DNA by an inverse-electron-demand Diels-Alder reaction. Chem Commun (Camb) 2015; 50:10827-9. [PMID: 25089682 DOI: 10.1039/c4cc04332d] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many applications in biotechnology and molecular biology rely on modified nucleotides. Here, we present an approach for the postsynthetic labelling of enzymatically synthesized vinyl-modified DNA by Diels-Alder reaction with inverse electron demand using a tetrazine. Labelling proceeds very efficiently and supersedes several known approaches.
Collapse
Affiliation(s)
- Holger Busskamp
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Owens EA, Hyun H, Tawney JG, Choi HS, Henary M. Correlating molecular character of NIR imaging agents with tissue-specific uptake. J Med Chem 2015; 58:4348-56. [PMID: 25923454 DOI: 10.1021/acs.jmedchem.5b00475] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Near-infrared (NIR) fluorescent contrast agents are emerging in optical imaging as sensitive, cost-effective, and nonharmful alternatives to current agents that emit harmful ionizing radiation. Developing spectrally distinct NIR fluorophores to visualize sensitive vital tissues to selectively avoid them during surgical resection of diseased tissue is of great significance. Herein, we report the synthetic variation of pentamethine cyanine fluorophores with modifications of physicochemical properties toward prompting tissue-specific uptake into sensitive tissues (i.e., endocrine glands). Tissue-specific targeting and biodistribution studies revealed localization of contrast agents in the adrenal and pituitary glands, pancreas, and lymph nodes with dependence on molecular characteristics. Incorporation of hydrophobic heterocyclic rings, alkyl groups, and halogens allowed a fine-tuning capability to the hydrophobic character and dipole moment for observing perturbation in biological activity in response to minor structural alterations. These NIR contrast agents have potential for clinical translation for intraoperative imaging in the delineation of delicate glands.
Collapse
Affiliation(s)
- Eric A Owens
- †Center for Diagnostics and Therapeutics, Center for Biotechnology and Drug Design, Department of Chemistry, Georgia State University, Petit Science Center, 100 Piedmont Ave SE, Atlanta, Georgia 30303, United States
| | - Hoon Hyun
- ‡Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, 330 Brookline Avenue, Massachusetts 02215, United States
| | - Joseph G Tawney
- †Center for Diagnostics and Therapeutics, Center for Biotechnology and Drug Design, Department of Chemistry, Georgia State University, Petit Science Center, 100 Piedmont Ave SE, Atlanta, Georgia 30303, United States
| | - Hak Soo Choi
- ‡Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, 330 Brookline Avenue, Massachusetts 02215, United States
| | - Maged Henary
- †Center for Diagnostics and Therapeutics, Center for Biotechnology and Drug Design, Department of Chemistry, Georgia State University, Petit Science Center, 100 Piedmont Ave SE, Atlanta, Georgia 30303, United States
| |
Collapse
|
41
|
Huynh N, Dickson C, Zencak D, Hilko DH, Mackay-Sim A, Poulsen SA. Labeling of Cellular DNA with aCyclosal Phosphotriester Pronucleotide Analog of 5-ethynyl-2′-deoxyuridine. Chem Biol Drug Des 2015; 86:400-9. [DOI: 10.1111/cbdd.12506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Ngoc Huynh
- Eskitis Institute for Drug Discovery; Griffith University; Don Young Road Nathan Qld 4111 Australia
| | - Charlotte Dickson
- Eskitis Institute for Drug Discovery; Griffith University; Don Young Road Nathan Qld 4111 Australia
| | - Dusan Zencak
- Eskitis Institute for Drug Discovery; Griffith University; Don Young Road Nathan Qld 4111 Australia
| | - David H. Hilko
- Eskitis Institute for Drug Discovery; Griffith University; Don Young Road Nathan Qld 4111 Australia
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery; Griffith University; Don Young Road Nathan Qld 4111 Australia
| | - Sally-Ann Poulsen
- Eskitis Institute for Drug Discovery; Griffith University; Don Young Road Nathan Qld 4111 Australia
| |
Collapse
|
42
|
Ménová P, Dziuba D, Güixens-Gallardo P, Jurkiewicz P, Hof M, Hocek M. Fluorescence quenching in oligonucleotides containing 7-substituted 7-deazaguanine bases prepared by the nicking enzyme amplification reaction. Bioconjug Chem 2015; 26:361-6. [PMID: 25599383 DOI: 10.1021/acs.bioconjchem.5b00006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we reported the use of the Nicking Enzyme Amplification Reaction (NEAR) for the enzymatic synthesis of short oligonucleotides (ONs) containing 5-substituted pyrimidine or 7-substituted 7-deazaadenine nucleotides. Since no oligonucleotide products were visible on agarose gels stained by an intercalating dye (GelRed), we assumed that the method did not work for 7-substituted 7-deazaguanine deoxyribonucleoside triphosphates. We revisited the work and found that the NEAR method works for 7-deazaguanine nucleotides as well but that the resulting modified ONs quench the fluorescence of DNA intercalators, rendering them invisible on gel electrophoresis stained by them. Here, we report on the modified methodology for the NEAR synthesis and analysis of G-modified ONs and on quantification of the fluorescence quenching.
