1
|
Gomena J, Modena D, Cordella P, Vári B, Ranđelović I, Borbély A, Bottani M, Vári-Mező D, Halmos G, Juhász É, Steinkühler C, Tóvári J, Mező G. In vitro and in vivo evaluation of Bombesin-MMAE conjugates for targeted tumour therapy. Eur J Med Chem 2024; 277:116767. [PMID: 39146832 DOI: 10.1016/j.ejmech.2024.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Targeted tumour therapy has proved to be an efficient alternative to overcome the limitations of conventional chemotherapy. The upregulation of the bombesin receptor 2 (BB2) in several malignancies and the advantages offered by peptide drug conjugates over antibody drug conjugates in terms of production and tumour targeting motivated us to synthesise and test bombesin conjugates armed with the tubulin binder monomethyl auristatin E. The widely used Val-Cit-PABC was initially included as cathepsin cleavable self-immolative linker for the release of the free drug. However, the poor stability of the Val-Cit-conjugates in mouse plasma encouraged us to consider the optimised alternatives Glu-Val-Cit-PABC and Glu-Gly-Cit-PABC. Conjugate BN-EVcM1, featuring Glu-Val-Cit-PABC, combined suitable stability (t(½) in mouse and human plasma: 8.4 h and 4.6 h, respectively), antiproliferative activity in vitro (IC50 = 29.6 nM on the human prostate cancer cell line PC-3) and the full release of the free payload within 24 h. Three conjugates, namely BN-EGcM1, BN-EVcM1 and BN-EVcM2, improved the accumulation of MMAE in PC-3 human prostate cancer xenograft mice models, compared to the administration of the free drug. Among them, BN-EVcM1 also stood out for the significantly extended survival of mice in in vivo acute efficacy studies and for the significant inhibition of the growth of a PC-3 tumour in mice in both acute and chronic efficacy studies.
Collapse
Affiliation(s)
- Jacopo Gomena
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary; Eötvös Loránd University, Faculty of Science, Institute of Chemistry, 1117, Budapest, Hungary; HUN-REN-ELTE Research Group of Peptide Chemistry, 1117, Budapest, Hungary
| | - Daniela Modena
- Italfarmaco S.p.A., Preclinical R&D Department, 20092, Cinisello Balsamo (Milan), Italy
| | - Paola Cordella
- Italfarmaco S.p.A., Preclinical R&D Department, 20092, Cinisello Balsamo (Milan), Italy
| | - Balázs Vári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085, Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; KINETO Lab Ltd., 1037, Budapest, Hungary
| | - Adina Borbély
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, 1117, Budapest, Hungary
| | - Michela Bottani
- Italfarmaco S.p.A., Preclinical R&D Department, 20092, Cinisello Balsamo (Milan), Italy
| | - Diána Vári-Mező
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, 1117, Budapest, Hungary; HUN-REN-ELTE Research Group of Peptide Chemistry, 1117, Budapest, Hungary; Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085, Budapest, Hungary
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032, Debrecen, Hungary
| | - Éva Juhász
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Christian Steinkühler
- Italfarmaco S.p.A., Preclinical R&D Department, 20092, Cinisello Balsamo (Milan), Italy
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Gábor Mező
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, 1117, Budapest, Hungary; HUN-REN-ELTE Research Group of Peptide Chemistry, 1117, Budapest, Hungary.
| |
Collapse
|
2
|
Wang L, Chen CC, Zhang Z, Kuo HT, Zhang C, Colpo N, Merkens H, Bénard F, Lin KS. Synthesis and Evaluation of Novel 68Ga-Labeled [D-Phe 6,Leu 13ψThz 14]bombesin(6-14) Analogs for Cancer Imaging with Positron Emission Tomography. Pharmaceuticals (Basel) 2024; 17:621. [PMID: 38794191 PMCID: PMC11124507 DOI: 10.3390/ph17050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Gastrin-releasing peptide receptor (GRPR) is overexpressed in various cancers and is a promising target for cancer diagnosis and therapy. However, the high pancreas uptake and/or metabolic instability observed for most reported GRPR-targeted radioligands might limit their clinical applications. Our group recently reported a GRPR-targeted antagonist tracer, [68Ga]Ga-TacsBOMB2 ([68Ga]Ga-DOTA-Pip-D-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Leu13ψThz14-NH2), which showed a minimal pancreas uptake in a preclinical mouse model. In this study, we synthesized four derivatives with unnatural amino acid substitutions (Tle10-derived Ga-LW01158, NMe-His12-derived Ga-LW01160, α-Me-Trp8- and Tle10-derived Ga-LW01186, and Tle10- and N-Me-Gly11-derived Ga-LW02002) and evaluated their potential for detecting GRPR-expressing tumors with positron emission tomography (PET). The binding affinities (Ki(GRPR)) of Ga-LW01158, Ga-LW01160, Ga-LW01186, and Ga-LW02002 were 5.11 ± 0.47, 187 ± 17.8, 6.94 ± 0.95, and 11.0 ± 0.39 nM, respectively. [68Ga]Ga-LW01158, [68Ga]Ga-LW01186, and [68Ga]Ga-LW02002 enabled clear visualization of subcutaneously implanted human prostate cancer PC-3 tumor xenografts in mice in PET images. Ex vivo biodistribution studies showed that [68Ga]Ga-LW01158 had the highest tumor uptake (11.2 ± 0.65 %ID/g) and good tumor-to-background uptake ratios at 1 h post-injection. Comparable in vivo stabilities were observed for [68Ga]Ga-LW01158, [68Ga]Ga-LW01186, and [68Ga]Ga-LW02002 (76.5-80.7% remaining intact in mouse plasma at 15 min post-injection). In summary, the Tle10 substitution, either alone or combined with α-Me-Trp8 or NMe-Gly11 substitution, in Ga-TacsBOMB2 generates derivatives that retained good GRPR binding affinity and in vivo stability. With good tumor uptake and tumor-to-background imaging contrast, [68Ga]Ga-LW01158 is promising for detecting GRPR-expressing lesions with PET.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
| | - Chao-Cheng Chen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (Z.Z.); (H.-T.K.); (C.Z.); (N.C.); (H.M.); (F.B.)
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
3
|
Deiser S, Drexler M, Moreno-Alcántar G, Irl M, Schmidt C, Günther T, Casini A. Synthesis of 177Lu-Labeled, Somatostatin-2 Receptor-Targeted Metalla-Assemblies: Challenges in the Design of Supramolecular Radiotherapeutics. Inorg Chem 2023; 62:20710-20720. [PMID: 37556427 DOI: 10.1021/acs.inorgchem.3c02090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Self-assembled supramolecular coordination complexes (SCCs) hold promise for biomedical applications in cancer therapy, although their potential in the field of nuclear medicine is still substantially unexplored. Therefore, in this study an exo-functionalized cationic [Pd2L2]4+ metallacycle (L = 3,5-bis(3-ethynylpyridine)phenyl), targeted to the somatostatin-2 receptor (sst2R) and featuring the DOTA chelator (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) in order to bind the β-- and γ-emitter lutetium-177, was synthesized by self-assembly following ligand synthesis via standard solid-phase peptide synthesis (SPPS). This metallacycle was then characterized by reverse-phase high-performance liquid chromatography (RP-HPLC), electrospray ionization mass spectrometry (ESI-MS), and 1H and 1H-DOSY NMR (DOSY = diffusion-ordered spectroscopy). A procedure for the radiolabeling of the metallacycle with 177Lu was also optimized. The resulting [nat/177Lu]Lu-DOTA-metallacycle, termed [nat/177Lu]Lu-Cy, was evaluated concerning its stability and in vitro properties. The compound was more lipophilic compared to the reference [177Lu]Lu-DOTA-TATE (logPOct/H2O = -0.85 ± 0.10 versus -3.67 ± 0.04, respectively). While [natLu]Lu-Cy revealed low stability in a DMEM/F12 GlutaMax medium, it demonstrated good stability in other aqueous media as well as in DMSO. A high sst2R binding affinity (expressed as IC50) was determined in CHOsst2 cells (Chinese hamster ovary cells that were stably transfected with human sst2R). Moreover, the metallacycle exhibited high human serum albumin binding, as assessed by high-performance affinity chromatography (HPAC), and moderate stability in human serum compared to [177Lu]Lu-DOTA-TATE (TATE = (Tyr3)-octreotate). In order to improve stability, a heteroleptic approach was used to develop a less sterically hindered cage-like SCC that is potentially endowed with host-guest chemistry capability, which has been preliminarily characterized by RP-HPLC and ESI-MS. Overall, our initial results encourage future studies on sst2R-directed SCCs and have led to new insights into the chemistry of ss2R-directed SCCs for radiopharmaceutical applications.
Collapse
Affiliation(s)
- Sandra Deiser
- Chair of Pharmaceutical Radiochemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Walther-Meißner-Str. 3, 85748 Garching b. München, Germany
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b. München, Germany
| | - Marike Drexler
- Chair of Pharmaceutical Radiochemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Walther-Meißner-Str. 3, 85748 Garching b. München, Germany
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b. München, Germany
| | - Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b. München, Germany
| | - Maximilian Irl
- Chair of Pharmaceutical Radiochemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Walther-Meißner-Str. 3, 85748 Garching b. München, Germany
| | - Claudia Schmidt
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b. München, Germany
| | - Thomas Günther
- Chair of Pharmaceutical Radiochemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Walther-Meißner-Str. 3, 85748 Garching b. München, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b. München, Germany
| |
Collapse
|
4
|
Failla M, Floresta G, Abbate V. Peptide-based positron emission tomography probes: current strategies for synthesis and radiolabelling. RSC Med Chem 2023; 14:592-623. [PMID: 37122545 PMCID: PMC10131587 DOI: 10.1039/d2md00397j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
In medical imaging, techniques such as magnetic resonance imaging, contrast-enhanced computerized tomography, and positron emission tomography (PET) are extensively available and routinely used for disease diagnosis and treatment. Peptide-based targeting PET probes are usually small peptides with high affinity and specificity to specific cellular and tissue targets opportunely engineered for acting as PET probes. For instance, either the radioisotope (e.g., 18F, 11C) can be covalently linked to the peptide-probe or another ligand that strongly complexes the radioisotope (e.g., 64Cu, 68Ga) through multiple coordinative bonds can be chemically conjugated to the peptide delivery moiety. The main advantages of these probes are that they are cheaper than classical antibody-based PET tracers and can be efficiently chemically modified to be radiolabelled with virtually any radionuclide making them very attractive for clinical use. The goal of this review is to report and summarize recent technologies in peptide PET-based molecular probes synthesis and radiolabelling with the most used radioisotopes in 2022.
