1
|
Leng Y, Britten CN, Tarannum F, Foley K, Billings C, Liu Y, Walters KB. Stimuli-Responsive Phosphate Hydrogel: A Study on Swelling Behavior, Mechanical Properties, and Application in Expansion Microscopy. ACS OMEGA 2024; 9:37687-37701. [PMID: 39281925 PMCID: PMC11391540 DOI: 10.1021/acsomega.4c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
Phosphorus-based stimuli-responsive hydrogels have potential in a wide range of applications due to their ionizable phosphorus groups, biocompatibility, and tunable swelling capacity utilizing hydrogel design parameters and external stimuli. In this study, poly(2-methacryloyloxyethyl phosphate) (PMOEP) hydrogels were synthesized via aqueous activators regenerated by electron transfer atomic transfer radical polymerization using ascorbic acid as the reducing agent. Swelling and deswelling behaviors of PMOEP hydrogels were examined in different salt solutions, pH conditions, and temperatures. The degree of swelling in salt solutions followed CaCl2 < MgCl2 < KCl < NaCl with a decrease in swelling rate at higher concentrations until reaching a saturation point. In water, the degree of swelling increased significantly around neutral pH and remained constant at basic pH values. The effects of polymerization conditions, including pH, temperature (30, 40, 50 °C), and MOEP concentration (40, 50, 60% v/v MOEP/H2O), on the hydrogel swelling behavior in various salt solutions were also investigated. PMOEP hydrogels showed a decrease in the degree of swelling as the pH was increased above the native pH of the monomer solution. Scanning electron microscopy and energy-dispersive spectroscopy were utilized to examine the microstructure and chemical composition of the dried hydrogel after salt solution swelling. Cytotoxicity testing using rat bone marrow stem cells confirmed the biocompatibility of the PMOEP hydrogels. A unique feature of this effort was evaluation of these phosphate hydrogels for use in expansion microscopy where a significant twofold enhancement in cellular expansion capacity was showcased utilizing 4T1 mouse breast cancer cells. This comprehensive study provides valuable insights into the stimuli-responsive behavior and expansion characteristics of phosphate hydrogels, highlighting their potential in diverse biomedical applications.
Collapse
Affiliation(s)
- Yokly Leng
- School of Chemical, Materials, and Biological Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Collin N Britten
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Fatema Tarannum
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Kayla Foley
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Christopher Billings
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yingtao Liu
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Keisha B Walters
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Mu Y, Zhang Z, Zhou H, Ma L, Wang DA. Applications of nanotechnology in remodeling the tumour microenvironment for glioblastoma treatment. Biomater Sci 2024; 12:4045-4064. [PMID: 38993162 DOI: 10.1039/d4bm00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
With the increasing research and deepening understanding of the glioblastoma (GBM) tumour microenvironment (TME), novel and more effective therapeutic strategies have been proposed. The GBM TME involves intricate interactions between tumour and non-tumour cells, promoting tumour progression. Key therapeutic goals for GBM treatment include improving the immunosuppressive microenvironment, enhancing the cytotoxicity of immune cells against tumours, and inhibiting tumour growth and proliferation. Consequently, remodeling the GBM TME using nanotechnology has emerged as a promising approach. Nanoparticle-based drug delivery enables targeted delivery, thereby improving treatment specificity, facilitating combination therapies, and optimizing drug metabolism. This review provides an overview of the GBM TME and discusses the methods of remodeling the GBM TME using nanotechnology. Specifically, it explores the application of nanotechnology in ameliorating immune cell immunosuppression, inducing immunogenic cell death, stimulating, and recruiting immune cells, regulating tumour metabolism, and modulating the crosstalk between tumours and other cells.