Collapse
Affiliation(s)
- Petra Ménová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|
43
|
Hocek M. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology. J Org Chem 2014; 79:9914-21. [PMID: 25321948 DOI: 10.1021/jo5020799] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center , Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
44
|
Piecyk K, Lukaszewicz M, Darzynkiewicz E, Jankowska-Anyszka M. Triazole-containing monophosphate mRNA cap analogs as effective translation inhibitors. RNA (NEW YORK, N.Y.) 2014; 20:1539-47. [PMID: 25150228 PMCID: PMC4174436 DOI: 10.1261/rna.046193.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/14/2014] [Indexed: 05/19/2023]
Abstract
Synthetic analogs of the 5' end of mRNA (cap structure) are widely used in molecular studies on mechanisms of cellular processes such as translation, intracellular transport, splicing, and turnover. The best-characterized cap binding protein is translation initiation factor 4E (eIF4E). Recognition of the mRNA cap by eIF4E is a critical, rate-limiting step for efficient translation initiation and is considered a major target for anticancer therapy. Here, we report a facile methodology for the preparation of N2-triazole-containing monophosphate cap analogs and present their biological evaluation as inhibitors of protein synthesis. Five analogs possessing this unique hetero-cyclic ring spaced from the m7-guanine of the cap structure at a distance of one or three carbon atoms and/or additionally substituted by various groups containing the benzene ring were synthesized. All obtained compounds turned out to be effective translation inhibitors with IC50 similar to dinucleotide triphosphate m(7)GpppG. As these compounds possess a reduced number of phosphate groups and, thereby, a negative charge, which may support their cell penetration, this type of cap analog might be promising in terms of designing new potential therapeutic molecules. In addition, an exemplary dinucleotide from a corresponding mononucleotide containing benzyl substituted 1,2,3-triazole was prepared and examined. The superior inhibitory properties of this analog (10-fold vs. m(7)GpppG) suggest the usefulness of such compounds for the preparation of mRNA transcripts with high translational activity.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | | |
Collapse
|
45
|
Balintová J, Špaček J, Pohl R, Brázdová M, Havran L, Fojta M, Hocek M. Azidophenyl as a click-transformable redox label of DNA suitable for electrochemical detection of DNA-protein interactions. Chem Sci 2014; 6:575-587. [PMID: 28970873 PMCID: PMC5618110 DOI: 10.1039/c4sc01906g] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/09/2014] [Indexed: 12/17/2022] Open
Abstract
A new azido-based DNA redox label which can be transformed into nitrophenyltriazole by a CuAAC click reaction was developed. It was used for the mapping of DNA–protein interactions with electrochemical detection.
New redox labelling of DNA by an azido group which can be chemically transformed to nitrophenyltriazole or silenced to phenyltriazole was developed and applied to the electrochemical detection of DNA–protein interactions. 5-(4-Azidophenyl)-2′-deoxycytidine and 7-(4-azidophenyl)-7-deaza-2′-deoxyadenosine nucleosides were prepared by aqueous-phase Suzuki cross-coupling and converted to nucleoside triphosphates (dNTPs) which served as substrates for incorporation into DNA by DNA polymerase. The azidophenyl-modified nucleotides and azidophenyl-modified DNA gave a strong signal in voltammetric studies, at –0.9 V, due to reduction of the azido function. The Cu-catalyzed click reaction of azidophenyl-modified nucleosides or azidophenyl-modified DNA with 4-nitrophenylacetylene gave nitrophenyl-substituted triazoles, exerting a reduction peak at –0.4 V under voltammetry, whereas the click reaction with phenylacetylene gave electrochemically silent phenyltriazoles. The transformation of the azidophenyl label to nitrophenyltriazole was used for electrochemical detection of DNA–protein interactions (p53 protein) since only those azidophenyl groups in the parts of the DNA not shielded by the bound p53 protein were transformed to nitrophenyltriazoles, whereas those covered by the protein were not.
