1
|
Tevyashova AN, Shapovalova KS. Potential for the Development of a New Generation of Aminoglycoside Antibiotics. Pharm Chem J 2022; 55:860-875. [PMID: 35039693 PMCID: PMC8754558 DOI: 10.1007/s11094-021-02510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 11/29/2022]
Abstract
The present review summarizes recent publications devoted to aminoglycosides that study the main types of resistance to antibiotics of this class and the main directions of chemical modification aimed at overcoming the resistance or changing the spectrum of biological activity. Conjugates of aminoglycosides with various pharmacophores including amino acids, peptides, peptide nucleic acids, nucleic bases, and several other biologically active molecules and modifications resulting in other types of biological activity of this class of antibiotics are described. It is concluded that a promising research direction aimed at increasing the activity of antibiotics against resistant strains is the search for selective inhibitors of aminoglycoside-modifying enzymes. This would allow renewal of the use of antibiotics already meeting widespread resistance and would increase the potential of a new generation of antibiotics.
Collapse
Affiliation(s)
- A. N. Tevyashova
- G. F. Gause Institute of New Antibiotics, 11/1 B. Pirogovskaya St, Moscow, 119021 Russia
| | - K. S. Shapovalova
- G. F. Gause Institute of New Antibiotics, 11/1 B. Pirogovskaya St, Moscow, 119021 Russia
| |
Collapse
|
2
|
Österlund T, Aho A, Äärelä A, Tähtinen V, Korhonen H, Virta P. Immobilized Carbohydrates for Preparation of 3'-Glycoconjugated Oligonucleotides. ACTA ACUST UNITED AC 2021; 83:e122. [PMID: 33290641 DOI: 10.1002/cpnc.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A detailed protocol for preparation 3'-glycoconjugated oligonucleotides is described based on one-pot immobilization of 4,4'-dimethoxytrityl-protected carbohydrates to a solid support followed by on-support peracetylation and automated oligonucleotide assembly. Compared to an appropriate building block approach and post-synthetic manipulation of oligonucleotides, this protocol may simplify the synthesis scheme and increase overall yield of the conjugates. Furthermore, the immobilization to a solid support typically increases the stability of reactants, enabling prolonged storage, and makes subsequent processing convenient. Automated assembly on these carbohydrate-modified supports using conventional phosphoramidite chemistry produces 3'-glycoconjugated oligonucleotides in relatively high yield and purity. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of 1-O-tert-butyldimethylsilyl-6-O-(4,4'-dimethoxytrityl)-β-D-glucose Basic Protocol 2: Synthesis of 6-O-dimethoxytrityl-2,3,1',3',4',6'-hexa-O-benzoylsucrose Basic Protocol 3: Synthesis of 6″-O-dimethoxytrityl-N-trifluoroacetyl-protected aminoglycosides Basic Protocol 4: Synthesis of 3-O-dimethoxytrityl-propyl β-D-galactopyranoside Basic Protocol 5: Synthesis of trivalent N-acetyl galactosamine cluster Basic Protocol 6: Synthesis of carbohydrate monosuccinates and their immobilization to a solid support Basic Protocol 7: Oligonucleotide synthesis using immobilized carbohydrates.