Collapse
Affiliation(s)
- Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Liang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
- Centre for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
He K, Cai P, Ji S, Tang Z, Fang Z, Li W, Yu J, Su J, Luo Y, Zhang F, Wang T, Wang M, Wan C, Pan L, Ji B, Li D, Chen X. An Antidehydration Hydrogel Based on Zwitterionic Oligomers for Bioelectronic Interfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311255. [PMID: 38030137 DOI: 10.1002/adma.202311255] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/27/2023] [Indexed: 12/01/2023]
Abstract
Hydrogels are ideal interfacing materials for on-skin healthcare devices, yet their susceptibility to dehydration hinders their practical use. While incorporating hygroscopic metal salts can prevent dehydration and maintain ionic conductivity, concerns arise regarding metal toxicity due to the passage of small ions through the skin barrier. Herein, an antidehydration hydrogel enabled by the incorporation of zwitterionic oligomers into its network is reported. This hydrogel exhibits exceptional water retention properties, maintaining ≈88% of its weight at 40% relative humidity, 25 °C for 50 days and about 84% after being heated at 50 °C for 3 h. Crucially, the molecular weight design of the embedded oligomers prevents their penetration into the epidermis, as evidenced by experimental and molecular simulation results. The hydrogel allows stable signal acquisition in electrophysiological monitoring of humans and plants under low-humidity conditions. This research provides a promising strategy for the development of epidermis-safe and biocompatible antidehydration hydrogel interfaces for on-skin devices.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaobo Ji
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zihan Tang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Zhou Fang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wenlong Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jing Yu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yifei Luo
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Feilong Zhang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liang Pan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Baohua Ji
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dechang Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
4
|
Zhang C, Wei C, Huang X, Hou C, Liu C, Zhang S, Zhao Z, Liu Y, Zhang R, Zhou L, Li Y, Yuan X, Zhang J. MPC-n (IgG) improves long-term cognitive impairment in the mouse model of repetitive mild traumatic brain injury. BMC Med 2023; 21:199. [PMID: 37254196 DOI: 10.1186/s12916-023-02895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Contact sports athletes and military personnel who suffered a repetitive mild traumatic brain injury (rmTBI) are at high risk of neurodegenerative diseases such as advanced dementia and chronic traumatic encephalopathy (CTE). However, due to the lack of specific biological indicators in clinical practice, the diagnosis and treatment of rmTBI are quite limited. METHODS We used 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules to deliver immunoglobulins (IgG), which can increase the delivery efficiency and specific target of IgG while reducing the effective therapeutic dose of the drug. RESULTS Our results demonstrated that MPC-capsuled immunoglobulins (MPC-n (IgG)) significantly alleviated cognitive impairment, hippocampal atrophy, p-Tau deposition, and myelin injury in rmTBI mice compared with free IgG. Furthermore, MPC-n (IgG) can also effectively inhibit the activation of microglia and the release of inflammatory factors. CONCLUSIONS In the present study, we put forward an efficient strategy for the treatment of rmTBI-related cognitive impairment and provide evidence for the administration of low-dose IgG.
Collapse
Affiliation(s)
- Chaonan Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cheng Wei
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingqi Huang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Changxin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chuan Liu
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shu Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zilong Zhao
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yafan Liu
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ruiguang Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lei Zhou
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Li
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Jianning Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
5
|
Ji Y, Liu D, Zhu H, Bao L, Chang R, Gao X, Yin J. Unstructured Polypeptides as a Versatile Drug Delivery Technology. Acta Biomater 2023; 164:74-93. [PMID: 37075961 DOI: 10.1016/j.actbio.2023.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Although polyethylene glycol (PEG), or "PEGylation" has become a widely applied approach for improving the efficiency of drug delivery, the immunogenicity and non-biodegradability of this synthetic polymer have prompted an evident need for alternatives. To overcome these caveats and to mimic PEG -or other natural or synthetic polymers- for the purpose of drug half-life extension, unstructured polypeptides are designed. Due to their tunable length, biodegradability, low immunogenicity and easy production, unstructured polypeptides have the potential to replace PEG as the preferred technology for therapeutic protein/peptide delivery. This review provides an overview of the evolution of unstructured polypeptides, starting from natural polypeptides to engineered polypeptides and discusses their characteristics. Then, it is described that unstructured polypeptides have been successfully applied to numerous drugs, including peptides, proteins, antibody fragments, and nanocarriers, for half-life extension. Innovative applications of unstructured peptides as releasable masks, multimolecular adaptors and intracellular delivery carriers are also discussed. Finally, challenges and future perspectives of this promising field are briefly presented. STATEMENT OF SIGNIFICANCE: : Polypeptide fusion technology simulating PEGylation has become an important topic for the development of long-circulating peptide or protein drugs without reduced activity, complex processes, and kidney injury caused by PEG modification. Here we provide a detailed and in-depth review of the recent advances in unstructured polypeptides. In addition to the application of enhanced pharmacokinetic performance, emphasis is placed on polypeptides as scaffolders for the delivery of multiple drugs, and on the preparation of reasonably designed polypeptides to manipulate the performance of proteins and peptides. This review will provide insight into future application of polypeptides in peptide or protein drug development and the design of novel functional polypeptides.