Collapse
Affiliation(s)
- Mariacristina Failla
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Giuseppe Floresta
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
- Department of Drug and Health Sciences, University of Catania Catania Italy
| | - Vincenzo Abbate
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
| |
Collapse
|
5
|
Gomena J, Vári B, Oláh-Szabó R, Biri-Kovács B, Bősze S, Borbély A, Soós Á, Ranđelović I, Tóvári J, Mező G. Targeting the Gastrin-Releasing Peptide Receptor (GRP-R) in Cancer Therapy: Development of Bombesin-Based Peptide-Drug Conjugates. Int J Mol Sci 2023; 24:3400. [PMID: 36834815 PMCID: PMC9967152 DOI: 10.3390/ijms24043400] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Targeted tumour therapy has proved to be an efficient alternative to overcome the limitations of conventional chemotherapy. Among several receptors upregulated in cancer cells, the gastrin-releasing peptide receptor (GRP-R) has recently emerged as a promising target for cancer imaging, diagnosing and treatment due to its overexpression on cancerous tissues such as breast, prostate, pancreatic and small-cell lung cancer. Herein, we report on the in vitro and in vivo selective delivery of the cytotoxic drug daunorubicin to prostate and breast cancer, by targeting GRP-R. Exploiting many bombesin analogues as homing peptides, including a newly developed peptide, we produced eleven daunorubicin-containing peptide-drug conjugates (PDCs), acting as drug delivery systems to safely reach the tumour environment. Two of our bioconjugates revealed remarkable anti-proliferative activity, an efficient uptake by all three tested human breast and prostate cancer cell lines, high stability in plasma and a prompt release of the drug-containing metabolite by lysosomal enzymes. Moreover, they revealed a safe profile and a consistent reduction of the tumour volume in vivo. In conclusion, we highlight the importance of GRP-R binding PDCs in targeted cancer therapy, with the possibility of further tailoring and optimisation.
Collapse
Affiliation(s)
- Jacopo Gomena
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Balázs Vári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Rita Oláh-Szabó
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
| | - Beáta Biri-Kovács
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Adina Borbély
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, 1117 Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
- KINETO Lab Ltd., 1037 Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Gábor Mező
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| |
Collapse
|
6
|
68Ga-Labeled [Leu 13ψThz 14]Bombesin(7-14) Derivatives: Promising GRPR-Targeting PET Tracers with Low Pancreas Uptake. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123777. [PMID: 35744904 PMCID: PMC9230575 DOI: 10.3390/molecules27123777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
The gastrin-releasing peptide receptor (GRPR) is a G-protein-coupled receptor that is overexpressed in many solid cancers and is a promising target for cancer imaging and therapy. However, high pancreas uptake is a major concern in the application of reported GRPR-targeting radiopharmaceuticals, particularly for targeted radioligand therapy. To lower pancreas uptake, we explored Ga-complexed TacsBOMB2, TacsBOMB3, TacsBOMB4, TacsBOMB5, and TacsBOMB6 derived from a potent GRPR antagonist sequence, [Leu13ψThz14]Bombesin(7-14), and compared their potential for cancer imaging with [68Ga]Ga-RM2. The Ki(GRPR) values of Ga-TacsBOMB2, Ga-TacsBOMB3, Ga-TacsBOMB4, Ga-TacsBOMB5, Ga-TacsBOMB6, and Ga-RM2 were 7.08 ± 0.65, 4.29 ± 0.46, 458 ± 38.6, 6.09 ± 0.95, 5.12 ± 0.57, and 1.51 ± 0.24 nM, respectively. [68Ga]Ga-TacsBOMB2, [68Ga]Ga-TacsBOMB3, [68Ga]Ga-TacsBOMB5, [68Ga]Ga-TacsBOMB6, and [68Ga]Ga-RM2 clearly show PC-3 tumor xenografts in positron emission tomography (PET) images, while [68Ga]Ga-TacsBOMB5 shows the highest tumor uptake (15.7 ± 2.17 %ID/g) among them. Most importantly, the pancreas uptake values of [68Ga]Ga-TacsBOMB2 (2.81 ± 0.78 %ID/g), [68Ga]Ga-TacsBOMB3 (7.26 ± 1.00 %ID/g), [68Ga]Ga-TacsBOMB5 (1.98 ± 0.10 %ID/g), and [68Ga]Ga-TacsBOMB6 (6.50 ± 0.36 %ID/g) were much lower than the value of [68Ga]Ga-RM2 (41.9 ± 10.1 %ID/g). Among the tested [Leu13ψThz14]Bombesin(7-14) derivatives, [68Ga]Ga-TacsBOMB5 has the highest tumor uptake and tumor-to-background contrast ratios, which is promising for clinical translation to detect GRPR-expressing tumors. Due to the low pancreas uptake of its derivatives, [Leu13ψThz14]Bombesin(7-14) represents a promising pharmacophore for the design of GRPR-targeting radiopharmaceuticals, especially for targeted radioligand therapy application.
Collapse
|
7
|
Abstract
18F-fluorination is an important and growing field in organic synthesis that has attracted many chemists in the recent past. Here we present our own, biased perspective with a focus on our own chemistry that evaluates recent advances in the field and provides our opinion on the challenges for the development of new chemistry, so that it may have an impact on imaging. We hope that the manuscript will provide a useful guide to chemists to develop reliable and robust reaction chemistry suitable for radiofluorination to have a real impact on human health.
Collapse
Affiliation(s)
- Riya Halder
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Gower-Fry L, Kronemann T, Dorian A, Pu Y, Jaworski C, Wängler C, Bartenstein P, Beyer L, Lindner S, Jurkschat K, Wängler B, Bailey JJ, Schirrmacher R. Recent Advances in the Clinical Translation of Silicon Fluoride Acceptor (SiFA) 18F-Radiopharmaceuticals. Pharmaceuticals (Basel) 2021; 14:ph14070701. [PMID: 34358127 PMCID: PMC8309031 DOI: 10.3390/ph14070701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022] Open
Abstract
The incorporation of silicon fluoride acceptor (SiFA) moieties into a variety of molecules, such as peptides, proteins and biologically relevant small molecules, has improved the generation of 18F-radiopharmaceuticals for medical imaging. The efficient isotopic exchange radiofluorination process, in combination with the enhanced [18F]SiFA in vivo stability, make it a suitable strategy for fluorine-18 incorporation. This review will highlight the clinical applicability of [18F]SiFA-labeled compounds and discuss the significant radiotracers currently in clinical use.
Collapse
Affiliation(s)
- Lexi Gower-Fry
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
| | - Travis Kronemann
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
| | - Andreas Dorian
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
| | - Yinglan Pu
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
| | - Carolin Jaworski
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (P.B.); (L.B.); (S.L.)
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (P.B.); (L.B.); (S.L.)
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (P.B.); (L.B.); (S.L.)
| | - Klaus Jurkschat
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany;
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Justin J. Bailey
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
- Correspondence:
| |
Collapse
|
9
|
Wang C, Zhang L, Mou Z, Feng W, Li Z, Yang H, Chen X, Lv S, Li Z. Direct 18F-Labeling of Biomolecules via Spontaneous Site-Specific Nucleophilic Substitution by F - on Phosphonate Prostheses. Org Lett 2021; 23:4261-4266. [PMID: 33942615 DOI: 10.1021/acs.orglett.1c01211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We describe a high radiochemical yield late-stage direct 18F-labeling of bare biomolecules containing common active groups. Spontaneity and site-selectivity are attributed to the remarkably higher rates of nucleophilic substitution reactions on phosphonates than on other electrophiles by F- at various hydrogen bond forms. Rapid access to many medicinally significant 18F-labeled biomolecules is achieved at 21-68% radiochemical yields and 35.9-55.1 GBq μmol-1 molar activities both manually or automatically.