Collapse
Affiliation(s)
- Tommi Österlund
- Department of Chemistry, University of Turku, Turku, Finland
| | - Aapo Aho
- Department of Chemistry, University of Turku, Turku, Finland
| | - Antti Äärelä
- Department of Chemistry, University of Turku, Turku, Finland
| | - Ville Tähtinen
- Department of Chemistry, University of Turku, Turku, Finland
| | - Heidi Korhonen
- Department of Chemistry, University of Turku, Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Dezanet C, Kempf J, Mingeot-Leclercq MP, Décout JL. Amphiphilic Aminoglycosides as Medicinal Agents. Int J Mol Sci 2020; 21:E7411. [PMID: 33049963 PMCID: PMC7583001 DOI: 10.3390/ijms21197411] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022] Open
Abstract
The conjugation of hydrophobic group(s) to the polycationic hydrophilic core of the antibiotic drugs aminoglycosides (AGs), targeting ribosomal RNA, has led to the development of amphiphilic aminoglycosides (AAGs). These drugs exhibit numerous biological effects, including good antibacterial effects against susceptible and multidrug-resistant bacteria due to the targeting of bacterial membranes. In the first part of this review, we summarize our work in identifying and developing broad-spectrum antibacterial AAGs that constitute a new class of antibiotic agents acting on bacterial membranes. The target-shift strongly improves antibiotic activity against bacterial strains that are resistant to the parent AG drugs and to antibiotic drugs of other classes, and renders the emergence of resistant Pseudomonas aeruginosa strains highly difficult. Structure-activity and structure-eukaryotic cytotoxicity relationships, specificity and barriers that need to be crossed in their development as antibacterial agents are delineated, with a focus on their targets in membranes, lipopolysaccharides (LPS) and cardiolipin (CL), and the corresponding mode of action against Gram-negative bacteria. At the end of the first part, we summarize the other recent advances in the field of antibacterial AAGs, mainly published since 2016, with an emphasis on the emerging AAGs which are made of an AG core conjugated to an adjuvant or an antibiotic drug of another class (antibiotic hybrids). In the second part, we briefly illustrate other biological and biochemical effects of AAGs, i.e., their antifungal activity, their use as delivery vehicles of nucleic acids, of short peptide (polyamide) nucleic acids (PNAs) and of drugs, as well as their ability to cleave DNA at abasic sites and to inhibit the functioning of connexin hemichannels. Finally, we discuss some aspects of structure-activity relationships in order to explain and improve the target selectivity of AAGs.
Collapse
Affiliation(s)
- Clément Dezanet
- Molecular Pharmacochemistry Department, University Grenoble Alpes, CNRS, 470 Rue de la Chimie, F-38000 Grenoble, France; (C.D.); (J.K.)
| | - Julie Kempf
- Molecular Pharmacochemistry Department, University Grenoble Alpes, CNRS, 470 Rue de la Chimie, F-38000 Grenoble, France; (C.D.); (J.K.)
| | - Marie-Paule Mingeot-Leclercq
- Cellular and Molecular Pharmacology Unit, Louvain Drug Research Institute, Catholic University of Louvain, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium
| | - Jean-Luc Décout
- Molecular Pharmacochemistry Department, University Grenoble Alpes, CNRS, 470 Rue de la Chimie, F-38000 Grenoble, France; (C.D.); (J.K.)
| |
Collapse
|
4
|
Aradi K, Di Giorgio A, Duca M. Aminoglycoside Conjugation for RNA Targeting: Antimicrobials and Beyond. Chemistry 2020; 26:12273-12309. [PMID: 32539167 DOI: 10.1002/chem.202002258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Indexed: 01/04/2023]
Abstract
Natural aminoglycosides are therapeutically useful antibiotics and very efficient RNA ligands. They are oligosaccharides that contain several ammonium groups able to interfere with the translation process in prokaryotes upon binding to bacterial ribosomal RNA (rRNA), and thus, impairing protein synthesis. Even if aminoglycosides are commonly used in therapy, these RNA binders lack selectivity and are able to bind to a wide number of RNA sequences/structures. This is one of the reasons for their toxicity and limited applications in therapy. At the same time, the ability of aminoglycosides to bind to various RNAs renders them a great source of inspiration for the synthesis of new binders with improved affinity and specificity toward several therapeutically relevant RNA targets. Thus, a number of studies have been performed on these complex and highly functionalized compounds, leading to the development of various synthetic methodologies toward the synthesis of conjugated aminoglycosides. The aim of this review is to highlight recent progress in the field of aminoglycoside conjugation, paying particular attention to modifications performed toward the improvement of affinity and especially to the selectivity of the resulting compounds. This will help readers to understand how to introduce a desired chemical modification for future developments of RNA ligands as antibiotics, antiviral, and anticancer compounds.