Collapse
Affiliation(s)
- Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Active-targeting long-acting protein-glycopolymer conjugates for selective cancer therapy. J Control Release 2023; 356:175-184. [PMID: 36871646 DOI: 10.1016/j.jconrel.2023.02.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Non-fouling polymers are effective in improving the pharmacokinetics of therapeutic proteins, but short of biological functions for tumor targeting. In contrast, glycopolymers are biologically active, but usually have poor pharmacokinetics. To address this dilemma, herein we report in situ growth of glucose- and oligo(ethylene glycol)-containing copolymers at the C-terminal site of interferon alpha, an antitumor and antivirus biological drug, to generate C-terminal interferon alpha-glycopolymer conjugates with tunable glucose contents. The in vitro activity and in vivo circulatory half-life of these conjugates were found to decrease with the increase of glucose content, which can be ascribed to complement activation by the glycopolymers. Additionally, the cancer cell endocytosis of the conjugates was observed to maximize at a critical glucose content due to the tradeoff between complement activation and glucose transporter recognition by the glycopolymers. As a result, in mice bearing ovarian cancers with overexpressed glucose transporter 1, the conjugates with optimized glucose contents were identified to possess improved cancer-targeting ability, enhanced anticancer immunity and efficacy, and increased animal survival rate. These findings provided a promising strategy for screening protein-glycopolymer conjugates with optimized glucose contents for selective cancer therapy.
Collapse
|
7
|
Yukioka S, Yusa SI, Prajapati V, Kuperkar K, Bahadur P. Self-assembly in newly synthesized dual-responsive double hydrophilic block copolymers (DHBCs) in aqueous solution. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Holz E, Darwish M, Tesar DB, Shatz-Binder W. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics 2023; 15:600. [PMID: 36839922 PMCID: PMC9959917 DOI: 10.3390/pharmaceutics15020600] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Over the past few decades, the complexity of molecular entities being advanced for therapeutic purposes has continued to evolve. A main propellent fueling innovation is the perpetual mandate within the pharmaceutical industry to meet the needs of novel disease areas and/or delivery challenges. As new mechanisms of action are uncovered, and as our understanding of existing mechanisms grows, the properties that are required and/or leveraged to enable therapeutic development continue to expand. One rapidly evolving area of interest is that of chemically enhanced peptide and protein therapeutics. While a variety of conjugate molecules such as antibody-drug conjugates, peptide/protein-PEG conjugates, and protein conjugate vaccines are already well established, others, such as antibody-oligonucleotide conjugates and peptide/protein conjugates using non-PEG polymers, are newer to clinical development. This review will evaluate the current development landscape of protein-based chemical conjugates with special attention to considerations such as modulation of pharmacokinetics, safety/tolerability, and entry into difficult to access targets, as well as bioavailability. Furthermore, for the purpose of this review, the types of molecules discussed are divided into two categories: (1) therapeutics that are enhanced by protein or peptide bioconjugation, and (2) protein and peptide therapeutics that require chemical modifications. Overall, the breadth of novel peptide- or protein-based therapeutics moving through the pipeline each year supports a path forward for the pursuit of even more complex therapeutic strategies.
Collapse
Affiliation(s)
- Emily Holz
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Martine Darwish
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Devin B. Tesar
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Whitney Shatz-Binder
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
9
|
Zhang L, Sun J, Huang W, Zhang S, Deng X, Gao W. Hypoxia-Triggered Bioreduction of Poly( N-oxide)-Drug Conjugates Enhances Tumor Penetration and Antitumor Efficacy. J Am Chem Soc 2023; 145:1707-1713. [PMID: 36601987 DOI: 10.1021/jacs.2c10188] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PEGylation prolongs the blood circulation time of drugs; however, it simultaneously reduces the tumor penetration of drugs due to the nonfouling function and bulky hydrodynamic volume of PEG, leading to unsatisfactory outcomes in the treatment of solid tumors. Herein, we report the in situ growth of a bioreducible polymer of poly(N-oxide) from an important protein drug of interferon alpha (IFN) to generate site-specific IFN-poly(N-oxide) conjugates with higher bioactivity than a clinically used PEGylated IFN of PEGASYS. An IFN-poly(N-oxide) conjugate is screened out to have a circulating half-life as long as 51 h, which is similar to that of PEGASYS but 96-fold greater than that of IFN. However, the conjugate greatly outperforms PEGASYS and IFN in tumor penetration and antitumor efficacy in mice bearing melanoma. This enhanced tumor penetration is ascribed to the adsorption-mediated transcytosis of the conjugate whose poly(N-oxide) is biologically reduced into poly(tertiary amine), under hypoxia, which can be further protonated in the acidic tumor microenvironment. These novel findings demonstrate that poly(N-oxide)s are not only long-circulating but also bioreducible under hypoxia and are of great promise as next-generation carriers to deliver drugs into the interior of solid tumors to enhance their antitumor efficacy.