Collapse
Affiliation(s)
- Chao Wang
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Lei Zhang
- Tianjin Engineering Technology Centre of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Zhaobiao Mou
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Wanru Feng
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Zhongjing Li
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Hongzhang Yang
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xueyuan Chen
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Shengji Lv
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Zijing Li
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
10
|
Tangthong T, Piroonpan T, Thipe VC, Khoobchandani M, Katti K, Katti KV, Pasanphan W. Water-Soluble Chitosan Conjugated DOTA-Bombesin Peptide Capped Gold Nanoparticles as a Targeted Therapeutic Agent for Prostate Cancer. Nanotechnol Sci Appl 2021; 14:69-89. [PMID: 33776426 PMCID: PMC7987316 DOI: 10.2147/nsa.s301942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Functionalization of water-soluble chitosan (WSCS) nanocolloids with, gold nanoparticles (AuNPs), and LyslLys3 (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-bombesin 1–14 (DOTA-BBN) peptide affords an innovative pathway to produce prostate tumor cell-specific nanomedicine agents with potential applications in molecular imaging and therapy. Methods The preparation involves the production and full characterization of water-soluble chitosan (WSCS), via gamma (γ) rays (80 kGy) irradiation, followed by DOTA-BBN conjugation for subsequent use as an effective template toward the synthesis of tumor cell-specific AuNPs-WSCS-DOTA-BBN. Results The WSCS-DOTA-BBN polymeric nanoparticles (86 ± 2.03 nm) served multiple roles as reducing and stabilizing agents in the overall template synthesis of tumor cell-targeted AuNPs. The AuNPs capped with WSCS and WSCS-DOTA-BBN exhibited average Au-core diameter of 17 ± 8 nm and 20 ± 7 nm with hydrodynamic diameters of 56 ± 1 and 67± 2 nm, respectively. The AuNPs-WSCS-DOTA-BBN showed optimum in vitro stability in biologically relevant solutions. The targeted AuNPs showed selective affinity toward GRP receptors overexpressed in prostate cancer cells (PC-3 and LNCaP). Discussion The AuNPs-WSCS-DOTA-BBN displayed cytotoxicity effects against PC-3 and LNCaP cancer cells, with concomitant safety toward the HAECs normal cells. The AuNPs-WSCS-DOTA-BBN showed synergistic targeting toward tumor cells with selective cytotoxicity of AuNPs towards PC-3 and LNCaP cells. Our investigations provide compelling evidence that AuNPs functionalized with WSCS-DOTA-BBN is an innovative nanomedicine approach for use in molecular imaging and therapy of GRP receptor-positive tumors. The template synthesis of AuNPs-WSCS-DOTA-BBN serves as an excellent non-radioactive surrogate for the development of the corresponding 198AuNPs theragnostic nanoradiopharmaceutical for use in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Theeranan Tangthong
- Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.,Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Thananchai Piroonpan
- Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Velaphi C Thipe
- Laboratório de Ecotoxicologia - Centro de Química e Meio Ambiente - Instituto de Pesquisas Energéticase Nucleares (IPEN) - Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, São Paulo, Brasil.,Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Menka Khoobchandani
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA.,Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
| | - Kavita Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA.,Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
| | - Kattesh V Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA.,Department of Radiology, University of Missouri, Columbia, MO, 65211, USA.,Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Wanvimol Pasanphan
- Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.,Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
11
|
Lindner S, Wängler C, Bailey JJ, Jurkschat K, Bartenstein P, Wängler B, Schirrmacher R. Radiosynthesis of [18F]SiFAlin-TATE for clinical neuroendocrine tumor positron emission tomography. Nat Protoc 2020; 15:3827-3843. [DOI: 10.1038/s41596-020-00407-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
|
12
|
Basuli F, Zhang X, Phelps TE, Jagoda EM, Choyke PL, Swenson RE. Automated Synthesis of Fluorine-18 Labeled CXCR4 Ligand via the Conjugation with Nicotinic Acid N-Hydroxysuccinimide Ester (6-[ 18F]SFPy). Molecules 2020; 25:E3924. [PMID: 32867358 PMCID: PMC7504725 DOI: 10.3390/molecules25173924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
The C-X-C motif chemokine receptor 4 (CXCR4) is a seven-transmembrane G protein-coupled receptor that is overexpressed in numerous diseases, particularly in various cancers and is a powerful chemokine, attracting cells to the bone marrow niche. Therefore, CXCR4 is an attractive target for imaging and therapeutic purposes. The goal of this study is to develop an efficient, reproducible, and straightforward method to prepare a fluorine-18 labeled CXCR4 ligand. 6-[18F]Fluoronicotinic acid-2,3,5,6-tetrafluorophenyl ester (6-[18F]FPy-TFP) and nicotinic acid N-hydroxysuccinimide ester (6-[18F]SFPy) have been prepared using 'fluorination on the Sep-Pak' method. Conjugation of 6-[18F]SFPy or 6-[18F]FPy-TFP with the alpha-amino group at the N terminus of the protected T140 precursor followed by deprotection, yielded the final product 6-[18F]FPy-T140. The overall radiochemical yields were 6-17% (n = 15, decay-corrected) in a 90-min radiolabeling time with a radiochemical purity >99%. 6-[18F]FPy-T140 exhibited high specific binding and nanomolar affinity for CXCR4 in vitro, indicating that the biological activity of the peptide was preserved. For the first time, [18F]SFPy has been prepared using 'fluorination on the Sep-Pak' method that allows rapid automated synthesis of 6-[18F]FPy-T140. In addition to increased synthetic efficiency, this construct binds with CXCR4 in high affinity and may have potential as an in vivo positron emission tomography (PET) imaging agent. This radiosynthesis method should encourage wider use of this PET agent to quantify CXCR4 in both research and clinical settings.
Collapse
Affiliation(s)
- Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20892, USA; (X.Z.); (R.E.S.)
| | - Xiang Zhang
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20892, USA; (X.Z.); (R.E.S.)
| | - Tim E. Phelps
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (T.E.P.); (E.M.J.); (P.L.C.)
| | - Elaine M. Jagoda
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (T.E.P.); (E.M.J.); (P.L.C.)
| | - Peter L. Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (T.E.P.); (E.M.J.); (P.L.C.)
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20892, USA; (X.Z.); (R.E.S.)
| |
Collapse
|
13
|
Structural modifications of amino acid sequences of radiolabeled peptides for targeted tumor imaging. Bioorg Chem 2020; 99:103802. [DOI: 10.1016/j.bioorg.2020.103802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
14
|
Russelli L, Martinelli J, De Rose F, Reder S, Herz M, Schwaiger M, Weber W, Tei L, D'Alessandria C. Room Temperature Al 18 F Labeling of 2-Aminomethylpiperidine-Based Chelators for PET Imaging. ChemMedChem 2020; 15:284-292. [PMID: 31830368 DOI: 10.1002/cmdc.201900652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/02/2019] [Indexed: 01/14/2023]
Abstract
Positron emission tomography (PET) is a non-invasive molecular imaging technology that is constantly expanding, with a high demand for specific antibody-derived imaging probes. The use of tracers based on temperature-sensitive molecules (i. e. Fab, svFab, nanobodies) is increasing and has led us to design a class of chelators based on the structure of 2-aminomethylpiperidine (AMP) with acetic and/or hydroxybenzyl pendant arms (2-AMPTA, NHB-2-AMPDA, and 2-AMPDA-HB), which were investigated as such for {Al18 F}2+ -core chelation efficiency. All the compounds were characterized by HPLC-MS analysis and NMR spectroscopy. The AlF-18 labeling reactions were performed under various conditions (pH/temperature), and the radiolabeled chelates were purified and characterized by radio-TLC and radio-HPLC. The stability of labeled chelates was investigated up to 240 min in human serum (HS), EDTA 5 mM, PBS and 0.9 % NaCl solutions. The in vivo stability of [Al18 F(2-AMPDA-HB)]- was assessed in healthy nude mice (n=6). Radiochemical yields between 55 % and 81 % were obtained at pH 5 and room temperature. High stability in HS was measured for [Al18 F(2-AMPDA-HB)]- , with 90 % of F-18 complexed after 120 min. High stability in vivo, rapid hepatobiliary and renal excretion, with low accumulation of free F-18 in bones were measured. Thus, this new Al18 F-chelator may have a great impact on immuno-PET radiopharmacy, by facilitating the development of new fluorine-18-labeled heat-sensitive biomolecules.
Collapse
Affiliation(s)
- Lisa Russelli
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| | - Jonathan Martinelli
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Francesco De Rose
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| | - Sybille Reder
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| | - Michael Herz
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| | - Lorenzo Tei
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Calogero D'Alessandria
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| |
Collapse
|
15
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Hoppenz P, Els‐Heindl S, Beck‐Sickinger AG. Identification and stabilization of a highly selective gastrin‐releasing peptide receptor agonist. J Pept Sci 2019; 25:e3224. [DOI: 10.1002/psc.3224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Paul Hoppenz
- Institute of BiochemistryLeipzig University Leipzig Germany
| | | | | |
Collapse
|
17
|
Collet C, Vucko T, Ariztia J, Karcher G, Pellegrini-Moïse N, Lamandé-Langle S. Fully automated radiosynthesis of [ 18F]fluoro- C-glyco-c(RGDfC): exploiting all the abilities of the AllInOne synthesizer. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00303g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fully automated and modular radiosynthesis of [18F]fluoro-C-glyco-RGD conjugate.
Collapse
Affiliation(s)
- Charlotte Collet
- NancycloTEP
- F-54511 Vandoeuvre-lès-Nancy
- France
- Université de Lorraine
- INSERM
| | | | | | - Gilles Karcher
- NancycloTEP
- F-54511 Vandoeuvre-lès-Nancy
- France
- Département de Médecine Nucléaire
- CHRU-Nancy
| | | | | |
Collapse
|
18
|
Bucerius J, Dijkgraaf I, Mottaghy FM, Schurgers LJ. Target identification for the diagnosis and intervention of vulnerable atherosclerotic plaques beyond 18F-fluorodeoxyglucose positron emission tomography imaging: promising tracers on the horizon. Eur J Nucl Med Mol Imaging 2018; 46:251-265. [PMID: 30302506 PMCID: PMC6267660 DOI: 10.1007/s00259-018-4176-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is the major cause of morbidity and mortality in developed countries and atherosclerosis is the major cause of cardiovascular disease. Atherosclerotic lesions obstruct blood flow in the arterial vessel wall and can rupture leading to the formation of occlusive thrombi. Conventional diagnostic tools are still of limited value for identifying the vulnerable arterial plaque and for predicting its risk of rupture and of releasing thromboembolic material. Knowledge of the molecular and biological processes implicated in the process of atherosclerosis will advance the development of imaging probes to differentiate the vulnerable plaque. The development of imaging probes with high sensitivity and specificity in identifying high-risk atherosclerotic vessel wall changes and plaques is crucial for improving knowledge-based decisions and tailored individual interventions. Arterial PET imaging with 18F-FDG has shown promising results in identifying inflammatory vessel wall changes in numerous studies and clinical trials. However, due to its limited specificity in general and its intense physiological uptake in the left ventricular myocardium that impair imaging of the coronary arteries, different PET tracers for the molecular imaging of atherosclerosis have been evaluated. This review describes biological, chemical and medical expertise supporting a translational approach that will enable the development of new or the evaluation of existing PET tracers for the identification of vulnerable atherosclerotic plaques for better risk prediction and benefit to patients.