Collapse
Affiliation(s)
- Klara Aradi
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| |
Collapse
|
5
|
Granqvist L, Kraszewski A, Tähtinen V, Virta P. Synthesis of Aminoglycoside-2'-O-Methyl Oligoribonucleotide Fusions. Molecules 2017; 22:molecules22050760. [PMID: 28481305 PMCID: PMC6154110 DOI: 10.3390/molecules22050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 11/24/2022] Open
Abstract
Phosphoramidite building blocks of ribostamycin (3 and 4), that may be incorporated at any position of the oligonucleotide sequence, were synthesized. The building blocks, together with a previously described neomycin-modified solid support, were applied for the preparation of aminoglycoside-2′-O-methyl oligoribonucleotide fusions. The fusions were used to clamp a single strand DNA sequence (a purine-rich strand of c-Myc promoter 1) to form triple helical 2′-O-methyl RNA/DNA-hybrid constructs. The potential of the aminoglycoside moieties to stabilize the triple helical constructs were studied by UV-melting profile analysis.
Collapse
Affiliation(s)
- Lotta Granqvist
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland.
| | - Andrzej Kraszewski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02 097 Warsaw, Poland.
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02 097 Warsaw, Poland.
| | - Ville Tähtinen
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland.
| | - Pasi Virta
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland.
| |
Collapse
|
6
|
Granqvist L, Virta P. 4'-C-[(4-trifluoromethyl-1H-1,2,3-triazol-1-yl)methyl]thymidine as a sensitive (19)F NMR sensor for the detection of oligonucleotide secondary structures. J Org Chem 2014; 79:3529-36. [PMID: 24678774 DOI: 10.1021/jo500326j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
4'-C-[(4-Trifluoromethyl-1H-1,2,3-triazol-1-yl)methyl]thymidine was synthesized and incorporated as a phosphoramidite into oligonucleotide sequences. Its applicability as a sensor for the (19)F NMR spectroscopic detection of DNA and RNA secondary structures was demonstrated. On DNA, the (19)F NMR measurements were focused on monitoring of duplex-triplex conversion, for which this fluorine-labeled 2'-deoxynucleoside proved to be a powerful sensor. This sensor seemingly favors DNA, but its behavior in the RNA environment also turned out to be informative. As a demonstration, invasion of a 2'-O-methyl oligoribonucleotide into an RNA hairpin model (HIV-1 TAR) was monitored by (19)F NMR spectroscopy. According to the thermal denaturation studies by UV spectroscopy, the effect of the 4'-C-(4-trifluoromethyl-1H-1,2,3-triazol-1-yl)methyl moiety on the stability of these DNA and RNA models was marginal.
Collapse
Affiliation(s)
- Lotta Granqvist
- Department of Chemistry, University of Turku , 20014 Turku, Finland
| | | |
Collapse
|
7
|
Niittymäki T, Burakova E, Laitinen E, Leisvuori A, Virta P, Lönnberg H. Zn2+Complexes of 3,5-Bis[(1,5,9-triazacyclododecan-3-yloxy)methyl]phenyl Conjugates of Oligonucleotides as Artificial RNases: The Effect of Oligonucleotide Conjugation on Uridine Selectivity of the Cleaving Agent. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Das I, Désiré J, Manvar D, Baussanne I, Pandey VN, Décout JL. A peptide nucleic acid-aminosugar conjugate targeting transactivation response element of HIV-1 RNA genome shows a high bioavailability in human cells and strongly inhibits tat-mediated transactivation of HIV-1 transcription. J Med Chem 2012; 55:6021-32. [PMID: 22698070 PMCID: PMC3400927 DOI: 10.1021/jm300253q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 6-aminoglucosamine ring of the aminoglycoside antibiotic neomycin B (ring II) was conjugated to a 16-mer peptide nucleic acid (PNA) targeting HIV-1 TAR RNA. For this purpose, we prepared the aminoglucosamine monomer 15 and attached it to the protected PNA prior to its cleavage from the solid support. We found that the resulting PNA-aminoglucosamine conjugate is stable under acidic conditions, efficiently taken up by the human cells and fairly distributed in both cytosol and nucleus without endosomal entrapment because cotreatment with endosome-disrupting agent had no effect on its cellular distribution. The conjugate displayed very high target specificity in vitro and strongly inhibited Tat mediated transactivation of HIV-1 LTR transcription in a cell culture system. The unique properties of this new class of PNA conjugate suggest it to be a potential candidate for therapeutic application.