Collapse
Affiliation(s)
- Longshuai Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing100081, China.,Biomedical Engineering Department, Peking University, Beijing100191, China.,Peking University International Cancer Institute, Beijing100191, China.,Peking University-Yunnan Baiyao International Medical Research Center, Beijing100191, China
| | - Jiawei Sun
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing100081, China.,Biomedical Engineering Department, Peking University, Beijing100191, China.,Peking University International Cancer Institute, Beijing100191, China.,Peking University-Yunnan Baiyao International Medical Research Center, Beijing100191, China.,Institute of Medical Technology, Health Science Center of Peking University, Beijing100191, China
| | - Wenchao Huang
- Biomedical Engineering Department, Peking University, Beijing100191, China
| | - Sanke Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing100081, China.,Biomedical Engineering Department, Peking University, Beijing100191, China.,Peking University International Cancer Institute, Beijing100191, China.,Peking University-Yunnan Baiyao International Medical Research Center, Beijing100191, China.,Institute of Medical Technology, Health Science Center of Peking University, Beijing100191, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing100081, China.,Biomedical Engineering Department, Peking University, Beijing100191, China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing100081, China.,Biomedical Engineering Department, Peking University, Beijing100191, China.,Peking University International Cancer Institute, Beijing100191, China.,Peking University-Yunnan Baiyao International Medical Research Center, Beijing100191, China.,Institute of Medical Technology, Health Science Center of Peking University, Beijing100191, China
| |
Collapse
|
10
|
Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022; 122:17073-17154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The term "zwitterionic polymers" refers to polymers that bear a pair of oppositely charged groups in their repeating units. When these oppositely charged groups are equally distributed at the molecular level, the molecules exhibit an overall neutral charge with a strong hydration effect via ionic solvation. The strong hydration effect constitutes the foundation of a series of exceptional properties of zwitterionic materials, including resistance to protein adsorption, lubrication at interfaces, promotion of protein stabilities, antifreezing in solutions, etc. As a result, zwitterionic materials have drawn great attention in biomedical and engineering applications in recent years. In this review, we give a comprehensive and panoramic overview of zwitterionic materials, covering the fundamentals of hydration and nonfouling behaviors, different types of zwitterionic surfaces and polymers, and their biomedical applications.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
11
|
Yao Y, Dang X, Qiao X, Li R, Chen J, Huang Z, Gong YK. Crosslinked biomimetic coating modified stainless-steel-mesh enables completely self-cleaning separation of crude oil/water mixtures. WATER RESEARCH 2022; 224:119052. [PMID: 36099762 DOI: 10.1016/j.watres.2022.119052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The development of high-flux, durable and completely self-cleaning membranes is highly desired for separation of massive oil/water mixtures. Herein, differently crosslinked poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC) brush grafted stainless steel mesh (SSM) membranes (SSM/PMPCs) were fabricated by integrating of mussel inspired universal adhesion and crosslinking chemistry with surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET-ATRP). The durability and self-cleaning performance of the prepared SSM membranes were evaluated by separating sticky crude oil/water mixtures in a continuous recycling dead-end filtration device. The water filtration flux driven by gravity reached 60,000 L⋅m-2⋅h-1 with a separation efficiency of over 99.98%. Furthermore, zero-flux-decline was observed during a 5 h continuous filtration when assisted by mechanical stirring. More significantly, such a completely self-cleaning separation of the well crosslinked SSM/PMPC2 membrane under optimized flux and stirring conditions had been operated cumulatively for 190 h in 30 days without any additional cleaning. These significant advances are more promising for practical applications in crude oil-contaminated water treatments and massive oil/water mixture separation.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Xingzhi Dang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Xinyu Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Rong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Jiazhi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Zhihuan Huang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China; Institute of Materials Science and New Technology, Northwest University, Xian 710127, Shaanxi, PR China.
| |
Collapse
|
12
|
Kitano K, Ishihara K, Yusa SI. Formation of Water-Soluble Complexes from Fullerene with Biocompatible Block Copolymers Bearing Pendant Glucose and Phosphorylcholine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5744-5751. [PMID: 35481764 DOI: 10.1021/acs.langmuir.2c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Double-hydrophilic diblock copolymers, PMPC100-block-PGEMAn (M100Gn), were synthesized via reversible addition-fragmentation chain transfer radical polymerization using glycosyloxyethyl methacrylate and 2-(methacryloyloxy)ethyl phosphorylcholine. The degree of polymerization (DP) of the poly(2-(methacryloyloxy) ethylphosphorylcholine) (PMPC) block was 100, whereas the DPs (n) of the poly(glycosyloxyethyl methacrylate) PGEMA block were 18, 48, and 90. Water-soluble complexes of C70/M100Gn and fullerene (C70) were prepared by grinding M100Gn and C70 powders in a mortar and adding phosphate-buffered saline (PBS) solution. PMPC can form a water-soluble complex with hydrophobic C70 using the same method. Therefore, the C70/M100Gn complexes have a core-shell micelle-like particle structure possessing a C70/PMPC core and PGEMA shells. The maximum amounts of solubilization of C70 in PBS solutions using 2 g/L each of M100G18, M100G48, and M100G90 were 0.518, 0.358, and 0.257 g/L, respectively. The hydrodynamic radius (Rh) of C70/M100Gn in PBS solutions was 55-75 nm. Spherical aggregates with a similar size to the Rh were observed by transmission electron microscopy. When the C70/M100Gn PBS solutions were irradiated with visible light, singlet oxygen was generated from C70 in the core. It is expected that the C70/M100Gn complexes can be applied to photosensitizers for photodynamic therapy treatments.