Collapse
Affiliation(s)
- Jan Bucerius
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6229 HX, Maastricht, The Netherlands. .,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), 6200 MD, Maastricht, The Netherlands. .,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany.
| | - Ingrid Dijkgraaf
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), 6200 MD, Maastricht, The Netherlands.,Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6229 HX, Maastricht, The Netherlands.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Leon J Schurgers
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), 6200 MD, Maastricht, The Netherlands. .,Department of Biochemistry, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Rickmeier J, Ritter T. Site-Specific Deoxyfluorination of Small Peptides with [18
F]Fluoride. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jens Rickmeier
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
20
|
Rickmeier J, Ritter T. Site-Specific Deoxyfluorination of Small Peptides with [ 18 F]Fluoride. Angew Chem Int Ed Engl 2018; 57:14207-14211. [PMID: 30187598 DOI: 10.1002/anie.201807983] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Radiolabeled receptor-binding peptides are an important class of positron emission tomography tracers owing to achievable high binding affinities and their rapid blood clearance. Herein, a method to introduce a 4-[18 F]fluoro-phenylalanine residue into peptide sequences is reported, by chemoselective radio-deoxyfluorination of a tyrosine residue using a traceless activating group. The replacement of only one hydrogen atom with [18 F]fluoride results in minimal structural perturbation of the peptide, which is desirable in the labeling of tracer candidates.
Collapse
Affiliation(s)
- Jens Rickmeier
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
21
|
Dialer LO, Jodal A, Schibli R, Ametamey SM, Béhé M. Radiosynthesis and evaluation of an 18F-labeled silicon containing exendin-4 peptide as a PET probe for imaging insulinoma. EJNMMI Radiopharm Chem 2018; 3:1. [PMID: 29503858 PMCID: PMC5824708 DOI: 10.1186/s41181-017-0036-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/14/2017] [Indexed: 12/05/2022] Open
Abstract
Background Analogues of exendin-4 have been radiolabeled for imaging the glucagon-like peptide type 1 receptors (GLP-1R) which are overexpressed in insulinoma. The aim of this research was to synthesize an 18F–labeled silicon containing exendin-4 peptide (18F-2) and to evaluate its in vitro and in vivo behavior in CHL-GLP-1 receptor positive tumor-bearing mice. 18F–labeled silicon containing exendin-4 peptide (18F-2) was prepared via one-step nucleophilic substitution of a silane precursor with 18F–fluoride in the presence of acetic acid and K222. 18F-2 was then administered to tumor-bearing mice for PET imaging and ex vivo biodistribution experiments. Results 18F-2 was produced in a radiochemical yield (decay corrected) of 1.5% and a molar activity of max. 16 GBq/μmol. The GLP-1R positive tumors were clearly visualized by PET imaging. Biodistribution studies showed reduced uptake of 18F-2 in the kidneys compared to radiometal labeled exendin-4 derivatives. The radiotracer showed specific tumour uptake which remained steady over 2 h. Conclusions This exendin-4 analogue, 18F-2, is a potential probe for imaging GLP-1R positive tumors.
Collapse
Affiliation(s)
- Lukas O Dialer
- 1Center for Radiopharmaceutical Sciences (CRS) of ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Hönggerberg, ETH Zurich, Zurich, Switzerland
| | - Andreas Jodal
- 2Center for Radiopharmaceutical Sciences (CRS), Research Department Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Roger Schibli
- 1Center for Radiopharmaceutical Sciences (CRS) of ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Hönggerberg, ETH Zurich, Zurich, Switzerland.,2Center for Radiopharmaceutical Sciences (CRS), Research Department Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Simon M Ametamey
- 1Center for Radiopharmaceutical Sciences (CRS) of ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Hönggerberg, ETH Zurich, Zurich, Switzerland
| | - Martin Béhé
- 2Center for Radiopharmaceutical Sciences (CRS), Research Department Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| |
Collapse
|
22
|
Berke S, Kampmann AL, Wuest M, Bailey JJ, Glowacki B, Wuest F, Jurkschat K, Weberskirch R, Schirrmacher R. 18F-Radiolabeling and In Vivo Analysis of SiFA-Derivatized Polymeric Core–Shell Nanoparticles. Bioconjug Chem 2017; 29:89-95. [DOI: 10.1021/acs.bioconjchem.7b00630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sheldon Berke
- Department
of Oncology, University of Alberta, 6820 116 Street, Edmonton, Alberta T6G 2R3, Canada
| | - Anne-Larissa Kampmann
- Department
of Oncology, University of Alberta, 6820 116 Street, Edmonton, Alberta T6G 2R3, Canada
| | - Melinda Wuest
- Department
of Oncology, University of Alberta, 6820 116 Street, Edmonton, Alberta T6G 2R3, Canada
| | - Justin J. Bailey
- Department
of Oncology, University of Alberta, 6820 116 Street, Edmonton, Alberta T6G 2R3, Canada
| | | | - Frank Wuest
- Department
of Oncology, University of Alberta, 6820 116 Street, Edmonton, Alberta T6G 2R3, Canada
| | | | | | - Ralf Schirrmacher
- Department
of Oncology, University of Alberta, 6820 116 Street, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
23
|
Krishnan HS, Ma L, Vasdev N, Liang SH. 18 F-Labeling of Sensitive Biomolecules for Positron Emission Tomography. Chemistry 2017; 23:15553-15577. [PMID: 28704575 PMCID: PMC5675832 DOI: 10.1002/chem.201701581] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 12/21/2022]
Abstract
Positron emission tomography (PET) imaging study of fluorine-18 labeled biomolecules is an emerging and rapidly growing area for preclinical and clinical research. The present review focuses on recent advances in radiochemical methods for incorporating fluorine-18 into biomolecules via "direct" or "indirect" bioconjugation. Recently developed prosthetic groups and pre-targeting strategies, as well as representative examples in 18 F-labeling of biomolecules in PET imaging research studies are highlighted.
Collapse
Affiliation(s)
- Hema S. Krishnan
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Longle Ma
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Neil Vasdev
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
24
|
Rugeri B, Audi H, Jewula P, Koudih R, Malacea-Kabbara R, Vimont D, Schulz J, Fernandez P, Jugé S. Designing Silylatedl-Amino Acids using a Wittig Strategy: Synthesis of Peptide Derivatives and18F-Labelling. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Baptiste Rugeri
- Institut de Chimie Moléculaire de l'Université de Bourgogne-Franche-Comté; ICMUB-OCS (UMR CNRS 6302); 19 avenue A. Savary BP 47870 21078 Dijon CEDEX France
| | - Hassib Audi
- Institut de Chimie Moléculaire de l'Université de Bourgogne-Franche-Comté; ICMUB-OCS (UMR CNRS 6302); 19 avenue A. Savary BP 47870 21078 Dijon CEDEX France
| | - Pawel Jewula
- Institut de Chimie Moléculaire de l'Université de Bourgogne-Franche-Comté; ICMUB-OCS (UMR CNRS 6302); 19 avenue A. Savary BP 47870 21078 Dijon CEDEX France
| | - Radouane Koudih
- Institut de Chimie Moléculaire de l'Université de Bourgogne-Franche-Comté; ICMUB-OCS (UMR CNRS 6302); 19 avenue A. Savary BP 47870 21078 Dijon CEDEX France
| | - Raluca Malacea-Kabbara
- Institut de Chimie Moléculaire de l'Université de Bourgogne-Franche-Comté; ICMUB-OCS (UMR CNRS 6302); 19 avenue A. Savary BP 47870 21078 Dijon CEDEX France
| | - Delphine Vimont
- Department Institut des Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA-UMR CNRS 5287); 146 rue Léo Saignat 33076 Bordeaux CEDEX France
| | - Jürgen Schulz
- Department Institut des Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA-UMR CNRS 5287); 146 rue Léo Saignat 33076 Bordeaux CEDEX France
| | - Philippe Fernandez
- Department Institut des Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA-UMR CNRS 5287); 146 rue Léo Saignat 33076 Bordeaux CEDEX France
| | - Sylvain Jugé
- Institut de Chimie Moléculaire de l'Université de Bourgogne-Franche-Comté; ICMUB-OCS (UMR CNRS 6302); 19 avenue A. Savary BP 47870 21078 Dijon CEDEX France
| |
Collapse
|
25
|
Charron CL, Hickey JL, Nsiama TK, Cruickshank DR, Turnbull WL, Luyt LG. Molecular imaging probes derived from natural peptides. Nat Prod Rep 2017; 33:761-800. [PMID: 26911790 DOI: 10.1039/c5np00083a] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available.