Collapse
Affiliation(s)
- Indrajit Das
- Université de Grenoble I/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, ICMG FR 2607, 470 rue de la Chimie BP 53 F-38041 Grenoble, France
| | - Jérôme Désiré
- Université de Grenoble I/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, ICMG FR 2607, 470 rue de la Chimie BP 53 F-38041 Grenoble, France
| | - Dinesh Manvar
- Center for the Study of Emerging and Re-emerging Pathogens, UMDNJ-New Jersey Medical School, Department of Biochemistry and Molecular Biology, 185 South Orange Avenue, Newark, New Jersey 07103, USA
| | - Isabelle Baussanne
- Université de Grenoble I/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, ICMG FR 2607, 470 rue de la Chimie BP 53 F-38041 Grenoble, France
| | - Virendra N. Pandey
- Center for the Study of Emerging and Re-emerging Pathogens, UMDNJ-New Jersey Medical School, Department of Biochemistry and Molecular Biology, 185 South Orange Avenue, Newark, New Jersey 07103, USA
| | - Jean-Luc Décout
- Université de Grenoble I/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, ICMG FR 2607, 470 rue de la Chimie BP 53 F-38041 Grenoble, France
| |
Collapse
|
9
|
Morvan F, Vidal S, Souteyrand E, Chevolot Y, Vasseur JJ. DNA glycoclusters and DNA-based carbohydrate microarrays: From design to applications. RSC Adv 2012. [DOI: 10.1039/c2ra21550k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
10
|
Gernigon N, Bordeau V, Berrée F, Felden B, Carboni B. Synthesis and antibacterial activity of novel neamine derivatives: preponderant role of the substituent position on the neamine core. Org Biomol Chem 2012; 10:4720-30. [DOI: 10.1039/c2ob07065k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Kiviniemi A, Virta P. Synthesis of aminoglycoside-3'-conjugates of 2'-O-methyl oligoribonucleotides and their invasion to a 19F labeled HIV-1 TAR model. Bioconjug Chem 2011; 22:1559-66. [PMID: 21688836 DOI: 10.1021/bc200101r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The potential of aminoglycosides to induce RNA-invasion has been demonstrated. For this purpose, aminoglycoside-3'-conjugates of 2'-O-methyl oligoribonucleotides have been synthesized entirely on a solid phase. The synthesis includes an automated oligonucleotide chain elongation to solid-supported neomycin, ribostamycin, and methyl neobiosamine, and a two-step deprotection/release of the solid-supported conjugate, which allows exploitation of a simple protecting group scheme. Conjugates have been targeted to a (19)F labeled HIV-1 TAR RNA model (Trans Activation Response element of HIV), which allows monitoring of the invasion by (19)F NMR spectroscopy. A remarkably enhanced invasion, compared to that resulting from the corresponding unmodified 2'-O-methyl oligoribonucleotide (5'-CAGGCUCA-3'), has been obtained by the neomycin conjugate. The increased affinity results from a cooperative binding of the neomycin moiety and hybridization, though the invasion may also follow a mechanism, in which the first molar equivalent of the conjugate induces hybridization of the second.