Collapse
Affiliation(s)
- Kohei Kitano
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering and Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
13
|
Kitano K, Ishihara K, Yusa SI. Preparation of a thermo-responsive drug carrier consisting of a biocompatible triblock copolymer and fullerene. J Mater Chem B 2021; 10:2551-2560. [PMID: 34860236 DOI: 10.1039/d1tb02183d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A triblock copolymer (PEG-b-PUEM-b-PMPC; EUM) comprising poly(ethylene glycol) (PEG), thermo-responsive poly(2-ureidoethyl methacrylate) (PUEM), and poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) blocks was synthesized via controlled radical polymerization. PEG and PMPC blocks exhibit hydrophilicity and biocompatibility. The PUEM block exhibits an upper critical solution temperature (UCST). PMPC can dissolve hydrophobic fullerenes in water to form a complex by grinding PMPC and fullerene powders. Fullerene-C70 (C70) and EUM were ground in a mortar and phosphate-buffered saline (PBS) was added to synthesize a water-soluble complex (C70/EUM). C70/EUM has a core-shell-corona structure, whose core is a complex of C70 and PMPC, the shell is PUEM, and corona is PEG. The maximum C70 concentration dissolved in PBS was 0.313 g L-1 at an EUM concentration of 2 g L-1. The C70/EUM hydrodynamic radius (Rh) was 34 nm in PBS at 10 °C, which increased due to the PUEM block's UCST phase transition with increasing temperature, and Rh attained a constant value of 38 nm above 36 °C. An anticancer drug, doxorubicin, was encapsulated in the PUEM shell by hydrophobic interactions in C70/EUM at room temperature, which can be released by heating. The generation of singlet oxygen (1O2) from C70/EUM upon visible-light irradiation was confirmed using the singlet oxygen sensor green indicator. Water-soluble C70/EUM may be used as a carrier that releases encapsulated drugs when heated and as a photosensitizer for photodynamic therapy.
Collapse
Affiliation(s)
- Kohei Kitano
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Kazuhiko Ishihara
- Department of Materials Engineering and Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| |
Collapse
|
14
|
Harijan M, Singh M. Zwitterionic polymers in drug delivery: A review. J Mol Recognit 2021; 35:e2944. [PMID: 34738272 DOI: 10.1002/jmr.2944] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/10/2021] [Accepted: 10/17/2021] [Indexed: 12/17/2022]
Abstract
Developments of novel drug delivery vehicles are sought-after to augment the therapeutic effectiveness of standard drugs. An urgency to design novel drug delivery vehicles that are sustainable, biocompatible, have minimized cytotoxicity, no immunogenicity, high stability, long circulation time, and are capable of averting recognition by the immune system is perceived. In this pursuit for an ideal candidate for drug delivery vehicles, zwitterionic materials have come up as fulfilling almost all these expectations. This comprehensive review is presenting the progress made by zwitterionic polymeric architectures as prospective sustainable drug delivery vehicles. Zwitterionic polymers with varied architecture such as appending protein conjugates, nanoparticles, surface coatings, liposomes, hydrogels, etc, used to fabricate drug delivery vehicles are reviewed here. A brief introduction of zwitterionic polymers and their application as reliable drug delivery vehicles, such as zwitterionic polymer-protein conjugates, zwitterionic polymer-based drug nanocarriers, and stimulus-responsive zwitterionic polymers are discussed in this discourse. The prospects shown by zwitterionic architecture suggest the tremendous potential for them in this domain. This critical review will encourage the researchers working in this area and boost the development and commercialization of such devices to benefit the healthcare fraternity.