Collapse
Affiliation(s)
- C L Charron
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - J L Hickey
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - T K Nsiama
- London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| | - D R Cruickshank
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - W L Turnbull
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - L G Luyt
- Department of Chemistry, The University of Western Ontario, London, Canada. and Departments of Oncology and Medical Imaging, The University of Western Ontario, London, Canada and London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| |
Collapse
|
26
|
Mansour N, Dumulon-Perreault V, Ait-Mohand S, Paquette M, Lecomte R, Guérin B. Impact of dianionic and dicationic linkers on tumor uptake and biodistribution of [64Cu]Cu/NOTA peptide-based gastrin-releasing peptide receptors antagonists. J Labelled Comp Radiopharm 2017; 60:200-212. [DOI: 10.1002/jlcr.3491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/12/2017] [Accepted: 01/24/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Nematallah Mansour
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Véronique Dumulon-Perreault
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Samia Ait-Mohand
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Michel Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Roger Lecomte
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| |
Collapse
|
27
|
Basuli F, Zhang X, Woodroofe CC, Jagoda EM, Choyke PL, Swenson RE. Fast indirect fluorine-18 labeling of protein/peptide using the useful 6-fluoronicotinic acid-2,3,5,6-tetrafluorophenyl prosthetic group: A method comparable to direct fluorination. J Labelled Comp Radiopharm 2017; 60:168-175. [PMID: 27990672 PMCID: PMC5344719 DOI: 10.1002/jlcr.3487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022]
Abstract
Fluorine-18 labeling of biomolecules is mostly performed by an indirect labeling method using a prosthetic group. Fluorine-18 labeled 6-fluoronicotinic acid-2,3,5,6-tetrafluorophenyl ester is a useful prosthetic group to radiolabel a protein. Recently, we reported an improved preparation of this prosthetic group. To test the conjugation efficiency of the labeled ester prepared by this method, we have performed conjugation reactions with a peptide, a protein, and a small molecule. Prostate-specific membrane antigen targeting small molecule [18 F]DCFPyL, αvβ3 integrin receptors targeting peptide [18 F]c(RGDfK) and [18 F]albumin were prepared in good radiochemical yields. The conjugation reactions were completed at 40°C to 50°C in 10 minutes. The overall radiochemical yield was 25% to 43% in 30 to 45 minutes.
Collapse
Affiliation(s)
- Falguni Basuli
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Xiang Zhang
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Carolyn C Woodroofe
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Elaine M Jagoda
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rolf E Swenson
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
28
|
Perreault A, Richter S, Bergman C, Wuest M, Wuest F. Targeting Phosphatidylserine with a 64Cu-Labeled Peptide for Molecular Imaging of Apoptosis. Mol Pharm 2016; 13:3564-3577. [DOI: 10.1021/acs.molpharmaceut.6b00666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Amanda Perreault
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 2X4, Canada
| | - Susan Richter
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 2X4, Canada
| | - Cody Bergman
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 2X4, Canada
| | - Melinda Wuest
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 2X4, Canada
| | - Frank Wuest
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 2X4, Canada
| |
Collapse
|
29
|
Charron CL, Farnsworth AL, Roselt PD, Hicks RJ, Hutton CA. Recent developments in radiolabelled peptides for PET imaging of cancer. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Shi J, Wang F, Liu S. Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. BIOPHYSICS REPORTS 2016; 2:1-20. [PMID: 27819026 PMCID: PMC5071373 DOI: 10.1007/s41048-016-0021-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/01/2016] [Indexed: 12/19/2022] Open
Abstract
The integrin family comprises 24 transmembrane receptors, each a heterodimeric combination of one of 18α and one of 8β subunits. Their main function is to integrate the cell adhesion and interaction with the extracellular microenvironment with the intracellular signaling and cytoskeletal rearrangement through transmitting signals across the cell membrane upon ligand binding. Integrin αvβ3 is a receptor for the extracellular matrix proteins containing arginine–glycine–aspartic (RGD) tripeptide sequence. The αvβ3 is generally expressed in low levels on the epithelial cells and mature endothelial cells, but it is highly expressed in many solid tumors. The αvβ3 levels correlate well with the potential for tumor metastasis and aggressiveness, which make it an important biological target for development of antiangiogenic drugs, and molecular imaging probes for early tumor diagnosis. Over the last decade, many radiolabeled cyclic RGD peptides have been evaluated as radiotracers for imaging tumors by SPECT or PET. Even though they are called “αvβ3-targeted” radiotracers, the radiolabeled cyclic RGD peptides are also able to bind αvβ5, α5β1, α6β4, α4β1, and αvβ6 integrins, which may help enhance their tumor uptake due to the “increased receptor population.” This article will use the multimeric cyclic RGD peptides as examples to illustrate basic principles for development of integrin-targeted radiotracers and focus on different approaches to maximize their tumor uptake and T/B ratios. It will also discuss important assays for pre-clinical evaluations of the integrin-targeted radiotracers, and their potential applications as molecular imaging tools for noninvasive monitoring of tumor metastasis and early detection of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Jiyun Shi
- Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ; Medical Isotopes Research Center, Peking University, Beijing, 100191 China
| | - Fan Wang
- Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ; Medical Isotopes Research Center, Peking University, Beijing, 100191 China
| | - Shuang Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
31
|
Richter S, Wuest M, Bergman CN, Krieger S, Rogers BE, Wuest F. Metabolically Stabilized (68)Ga-NOTA-Bombesin for PET Imaging of Prostate Cancer and Influence of Protease Inhibitor Phosphoramidon. Mol Pharm 2016; 13:1347-57. [PMID: 26973098 DOI: 10.1021/acs.molpharmaceut.5b00970] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide receptor-based targeted molecular imaging and therapy of cancer is on the current forefront of nuclear medicine preclinical research and clinical practice. The frequent overexpression of gastrin-releasing peptide (GRP) receptors in prostate cancer stimulated the development of radiolabeled bombesin derivatives as high affinity peptide ligands for selective targeting of the GRP receptor. In this study, we have evaluated a novel (68)Ga-labeled bombesin derivative for PET imaging of prostate cancer in vivo. In addition, we were interested in testing the recently proposed "serve-and-protect" strategy to improve metabolic stability of radiolabeled peptides in vivo and to enhance tumor uptake. GRP receptor targeting peptides NOTA-BBN2 and (nat)Ga-NOTA-BBN2 demonstrated a characteristic antagonistic profile and high binding affinity toward the GRP receptor in PC3 cells (IC50 4.6-8.2 nM). Radiolabeled peptide (68)Ga-NOTA-BBN2 was obtained from NOTA-BBN2 in radiochemical yields greater than 62% (decay-corrected). Total synthesis time was 35 min, including purification using solid-phase extraction. (68)Ga-NOTA-BBN2 exhibited favorable resistance against metabolic degradation by peptidases in vivo within the investigated time frame of 60 min. Interestingly, metabolic stability was not further enhanced in the presence of protease inhibitor phosphoramidon. Dynamic PET studies showed high tumor uptake in both PC3- and LNCaP-bearing BALB/c nude mice (SUV5min > 0.6; SUV60min > 0.5). Radiotracer (68)Ga-NOTA-BBN2 represents a novel radiometal-based bombesin derivative suitable for GRP receptor targeting in PC3 and LNCaP mouse xenografts. Further increase of metabolic stability in vivo and enhanced tumor uptake were not observed upon administration of protease inhibitor phosphoramidon. This led to the conclusion that the recently proposed "serve-and-protect" strategy may not be valid for peptides exhibiting favorable intrinsic metabolic stability in vivo.
Collapse
Affiliation(s)
- Susan Richter
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Alberta T6G 2X4, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Alberta T6G 2X4, Canada
| | - Cody N Bergman
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Alberta T6G 2X4, Canada
| | - Stephanie Krieger
- Department of Radiation Oncology, Washington University School of Medicine , St. Louis, Missouri 63108, United States
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine , St. Louis, Missouri 63108, United States
| | - Frank Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Alberta T6G 2X4, Canada
| |
Collapse
|
32
|
Accardo A, Galli F, Mansi R, Del Pozzo L, Aurilio M, Morisco A, Ringhieri P, Signore A, Morelli G, Aloj L. Pre-clinical evaluation of eight DOTA coupled gastrin-releasing peptide receptor (GRP-R) ligands for in vivo targeting of receptor-expressing tumors. EJNMMI Res 2016; 6:17. [PMID: 26897133 PMCID: PMC4761355 DOI: 10.1186/s13550-016-0175-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 01/24/2023] Open
Abstract
Background Overexpression of the gastrin-releasing peptide receptor (GRP-R) has been documented in several human neoplasms such as breast, prostate, and ovarian cancer. There is growing interest in developing radiolabeled peptide-based ligands toward these receptors for the purpose of in vivo imaging and radionuclide therapy of GRP-R-overexpressing tumors. A number of different peptide sequences, isotopes, and labeling methods have been proposed for this purpose. The aim of this work is to perform a direct side-by-side comparison of different GRP-R binding peptides utilizing a single labeling strategy to identify the most suitable peptide sequence. Methods Solid-phase synthesis of eight derivatives (BN1-8) designed based on literature analysis was carried out. Peptides were coupled to the DOTA chelator through a PEG4 spacer at the N-terminus. Derivatives were characterized for serum stability, binding affinity on PC-3 human prostate cancer cells, biodistribution in tumor-bearing mice, and gamma camera imaging at 1, 6, and 24 h after injection. Results Serum stability was quite variable among the different compounds with half-lives ranging from 16 to 400 min at 37 °C. All compounds tested showed Kd values in the nanomolar range with the exception of BN3 that showed no binding. Biodistribution and imaging studies carried out for compounds BN1, BN4, BN7, and BN8 showed targeting of the GRP-R-positive tumors and the pancreas. The BN8 compound (DOTA-PEG-DPhe-Gln-Trp-Ala-Val-NMeGly-His-Sta-Leu-NH2) showed high affinity, the longest serum stability, and the highest target-to-background ratios in biodistribution and imaging experiments among the compounds tested. Conclusions Our results indicate that the NMeGly for Gly substitution and the Sta-Leu substitution at the C-terminus confer high serum stability while maintaining high receptor affinity, resulting in biodistribution properties that outperform those of the other peptides.