Collapse
Affiliation(s)
- Jana Balintová
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Jan Špaček
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic .
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Marie Brázdová
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic .
| | - Luděk Havran
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic . .,Central European Institute of Technology , Masaryk University , Kamenice 753/5 , CZ-625 00 Brno , Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic . .,Central European Institute of Technology , Masaryk University , Kamenice 753/5 , CZ-625 00 Brno , Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic . .,Department of Organic Chemistry , Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|
46
|
Shaabani S, Shaabani A, Ng SW. One-pot synthesis of coumarin-3-carboxamides containing a triazole ring via an isocyanide-based six-component reaction. ACS COMBINATORIAL SCIENCE 2014; 16:176-83. [PMID: 24528142 DOI: 10.1021/co4001259] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile, efficient, and environmentally friendly approach has been developed for the diversity oriented synthesis of trifunctional coumarin-amide-triazole containing compounds. A wide variety of pharmacologically significant and structurally interesting compounds were synthesized via a one-pot, six-component, tandem Knoevenagel/Ugi/click reaction sequence from readily available starting materials in ethanol at room temperature in excellent overall yields. Substituents could be independently varied at five different positions.
Collapse
Affiliation(s)
- Shabnam Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box
19396-4716, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box
19396-4716, Tehran, Iran
| | - Seik Weng Ng
- Department
of Chemistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| |
Collapse
|
47
|
Nucleoside and oligonucleotide pyrene conjugates with 1,2,3-triazolyl or ethynyl linkers: synthesis, duplex stability, and fluorescence changes generated by the DNA-dye connector. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.11.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Ingale SA, Mei H, Leonard P, Seela F. Ethynyl side chain hydration during synthesis and workup of "clickable" oligonucleotides: bypassing acetyl group formation by triisopropylsilyl protection. J Org Chem 2013; 78:11271-82. [PMID: 24138578 DOI: 10.1021/jo401780u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clickable oligonucleotides with ethynyl residues in the 5-position of pyrimidines ((eth)dC and (eth)dU) or the 7-position of 7-deazaguanine ((eth)c(7)G(d)) are hydrated during solid-phase oligonucleotide synthesis and workup conditions. The side products were identified as acetyl derivatives by MALDI-TOF mass spectra of oligonucleotides and by detection of modified nucleosides after enzymatic phosphodiester hydrolysis. Ethynyl → acetyl group conversion was also studied on ethynylated nucleosides under acidic and basic conditions. It could be shown that side chain conversion depends on the nucleobase structure. Triisopropylsilyl residues were introduced to protect ethynyl residues from hydration. Pure, acetyl group free oligonucleotides were isolated after desilylation in all cases.
Collapse
Affiliation(s)
- Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology , Heisenbergstraße 11, 48149 Münster, Germany
| | | | | | | |
Collapse
|
49
|
Pujari SS, Seela F. Parallel stranded DNA stabilized with internal sugar cross-links: synthesis and click ligation of oligonucleotides containing 2'-propargylated isoguanosine. J Org Chem 2013; 78:8545-61. [PMID: 23915305 DOI: 10.1021/jo4012706] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Internal sugar cross-links were introduced for the first time into oligonucleotides with parallel chain orientation by click ligation. For this, the 2'- or 3'-position of the isoguanosine ribose moiety was functionalized with clickable propargyl residues, and the synthesis of propargylated cytosine building blocks was significantly improved. Phosphoramidites were prepared and employed in solid-phase synthesis. A series of oligo-2'-deoxyribonucleotides with parallel (ps) and antiparallel (aps) strand orientation were constructed containing isoguanine-cytosine, isoguanine-isocytosine, and adenine-thymine base pairs. Complementary oligonucleotides with propargylated sugar residues were ligated in a stepwise manner with a chelating bis-azide under copper catalysis. Cross-links were introduced within a base pair or in positions separated by two base pairs. From T(m) stability studies it is evident that cross-linking stabilizes DNA with parallel strand orientation strongly (ΔT(m) from +16 to +18.5 °C) with a similar increase as for aps DNA.
Collapse
Affiliation(s)
- Suresh S Pujari
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | | |
Collapse
|
50
|
Dadová J, Orság P, Pohl R, Brázdová M, Fojta M, Hocek M. Vinylsulfonamide and Acrylamide Modification of DNA for Cross-linking with Proteins. Angew Chem Int Ed Engl 2013; 52:10515-8. [DOI: 10.1002/anie.201303577] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/24/2013] [Indexed: 12/15/2022]
|