Collapse
Affiliation(s)
- Manjeet Harijan
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| | - Meenakshi Singh
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| |
Collapse
|
15
|
Zhao J, Peng YY, Diaz-Dussan D, White J, Duan W, Kong L, Narain R, Hao X. Zwitterionic Block Copolymer Prodrug Micelles for pH Responsive Drug Delivery and Hypoxia-Specific Chemotherapy. Mol Pharm 2021; 19:1766-1777. [PMID: 34473523 DOI: 10.1021/acs.molpharmaceut.1c00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tirapazamine (TPZ) and its derivatives (TPZD) have shown their great potential for efficiently killing hypoxic cancer cells. However, unsatisfactory clinical outcomes resulting from the low bioavailability of the low-molecular TPZ and TPZD limited their further applications. Precise delivery and release of these prodrugs via functional nanocarriers can significantly improve the therapeutic effects due to the targeted drug delivery and enhanced permeability and retention (EPR) effect. Herein, zwitterionic block copolymer (BCP) micelles with aldehyde functional groups are prepared from the self-assembly of poly(2-methacryloyloxyethyl phosphorylcholine-b-poly(di(ethylene glycol) methyl ether methacrylate-co-4-formylphenyl methacrylate) [PMPC-b-P(DEGMA-co-FPMA)]. TPZD is then grafted onto PMPC-b-P(DEGMA-co-FPMA) to obtain a polymer-drug conjugate, PMPC-b-P(DEGMA-co-FPMA-g-TPZD) (BCP-TPZ), through the formation of a pH-responsive imine bond, exhibiting a pH-dependent drug release profile owing to the cleavage of the imine bond under acidic conditions. Outstandingly, BCP-TPZ shows around 13.7-fold higher cytotoxicity to hypoxic cancer cells in comparison to normoxic cancer cells evaluated through an in vitro cytotoxicity assay. The pH-responsiveness and hypoxia-specific cytotoxicity confer BCP-TPZ micelles a great potential to achieve precise delivery of TPZD and thus enhance the therapeutic effect toward tumor-hypoxia.
Collapse
Affiliation(s)
- Jianyang Zhao
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.,Manufacturing, CSIRO, Research Way, Clayton, Victoria 3168, Australia
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, 116 Street and 85th Avenue, Edmonton T6G 2G6, Alberta, Canada
| | - Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, 116 Street and 85th Avenue, Edmonton T6G 2G6, Alberta, Canada
| | - Jacinta White
- Manufacturing, CSIRO, Research Way, Clayton, Victoria 3168, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, 116 Street and 85th Avenue, Edmonton T6G 2G6, Alberta, Canada
| | - Xiaojuan Hao
- Manufacturing, CSIRO, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
16
|
Hong T, Miyazaki T, Matsumoto A, Koji K, Miyahara Y, Anraku Y, Cabral H. Phosphorylcholine-Installed Nanocarriers Target Pancreatic Cancer Cells through the Phospholipid Transfer Protein. ACS Biomater Sci Eng 2021; 7:4439-4445. [PMID: 34351746 DOI: 10.1021/acsbiomaterials.1c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorylcholine (PC) has been used to improve the water solubility and biocompatibility of biomaterials. Here, we show that PC can also work as a ligand for targeting cancer cells based on their increased phospholipid metabolism. PC-installed multiarm poly(ethylene glycol)s and polymeric micelles achieved high and rapid internalization in pancreatic cancer cells. This enhanced cellular uptake was drastically reduced when the cells were incubated with excess free PC or at 4 °C, as well as by inhibiting the phospholipid transfer protein (PLTP) on the surface of cancer cells, indicating an energy dependent active transport mediated by PLTP.
Collapse
Affiliation(s)
- Taehun Hong
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuya Miyazaki
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akira Matsumoto
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kyoko Koji
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yasutaka Anraku
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Horacio Cabral
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
Shi Y, Lu A, Wang X, Belhadj Z, Wang J, Zhang Q. A review of existing strategies for designing long-acting parenteral formulations: Focus on underlying mechanisms, and future perspectives. Acta Pharm Sin B 2021; 11:2396-2415. [PMID: 34522592 PMCID: PMC8424287 DOI: 10.1016/j.apsb.2021.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
The need for long-term treatments of chronic diseases has motivated the widespread development of long-acting parenteral formulations (LAPFs) with the aim of improving drug pharmacokinetics and therapeutic efficacy. LAPFs have been proven to extend the half-life of therapeutics, as well as to improve patient adherence; consequently, this enhances the outcome of therapy positively. Over past decades, considerable progress has been made in designing effective LAPFs in both preclinical and clinical settings. Here we review the latest advances of LAPFs in preclinical and clinical stages, focusing on the strategies and underlying mechanisms for achieving long acting. Existing strategies are classified into manipulation of in vivo clearance and manipulation of drug release from delivery systems, respectively. And the current challenges and prospects of each strategy are discussed. In addition, we also briefly discuss the design principles of LAPFs and provide future perspectives of the rational design of more effective LAPFs for their further clinical translation.