Collapse
Affiliation(s)
- Antonella Accardo
- Department of Pharmacy, CIRPeB, University of Naples "Federico II" and Invectors srl, Napoli, Italy
| | - Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Roma, Rome, Italy
| | - Rosalba Mansi
- Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Luigi Del Pozzo
- Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Michela Aurilio
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Mercogliano (AV), Italy
| | - Anna Morisco
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Mercogliano (AV), Italy
| | - Paola Ringhieri
- Department of Pharmacy, CIRPeB, University of Naples "Federico II" and Invectors srl, Napoli, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Roma, Rome, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, CIRPeB, University of Naples "Federico II" and Invectors srl, Napoli, Italy
| | - Luigi Aloj
- Struttura Complessa Medicina Nucleare, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Via M. Semmola, 52, Napoli, 80131, Italy.
| |
Collapse
|
33
|
Bernard-Gauthier V, Bailey JJ, Liu Z, Wängler B, Wängler C, Jurkschat K, Perrin DM, Schirrmacher R. From Unorthodox to Established: The Current Status of (18)F-Trifluoroborate- and (18)F-SiFA-Based Radiopharmaceuticals in PET Nuclear Imaging. Bioconjug Chem 2015; 27:267-79. [PMID: 26566577 DOI: 10.1021/acs.bioconjchem.5b00560] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Unorthodox (18)F-labeling strategies not employing the formation of a carbon-(18)F bond are seldom found in radiochemistry. Historically, the formation of a boron- or silicon-(18)F bond has been introduced very early on into the repertoire of labeling chemistries, but is without translation into any clinical radiotracer besides inorganic B[(18)F]F4(-) for brain tumor diagnosis. For many decades these labeling methodologies were forgotten and have just recently been revived by a handful of researchers thinking outside the box. When breaking with established paradigms such as the inability to obtain labeled compounds of high specific activity via isotopic exchange or performing radiofluorination in aqueous media, the research community often reacts skeptically. In 2005 and 2006, two novel labeling methodologies were introduced into radiochemistry for positron emission tomography (PET) tracer development: RBF3(-) labeling reported by Perrin et al. and the SiFA methodology by Schirrmacher, Jurkschat, and Waengler et al. which is based on isotopic exchange (IE). Both labeling methodologies have been complemented by other noncanonical strategies to introduce (18)F into biomolecules of diagnostic importance, thus profoundly enriching the landscape of (18)F radiolabeling. B- and Si-based labeling strategies finally revealed that IE is a viable alternative to established and traditional radiochemistry with the advantage of simplifying both the labeling effort as well as the necessary purification of the radiotracer. Hence IE will be the focus of this contribution over other noncanonical labeling methods. Peptides for tumor imaging especially lend themselves favorably toward one-step labeling via IE, but small molecules have been described as well, taking advantage of these new approaches, and have been used successfully for brain imaging. This Review gives an account of both radiochemistries centered on boron and silicon, describing the very beginnings of their basic research, the path that led to optimization of their chemistries, and the first encouraging preclinical results paving the way to their clinical use. This side by side approach will give the reader the opportunity to follow the development of a new basic discovery into a clinically applicable radiotracer including all the hurdles that have had to be overcome.
Collapse
Affiliation(s)
- Vadim Bernard-Gauthier
- Division of Oncological Imaging, Department of Oncology, University of Alberta , 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Justin J Bailey
- Division of Oncological Imaging, Department of Oncology, University of Alberta , 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Zhibo Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | | | | | - Klaus Jurkschat
- Department of Chemistry and Chemical Biology, Technical University of Dortmund , 44227 Dortmund, Germany
| | - David M Perrin
- Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ralf Schirrmacher
- Division of Oncological Imaging, Department of Oncology, University of Alberta , 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
34
|
Litau S, Niedermoser S, Vogler N, Roscher M, Schirrmacher R, Fricker G, Wängler B, Wängler C. Next Generation of SiFAlin-Based TATE Derivatives for PET Imaging of SSTR-Positive Tumors: Influence of Molecular Design on In Vitro SSTR Binding and In Vivo Pharmacokinetics. Bioconjug Chem 2015; 26:2350-9. [PMID: 26420336 DOI: 10.1021/acs.bioconjchem.5b00510] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Silicon-Fluoride-Acceptor (SiFA)-(18)F-labeling strategy has been shown before to enable the straightforward and efficient (18)F-labeling of complex biologically active substances such as proteins and peptides. Especially in the case of peptides, the radiolabeling proceeds kit-like in short reaction times and without the need of complex product workup. SiFA-derivatized, (18)F-labeled Tyr(3)-octreotate (TATE) derivatives demonstrated, besides strong somatostatin receptor (SSTR) binding, favorable in vivo pharmacokinetics as well as excellent tumor visualization by PET imaging. In this study, we intended to determine the influence of the underlying molecular design and used molecular scaffolds of SiFAlin-TATE derivatives on SSTR binding as well as on the in vivo pharmacokinetics of the resulting (18)F-labeled peptides. For this purpose, new SiFAlin-(Asp)n-PEG1-TATE analogs (where n = 1-4) were synthesized, efficiently radiolabeled with (18)F in a kit-like manner and obtained in radiochemical yields of 70-80%, radiochemical purities of ≥97%, and nonoptimized specific activities of 20.1-45.2 GBq/μmol within 20-25 min starting from 0.7-1.5 GBq of (18)F. In the following, the radiotracer's lipophilicities and stabilities in human serum were determined. Furthermore, the SSTR-specific binding affinities were evaluated by a competitive displacement assay on SSTR-positive AR42J cells. The obtained in vitro results support the assumption that aspartic acids are able to considerably increase the radiotracer's hydrophilicity and that their number does not affect the SSTR binding potential of the TATE derivatives. The most promising tracer (18)F-SiFAlin-Asp3-PEG1-TATE [(18)F]6 (LogD = -1.23 ± 0.03, IC50 = 20.7 ± 2.5 nM) was further evaluated in vivo in AR42J tumor-bearing nude mice via PET/CT imaging against the clinical gold standard (68)Ga-DOTATATE as well as the previously developed SiFAlin-TATE derivative [(18)F]3. The results of these evaluations showed that [(18)F]6-although showing very similar chemical and in vitro properties to [(18)F]3-exhibits not only a slowed renal clearance compared to [(18)F]3, but also a higher absolute tumor uptake compared to (68)Ga-DOTATATE, and furthermore enables excellent tumor visualization with high image resolution. These results emphasize the importance of systematic study of the influence of molecular design and applied structure elements of peptidic radiotracers, as these may considerably influence in vivo pharmacokinetics while not affecting other parameters such as radiochemistry, lipophilicity, serum stability, or receptor binding potential.
Collapse
Affiliation(s)
| | | | | | | | - R Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta , Edmonton T6G 2R3, Canada
| | - G Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg , 69117 Heidelberg, Germany
| | | | | |
Collapse
|
35
|
Liu S. Radiolabeled Cyclic RGD Peptide Bioconjugates as Radiotracers Targeting Multiple Integrins. Bioconjug Chem 2015; 26:1413-38. [PMID: 26193072 DOI: 10.1021/acs.bioconjchem.5b00327] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a requirement for tumor growth and metastasis. The angiogenic process depends on vascular endothelial cell migration and invasion, and is regulated by various cell adhesion receptors. Integrins are such a family of receptors that facilitate the cellular adhesion to and migration on extracellular matrix proteins in the intercellular spaces and basement membranes. Among 24 members of the integrin family, αvβ3 is studied most extensively for its role in tumor angiogenesis and metastasis. The αvβ3 is expressed at relatively low levels on epithelial cells and mature endothelial cells, but it is highly expressed on the activated endothelial cells of tumor neovasculature and some tumor cells. This restricted expression makes αvβ3 an excellent target to develop antiangiogenic drugs and diagnostic molecular imaging probes. Since αvβ3 is a receptor for extracellular matrix proteins with one or more RGD tripeptide sequence, many radiolabeled cyclic RGD peptides have been evaluated as "αvβ3-targeted" radiotracers for tumor imaging over the past decade. This article will use the dimeric and tetrameric cyclic RGD peptides developed in our laboratories as examples to illustrate basic principles for development of αvβ3-targeted radiotracers. It will focus on different approaches to maximize the radiotracer tumor uptake and tumor/background ratios. This article will also discuss some important assays for preclinical evaluations of integrin-targeted radiotracers. In general, multimerization of cyclic RGD peptides increases their integrin binding affinity and the tumor uptake and retention times of their radiotracers. Regardless of their multiplicity, the capability of cyclic RGD peptides to bind other integrins (namely, αvβ5, α5β1, α6β4, α4β1, and αvβ6) is expected to enhance the radiotracer tumor uptake due to the increased integrin population. The results from preclinical and clinical studies clearly show that radiolabeled cyclic RGD peptides (such as (99m)Tc-3P-RGD2, (18)F-Alfatide-I, and (18)F-Alfatide-II) are useful as the molecular imaging probes for early cancer detection and noninvasive monitoring of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Shuang Liu
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
36
|
Niedermoser S, Chin J, Wängler C, Kostikov A, Bernard-Gauthier V, Vogler N, Soucy JP, McEwan AJ, Schirrmacher R, Wängler B. In Vivo Evaluation of ¹⁸F-SiFAlin-Modified TATE: A Potential Challenge for ⁶⁸Ga-DOTATATE, the Clinical Gold Standard for Somatostatin Receptor Imaging with PET. J Nucl Med 2015; 56:1100-5. [PMID: 25977461 DOI: 10.2967/jnumed.114.149583] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/30/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Radiolabeled peptides for tumor imaging with PET that can be produced with kits are currently in the spotlight of radiopharmacy and nuclear medicine. The diagnosis of neuroendocrine tumors in particular has been a prime example for the usefulness of peptides labeled with a variety of different radionuclides. Among those, (68)Ga and (18)F stand out because of the ease of radionuclide introduction (e.g., (68)Ga isotope) or optimal nuclide properties for PET imaging (slightly favoring the (18)F isotope). The in vivo properties of good manufacturing practice-compliant, newly developed kitlike-producible (18)F-SiFA- and (18)F-SiFAlin- (SiFA = silicon-fluoride acceptor) modified TATE derivatives were compared with the current clinical gold standard (68)Ga-DOTATATE for high-quality imaging of somatostatin receptor-bearing tumors. METHODS SiFA- and SiFAlin-derivatized somatostatin analogs were synthesized and radiolabeled using cartridge-based dried (18)F and purified via a C18 cartridge (radiochemical yield 49.8% ± 5.9% within 20-25 min) without high-performance liquid chromatography purification. Tracer lipophilicity and stability in human serum were tested in vitro. Competitive receptor binding affinity studies were performed using AR42J cells. The most promising tracers were evaluated in vivo in an AR42J xenograft mouse model by ex vivo biodistribution and in vivo PET/CT imaging studies for evaluation of their pharmacokinetic profiles, and the results were compared with those of the current clinical gold standard (68)Ga-DOTATATE. RESULTS Synthetically easily accessible (18)F-labeled silicon-fluoride acceptor-modified somatostatin analogs were developed. They exhibited high binding affinities to somatostatin receptor-positive tumor cells (1.88-14.82 nM). The most potent compound demonstrated comparable pharmacokinetics and an even slightly higher absolute tumor accumulation level in ex vivo biodistribution studies as well as higher tumor standardized uptake values in PET/CT imaging than (68)Ga-DOTATATE in vivo. The radioactivity uptake in nontumor tissue was higher than for (68)Ga-DOTATATE. CONCLUSION The introduction of the novel SiFA building block SiFAlin and of hydrophilic auxiliaries enables a favorable in vivo biodistribution profile of the modified TATE peptides, resulting in high tumor-to-background ratios although lower than those observed with (68)Ga-DOTATATE. As further advantage, the SiFA methodology enables a kitlike labeling procedure for (18)F-labeled peptides advantageous for routine clinical application.