Collapse
Affiliation(s)
- Anu Kiviniemi
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | |
Collapse
|
12
|
Kiviniemi A, Virta P, Drenichev MS, Mikhailov SN, Lönnberg H. Solid-supported 2'-O-glycoconjugation of oligonucleotides by azidation and click reactions. Bioconjug Chem 2011; 22:1249-55. [PMID: 21539388 DOI: 10.1021/bc200097g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
2'-O-[(2-Bromoethoxy)methyl]cytidine and 2'-O-[(2-azidoethoxy)methyl]cytidine have been prepared and introduced as appropriately protected 3'-phosphoramidite (1) and 3'-(H-phosphonate) (2) building blocks, respectively, into 2'-O-methyl oligoribonucleotides. The support-bound oligonucleotides were subjected to two consecutive conjugations with alkynyl-functionalized monosaccharides. The first saccharide was introduced by a Cu(I) promoted click reaction with 2 and the second by azidation of the 2-bromoethoxy group of 1 followed by the click reaction. The influence of the 2'-glycoconjugations on hybridization with DNA and 2'-O-methyl RNA targets was studied. Two saccharide units within a 15-mer oligonucleotide had a barely noticeable effect on the duplex stability, while introduction of a third one moderately decreased the melting temperature.
Collapse
Affiliation(s)
- Anu Kiviniemi
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland.
| | | | | | | | | |
Collapse
|
13
|
Karskela M, Helkearo M, Virta P, Lönnberg H. Synthesis of oligonucleotide glycoconjugates using sequential click and oximation ligations. Bioconjug Chem 2010; 21:748-55. [PMID: 20225822 DOI: 10.1021/bc900529g] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oligodeoxyribonucleotide glycoconjugates bearing two trivalent glycoclusters have been synthesized by two alternative methods based on solid-supported oximation of aminooxy functionalized oligonucleotides with glycoclusters constructed by click chemistry. In more detail, the trivalent glycoclusters (5 and 6) bearing three sugar pendants were first assembled by treating a 4-[tri-O-propargylpentaerythrityloxy]benzaldehyde scaffold with methyl 6-azido-6-deoxyglycopyranoside under the click reaction conditions. Two phosphoramidite reagents containing a phthaloyl protected aminooxy function, viz., 2-cyanoethyl N,N-diisopropylphosphoramidites derived from 3-[3,5-bis(phthalimidoxymethyl)phenoxy]propanol (12) and 5-(4,4'-dimethoxytrityl)-1,2-dideoxy-1-C-(2-phthalimidoxyethyl)-beta-d-erythro-pentofuranose (16), were synthesized and incorporated as branching units in appropriate places of the oligonucleotide chains. On using 12, the phthaloyl protections of the branching unit were removed and two identical glycoclusters were attached via oxime linkage to the 5'-terminus of the support-bound oligonucleotide chain. With branching unit 16, the phosphoramidite coupling and the oximation were carried out alternately, allowing introduction of two dissimilar trivalent glycoclusters close to the 3'-end of the oligonucleotide chain. The products (20, 26) were released and deprotected by ammonolysis and purified by HPLC chromatography.
Collapse
Affiliation(s)
- Marika Karskela
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland.
| | | | | | | |
Collapse
|
14
|
Alguacil J, Defaus S, Claudio A, Trapote A, Masides M, Robles J. A Straightforward Preparation of Aminoglycoside-Dinucleotide and -diPNA Conjugates via Click Ligation Assisted by Microwaves. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Lönnberg H. Solid-phase synthesis of oligonucleotide conjugates useful for delivery and targeting of potential nucleic acid therapeutics. Bioconjug Chem 2009; 20:1065-94. [PMID: 19175328 DOI: 10.1021/bc800406a] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olignucleotide-based drugs show promise as a novel form of chemotherapy. Among the hurdles that have to be overcome on the way of applicable nucleic acid therapeutics, inefficient cellular uptake and subsequent release from endosomes to cytoplasm appear to be the most severe ones. Covalent conjugation of oligonucleotides to molecules that expectedly facilitate the internalization, targets the conjugate to a specific cell-type or improves the parmacokinetics offers a possible way to combat against these shortcomings. Since workable chemistry is a prerequisite for biological studies, development of efficient and reproducible methods for preparation of various types of oligonucleotide conjugates has become a subject of considerable importance. The present review summarizes the advances made in the solid-supported synthesis of oligonucleotide conjugates aimed at facilitating the delivery and targeting of nucleic acid drugs.
Collapse
Affiliation(s)
- Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland.
| |
Collapse
|