Collapse
Key Words
- 2′-F, 2′-fluoro
- 2′-O-MOE, 2′-O-(2-methoxyethyl)
- 2′-OMe, 2′-O-methyl
- 3D, three-dimensional
- ART, antiretroviral therapy
- ASO, antisense oligonucleotide
- Biomimetic strategies
- Chemical modification
- DDS, drug delivery systems
- ECM, extracellular matrix
- ENA, ethylene-bridged nucleic acid
- ESC, enhanced stabilization chemistry
- EVA, ethylene vinyl acetate
- Fc/HSA fusion
- FcRn, Fc receptor
- GLP-1, glucagon like peptide-1
- GS, glycine–serine
- HA, hyaluronic acid
- HES, hydroxy-ethyl-starch
- HP, hypoparathyroidism
- HSA, human serum albumin
- Hydrogels
- ISFI, in situ forming implants
- IgG, immunoglobulin G
- Implantable systems
- LAFs, long-acting formulations
- LAPFs, long-acting parenteral formulations
- LNA, locked nucleic acid
- Long-acting
- MNs, microneedles
- Microneedles
- NDS, nanochannel delivery system
- NPs, nanoparticles
- Nanocrystal suspensions
- OA, osteoarthritis
- PCPP-SA, poly(1,3-bis(carboxyphenoxy)propane-co-sebacic-acid)
- PEG, polyethylene glycol
- PM, platelet membrane
- PMPC, poly(2-methyacryloyloxyethyl phosphorylcholine)
- PNAs, peptide nucleic acids
- PS, phase separation
- PSA, polysialic acid
- PTH, parathyroid hormone
- PVA, polyvinyl alcohol
- RBCs, red blood cells
- RES, reticuloendothelial system
- RNAi, RNA interference
- SAR, structure‒activity relationship
- SCID, severe combined immunodeficiency
- SE, solvent extraction
- STC, standard template chemistry
- TNFR2, tumor necrosis factor receptor 2
- hGH, human growth hormone
- im, intramuscular
- iv, intravenous
- mPEG, methoxypolyethylene glycol
- sc, subcutaneous
Collapse
Affiliation(s)
- Yujie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangyu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiancheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
18
|
Jin W, Wu Y, Chen N, Wang Q, Wang Y, Li Y, Li S, Han X, Yang E, Tong F, Wu J, Yuan X, Kang C. Early administration of MPC-n(IVIg) selectively accumulates in ischemic areas to protect inflammation-induced brain damage from ischemic stroke. Theranostics 2021; 11:8197-8217. [PMID: 34373737 PMCID: PMC8344004 DOI: 10.7150/thno.58947] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke is an acute and severe neurological disease, which leads to disability and death. Immunomodulatory therapies exert multiple remarkable protective effects during ischemic stroke. However, patients suffering from ischemic stroke do not benefit from immunomodulatory therapies due to the presence of the blood-brain barrier (BBB) and their off-target effects. Methods: We presented a delivery strategy to optimize immunomodulatory therapies by facilitating BBB penetration and selectively delivering intravenous immunoglobulin (IVIg) to ischemic regions using 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules, MPC-n(IVIg), synthesized using MPC monomers and ethylene glycol dimethyl acrylate (EGDMA) crosslinker via in situ polymerization. In vitro and in vivo experiments verify the effect and safety of MPC-n(IVIg). Results: MPC-n(IVIg) efficiently crosses the BBB and IVIg selectively accumulates in ischemic areas in a high-affinity choline transporter 1 (ChT1)-overexpression dependent manner via endothelial cells in ischemic areas. Moreover, earlier administration of MPC-n(IVIg) more efficiently deliver IVIg to ischemic areas. Furthermore, the early administration of low-dosage MPC-n(IVIg) decreases neurological deficits and mortality by suppressing stroke-induced inflammation in the middle cerebral artery occlusion model. Conclusion: Our findings indicate a promising strategy to efficiently deliver the therapeutics to the ischemic target brain tissue and lower the effective dose of therapeutic drugs for treating ischemic strokes.