Collapse
Affiliation(s)
- Sabrina Niedermoser
- Division of Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Joshua Chin
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Carmen Wängler
- Division of Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Alexey Kostikov
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Vadim Bernard-Gauthier
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada Division of Oncological Imaging, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Nils Vogler
- Division of Nuclear Medicine, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany; and
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada Concordia-PERFORM Centre, Concordia University, Montreal, Canada
| | - Alexander J McEwan
- Division of Oncological Imaging, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Ralf Schirrmacher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada Division of Oncological Imaging, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Björn Wängler
- Division of Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| |
Collapse
|
37
|
Richter S, Wuest M, Bergman CN, Way JD, Krieger S, Rogers BE, Wuest F. Rerouting the metabolic pathway of (18)F-labeled peptides: the influence of prosthetic groups. Bioconjug Chem 2015; 26:201-12. [PMID: 25572982 DOI: 10.1021/bc500599m] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Current translational cancer research is directed to the development of high affinity peptide ligands for targeting neuropeptide receptors overexpressed in different types of cancer. Besides their desired high binding affinity to the receptor, the suitability of radiolabeled peptides as targeting vectors for molecular imaging and therapy depends on additional aspects such as high tumor-to-background ratio, favorable clearance pattern from nontarget tissue, and sufficient metabolic stability in vivo. This study reports how a switch from the prosthetic group, N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB), to 2-deoxy-2-[(18)F]fluoro-d-glucose ([(18)F]FDG) effects the metabolic pathway of an (18)F-labeled bombesin derivative, QWAV-Sar-H-FA01010-Tle-NH2. (18)F-Labeled bombesin derivatives represent potent peptide ligands for selective targeting of gastrin-releasing peptide (GRP) receptor-expressing prostate cancer. Radiosynthesis of (18)F-labeled bombesin analogues [(18)F]FBz-Ava-BBN2 and [(18)F]FDG-AOAc-BBN2 was achieved in good radiochemical yields of ~50% at a specific activity exceeding 40 GBq/μmol. Both nonradioactive compounds FBz-Ava-BBN2 and FDG-AOAc-BBN2 inhibited binding of [(125)I]Tyr(4)-bombesin(1-14) in PC3 cells with IC50 values of 9 and 16 nM, respectively, indicating high inhibitory potency. Influence of each prosthetic group was further investigated in PC3 mouse xenografts using dynamic small animal PET imaging. In comparison to [(18)F]FBz-Ava-BBN2, total tumor uptake levels were doubled after injection of [(18)F]FDG-AOAc-BBN2 while renal elimination was increased. Blood clearance and in vivo metabolic stability were similar for both compounds. The switch from [(18)F]SFB to [(18)F]FDG as the prosthetic group led to a significant reduction in lipophilicity which resulted in more favorable renal clearance and increased tumor uptake. The presented single step radiolabeling-glycosylation approach represents an innovative strategy for site-directed peptide labeling with the short-lived positron emitter (18)F while providing a favorable pharmacokinetic profile of (18)F-labeled peptides.
Collapse
Affiliation(s)
- Susan Richter
- Department of Oncology, University of Alberta, Cross Cancer Institute , 11560 University Avenue, Edmonton, Alberta T6G 2X4, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Richter S, Wuest F. 18F-Labeled Peptides: The Future Is Bright. Molecules 2014; 19:20536-20556. [PMID: 25493636 PMCID: PMC6271677 DOI: 10.3390/molecules191220536] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 01/10/2023] Open
Abstract
Radiolabeled peptides have been the subject of intense research efforts for targeted diagnostic imaging and radiotherapy over the last 20 years. Peptides offer several advantages for receptor imaging and targeted radiotherapy. The low molecular weight of peptides allows for rapid clearance from the blood and non-target tissue, which results in favorable target-to-non-target ratios. Moreover, peptides usually display good tissue penetration and they are generally non-immunogenic. A major drawback is their potential low metabolic stability. The majority of currently used radiolabeled peptides for targeted molecular imaging and therapy of cancer is labeled with various radiometals like 99mTc, 68Ga, and 177Lu. However, over the last decade an increasing number of 18F-labeled peptides have been reported. Despite of obvious advantages of 18F like its ease of production in large quantities at high specific activity, the low β+ energy (0.64 MeV) and the favorable half-life (109.8 min), 18F-labeling of peptides remains a special challenge. The first part of this review will provide a brief overview on chemical strategies for peptide labeling with 18F. A second part will discuss recent technological advances for 18F-labeling of peptides with special focus on microfluidic technology, automation, and kit-like preparation of 18F-labeled peptides.
Collapse
Affiliation(s)
- Susan Richter
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
39
|
Liang S, Ma Y, Guo J, Guo R, Wang H. 18F-radiolabeled analogs of peptide RGD-A7R for simultaneous PET imaging of both αvβ3 and VEGF in tumors. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3689-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Target selective micelles for bombesin receptors incorporating Au(III)-dithiocarbamato complexes. Int J Pharm 2014; 473:194-202. [DOI: 10.1016/j.ijpharm.2014.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 01/27/2023]
|
41
|
Rapid and one-step radiofluorination of bioactive peptides: Potential PET radiopharmaceuticals. Appl Radiat Isot 2014; 91:17-23. [DOI: 10.1016/j.apradiso.2014.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/26/2014] [Accepted: 05/01/2014] [Indexed: 11/17/2022]
|
42
|
Burke BP, Clemente GS, Archibald SJ. Boron-18F containing positron emission tomography radiotracers: advances and opportunities. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:96-110. [DOI: 10.1002/cmmi.1615] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/14/2014] [Accepted: 06/26/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Benjamin P. Burke
- Department of Chemistry; University of Hull; Hull HU6 7RX UK
- Positron Emission Tomography Research Centre; University of Hull; Hull HU6 7RX UK
| | - Gonçalo S. Clemente
- Positron Emission Tomography Research Centre; University of Hull; Hull HU6 7RX UK
| | - Stephen J. Archibald
- Department of Chemistry; University of Hull; Hull HU6 7RX UK
- Positron Emission Tomography Research Centre; University of Hull; Hull HU6 7RX UK
| |
Collapse
|
43
|
¹⁸F-labeled silicon-based fluoride acceptors: potential opportunities for novel positron emitting radiopharmaceuticals. BIOMED RESEARCH INTERNATIONAL 2014; 2014:454503. [PMID: 25157357 PMCID: PMC4135131 DOI: 10.1155/2014/454503] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Over the recent years, radiopharmaceutical chemistry has experienced a wide variety of innovative pushes towards finding both novel and unconventional radiochemical methods to introduce fluorine-18 into radiotracers for positron emission tomography (PET). These "nonclassical" labeling methodologies based on silicon-, boron-, and aluminium-(18)F chemistry deviate from commonplace bonding of an [(18)F]fluorine atom ((18)F) to either an aliphatic or aromatic carbon atom. One method in particular, the silicon-fluoride-acceptor isotopic exchange (SiFA-IE) approach, invalidates a dogma in radiochemistry that has been widely accepted for many years: the inability to obtain radiopharmaceuticals of high specific activity (SA) via simple IE. METHODOLOGY The most advantageous feature of IE labeling in general is that labeling precursor and labeled radiotracer are chemically identical, eliminating the need to separate the radiotracer from its precursor. SiFA-IE chemistry proceeds in dipolar aprotic solvents at room temperature and below, entirely avoiding the formation of radioactive side products during the IE. SCOPE OF REVIEW A great plethora of different SiFA species have been reported in the literature ranging from small prosthetic groups and other compounds of low molecular weight to labeled peptides and most recently affibody molecules. CONCLUSIONS The literature over the last years (from 2006 to 2014) shows unambiguously that SiFA-IE and other silicon-based fluoride acceptor strategies relying on (18)F(-) leaving group substitutions have the potential to become a valuable addition to radiochemistry.
Collapse
|
44
|
Levi J, Sathirachinda A, Gambhir SS. A high-affinity, high-stability photoacoustic agent for imaging gastrin-releasing peptide receptor in prostate cancer. Clin Cancer Res 2014; 20:3721-9. [PMID: 24850845 DOI: 10.1158/1078-0432.ccr-13-3405] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the utility of targeted photoacoustic imaging (PAI) in providing molecular information to complement intrinsic functional and anatomical details of the vasculature within prostate lesion. EXPERIMENTAL DESIGN We developed a PAI agent, AA3G-740, that targets gastrin-releasing peptide receptor (GRPR), found to be highly overexpressed in prostate cancer. The binding specificity of the agent was evaluated in human prostate cancer cell lines, PC3 and LNCaP, and antagonist properties determined by cell internalization and intracellular calcium mobilization studies. The imaging sensitivity was assessed for the agent itself and for the PC3 cells labeled with agent. The in vivo stability of the agent was determined in human plasma and in the blood of living mice. The in vivo binding of the agent was evaluated in PC3 prostate tumor models in mice, and was validated ex vivo by optical imaging. RESULTS AA3G-740 demonstrated strong and specific binding to GRPR. The sensitivity of detection in vitro indicated suitability of the agent to image very small lesions. In mice, the agent was able to bind to GRPR even in poorly vascularized tumors leading to nearly 2-fold difference in photoacoustic signal relative to the control agent. CONCLUSIONS The ability to image both vasculature and molecular profile outside the blood vessels gives molecular PAI a unique advantage over currently used imaging techniques. The imaging method presented here can find application both in diagnosis and in image-guided biopsy.
Collapse
Affiliation(s)
- Jelena Levi
- Authors' Affiliations: Canary Center at Stanford for Cancer Early Detection; and Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Palo Alto, Stanford, California
| | - Ataya Sathirachinda
- Authors' Affiliations: Canary Center at Stanford for Cancer Early Detection; and Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Palo Alto, Stanford, California
| | - Sanjiv S Gambhir
- Authors' Affiliations: Canary Center at Stanford for Cancer Early Detection; and Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Palo Alto, Stanford, California
| |
Collapse
|
45
|
Lindner S, Michler C, Leidner S, Rensch C, Wängler C, Schirrmacher R, Bartenstein P, Wängler B. Synthesis and in vitro and in vivo evaluation of SiFA-tagged bombesin and RGD peptides as tumor imaging probes for positron emission tomography. Bioconjug Chem 2014; 25:738-49. [PMID: 24666287 DOI: 10.1021/bc400588e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gastrin-releasing-peptide (GRP)-receptors and αvβ3-integrins are widely discussed as potential target structures for oncological imaging with positron emission tomography (PET). Favored by the overexpression of receptors on the surface of tumor cells good imaging characteristics can be achieved with highly specific radiolabeled receptor ligands. PEGylated bombesin (PESIN) derivatives as specific GRP receptor ligands and RGD (one-letter codes for arginine-glycine-aspartic acid) peptides as specific αvβ3 binders were synthesized and tagged with a silicon-fluorine-acceptor (SiFA) moiety. The SiFA synthon allows for a fast and highly efficient isotopic exchange reaction at room temperature giving the [(18)F]fluoride labeled peptides in up to 62% radiochemical yields (d.c.) and ≥99% radiochemical purity in a total synthesis time of less than 20 min. Using nanomolar quantities of precursor high specific activities of up to 60 GBq μmol(-1) were obtained. To compensate the high lipophilicity of the SiFA moiety various hydrophilic structure modifications were introduced leading to significantly reduced logD values. Competitive displacement experiments with the PESIN derivatives showed a 32 to 6 nM affinity to the GRP receptor on PC3 cells, and with the RGD peptides a 7 to 3 μM affinity to the αvβ3 integrins on U87MG cells. All derivatives proved to be stable in human plasma over at least 120 min. Small animal PET measurements and biodistribution studies revealed an enhanced and specific accumulation of the RGD peptide (18)F-SiFA-LysMe3-γ-carboxy-d-Glu-RGD (17) in the tumor tissue of U87MG tumor-bearing mice of 5.3% ID/g whereas the PESIN derivatives showed a high liver uptake and only a low accumulation in the tumor tissue of PC3 xenografts. Stability studies with compound 17 provided further information on its metabolism in vivo. These results altogether demonstrate that the reduction of the overall lipophilicity of SiFA tagged RGD peptides is a promising approach for the generation of novel potent (18)F-labeled imaging agents.
Collapse
Affiliation(s)
- Simon Lindner
- Department of Nuclear Medicine, University Hospital Munich, Ludwig-Maximilians-University , 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lindner S, Michler C, Wängler B, Bartenstein P, Fischer G, Schirrmacher R, Wängler C. PESIN Multimerization Improves Receptor Avidities and in Vivo Tumor Targeting Properties to GRPR-Overexpressing Tumors. Bioconjug Chem 2014; 25:489-500. [DOI: 10.1021/bc4004662] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Simon Lindner
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| | - Christina Michler
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| | | | - Peter Bartenstein
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| | - Gabriel Fischer
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| | - Ralf Schirrmacher
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Carmen Wängler
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
47
|
Koudih R, Kostikov A, Kovacevic M, Jolly D, Bernard-Gauthier V, Chin J, Jurkschat K, Wängler C, Wängler B, Schirrmacher R. Automated radiosynthesis of N-succinimidyl 3-(di-tert-butyl[(18)F]fluorosilyl)benzoate ([(18)F]SiFB) for peptides and proteins radiolabeling for positron emission tomography. Appl Radiat Isot 2014; 89:146-50. [PMID: 24631747 DOI: 10.1016/j.apradiso.2014.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/17/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022]
Abstract
Recently, silicon fluoride building blocks (SiFA) have emerged as valuable and promising tools to overcome challenges in the labeling of peptides and proteins for positron emission tomography (PET). Herein, we report a fully automated synthesis of N-succinimidyl 3-(di-tert-butyl[(18)F]fluorosilyl)benzoate ([(18)F]SiFB) by a commercially available Scintomics Hot Box 3 synthesis module, to be used as a prosthetic group for peptide and protein labeling. The drying of K2.2.2./K (18)F complex was performed according to the Munich method modified by our group (avoiding azeotropic drying) using oxalic acid to neutralize the base from the (18)F(-) containing QMA eluent. This K2.2.2./K (18)F complex was then used for SiFA (18)F-(19)F isotopic exchange followed by a fast purification by a solid-phase-extraction (SPE) to afford [(18)F]SiFB with an average preparative radiochemical yield (RCY) of 24±1% (non-decay corrected (NDC)) within a synthesis time of 30 min. The [(18)F]SiFB produced by automated synthesis was then used for the (18)F-labeling of rat serum albumin (RSA) as a proof of applicability.
Collapse
Affiliation(s)
- R Koudih
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada.
| | - A Kostikov
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada
| | - M Kovacevic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada
| | - D Jolly
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada
| | - V Bernard-Gauthier
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada
| | - J Chin
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada
| | - K Jurkschat
- Department of Inorganic Chemistry II, Faculty of Chemistry, TU Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany
| | - C Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - B Wängler
- Molecular Imaging and Radiopharmaceutical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - R Schirrmacher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada.
| |
Collapse
|
48
|
Laverman P, McBride WJ, Sharkey RM, Goldenberg DM, Boerman OC. Al18F labeling of peptides and proteins. J Labelled Comp Radiopharm 2014; 57:219-23. [DOI: 10.1002/jlcr.3161] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/29/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Peter Laverman
- Department of Nuclear Medicine; Radboud University Medical Center; Nijmegen The Netherlands
| | | | | | | | - Otto C. Boerman
- Department of Nuclear Medicine; Radboud University Medical Center; Nijmegen The Netherlands
| |
Collapse
|
49
|
Liu Z, Hundal-Jabal N, Wong M, Yapp D, Lin KS, Bénard F, Perrin DM. A new18F-heteroaryltrifluoroborate radio-prosthetic with greatly enhanced stability that is labelled by18F–19F-isotope exchange in good yield at high specific activity. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00328k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Using 5-deoxy-5-[18F]fluororibose to glycosylate peptides for positron emission tomography. Nat Protoc 2013; 9:138-45. [PMID: 24356772 DOI: 10.1038/nprot.2013.170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
So far seven peptide-based (18)F-radiopharmaceuticals for diagnostic applications with positron emission tomography (PET) have entered into clinical trials. Three candidates out of these seven are glycosylated peptides, which may be explained by the beneficial influence of glycosylation on in vivo pharmacokinetics of peptide tracers. This protocol describes the method for labeling peptides with 5-deoxy-5-[(18)F]fluororibose ([(18)F]FDR) as a prosthetic group. The synthesis of [(18)F]FDR is effected by a nucleophilic fluorination step by using dried Kryptofix 2.2.2-K2CO3-K(18)F complex and a subsequent HCl-catalyzed hydrolysis. The conjugation of [(18)F]FDR to the N-terminus aminooxy (-ONH2)-functionalized peptides is carried out in anilinium buffer at pH 4.6 and at room temperature (RT, 21-23 °C), with the concentration of peptide precursors being 0.3 mM. The procedure takes about 120 min and includes two cartridge isolation steps and two reversed-phase (RP) HPLC purification steps. The quaternary methyl amine (QMA) anion exchange cartridge and the hydrophilic-lipophilic balanced (HLB) cartridge are used for the isolation of (18)F-fluoride and [(18)F]FDR-conjugated peptides, respectively. The first HPLC purification provides the (18)F-fluorinated precursor of [(18)F]FDR and the second HPLC purification is to separate labeled peptides from their unlabeled precursors. The final product is formulated in PBS ready for injection, with a radiochemical purity of >98% and a radiochemical yield (RCY) of 27-37% starting from the end of bombardment (EOB). The carbohydrate nature of [(18)F]FDR and the operational convenience of this protocol should facilitate its general use.
Collapse
|