Collapse
Affiliation(s)
- Weili Jin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Ye Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Ning Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Yansheng Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Sidi Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xing Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Eryan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Fei Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Jialing Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China. Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| |
Collapse
|
19
|
Wang X, Liu Y, Yan L. On Thiol‐Ene Radical Coupling Reaction when Synthesis of ABCL
2
Type Heteroarm Star Copolymer Containing PDPA Arm. ChemistrySelect 2021. [DOI: 10.1002/slct.202101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Wang
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Yuyang Liu
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Lei Yan
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
20
|
Forsythe NL, Maynard HD. Synthesis of Disulfide-Bridging Trehalose Polymers for Antibody and Fab Conjugation Using a Bis-Sulfone ATRP Initiator. Polym Chem 2021; 12:1217-1223. [PMID: 34211593 PMCID: PMC8240515 DOI: 10.1039/d0py01579b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibodies and antigen binding fragments (FABs) are widely used as therapeutics and conjugated polymers can enhance the properties of these important biomolecules. However, limitations to the selectivity and stability of current conjugation methodologies can inhibit the exploration of new antibody-polymer conjugates. Herein, we describe a new strategy for the synthesis of these conjugates that forms a stable thioether bond and can be directly incorporated into an atom transfer radical polymerization (ATRP) initiator. Specifically, a bis-sulfone alkyl bromide initiator was synthesized and utilized in the activators generated by electron transfer (AGET) ATRP of ethylene glycol methacrylate and trehalose methacrylate to form the respective polymers. The trehalose polymer was then irreversibly inserted into the disulfide bonds of Herceptin and Herceptin FAB after mild reduction to form the conjugates with quantitative conversions as verified by Western Blot and mass spectrometry after cleavage of the polymer. The binding of the Herceptin and Herceptin Fab conjugates to the receptor was investigated by indirect ELISA (enzyme-linked immunosorbent assay) and the EC50's were 0.90 and 2.74 nM, respectively, compared to Herceptin (0.26 nM) and the Fab (0.56 nM). The conjugates were subjected to heating studies at a constant 75 °C, the temperature determined in a heat ramp to be the threshold of stability for the antibody and FAB; the trehalose polymer was found to considerably increase the thermal stability of both Herceptin and Herceptin Fab. This work provides a new way to prepare polymer-antibody/Fab conjugates utilizing bis-sulfone end groups installed by atom transfer radical polymerization of the functionalized initiators and a way to stabilize these important molecules by conjugation to trehalose polymers.
Collapse
Affiliation(s)
- Neil L. Forsythe
- Department of Chemistry and Biochemistry and
California NanoSystems Institute, 607 Charles E. Young Drive East, University of
California, Los Angeles, CA 90095-1569
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry and
California NanoSystems Institute, 607 Charles E. Young Drive East, University of
California, Los Angeles, CA 90095-1569
| |
Collapse
|
21
|
Niesyto K, Neugebauer D. Linear Copolymers Based on Choline Ionic Liquid Carrying Anti-Tuberculosis Drugs: Influence of Anion Type on Physicochemical Properties and Drug Release. Int J Mol Sci 2020; 22:E284. [PMID: 33396610 PMCID: PMC7795545 DOI: 10.3390/ijms22010284] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 11/20/2022] Open
Abstract
In this study, drug nanocarriers were designed using linear copolymers with different contents of cholinium-based ionic liquid units, i.e., [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA/Cl: 25, 50, and 75 mol%). The amphiphilicity of the copolymers was evaluated on the basis of their critical micelle concentration (CMC = 0.055-0.079 mg/mL), and their hydrophilicities were determined by water contact angles (WCA = 17°-46°). The chloride anions in the polymer chain were involved in ionic exchange reactions to introduce pharmaceutical anions, i.e., p-aminosalicylate (PAS-), clavulanate (CLV-), piperacillin (PIP-), and fusidate (FUS-), which are established antibacterial agents for treating lung and respiratory diseases. The exchange reaction efficiency decreased in the following order: CLV- > PAS- > PIP- >> FUS-. The hydrophilicity of the ionic drug conjugates was slightly reduced, as indicated by the increased WCA values. The major fraction of particles with sizes ~20 nm was detected in systems with at least 50% TMAMA carrying PAS or PIP. The influence of the drug character and carrier structure was also observed in the kinetic profiles of the release processes driven by the exchange with phosphate anions (0.5-6.4 μg/mL). The obtained polymer-drug ionic conjugates (especially that with PAS) are promising carriers with potential medical applications.
Collapse
Affiliation(s)
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
22
|
Drug-loading capacity of polylactide-based micro- and nanoparticles - Experimental and molecular modeling study. Int J Pharm 2020; 591:120031. [PMID: 33130219 DOI: 10.1016/j.ijpharm.2020.120031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 01/23/2023]
Abstract
Micro- and nanostructures prepared from biodegradable homopolymers and amphiphilic block copolymers (AmBCs) have found application as drug-delivery systems (DDSs). The ability to accumulate a drug is a very important parameter characterizing a given DDS. This work focuses on the impact of DDS size, the packing of polymer chains in the DDS, and drug - polymer matrix compatibility on the hydrophobic drug - loading capacity (DLC) of nano/microcarriers prepared from a biodegradable polymer or its copolymer. Using experimental measurements in combination with atomistic molecular dynamics simulations, an analysis of curcumin encapsulation in microspheres (MSs) from polylactide (PLA) homopolymer and nanoparticles (NPs) from PLA-block-poly(2-methacryloyloxyethylphosphorylcholine) AmBC was performed. The results show that curcumin has good affinity for the PLA matrix due to its hydrophobic nature. However, the DLC value is limited by the fact that curcumin only accumulates in the peripheral part of these structures. Such uneven drug distribution in the PLA matrix results from the non-homogeneous density of MSs (non-uniform packing of the polymer chains in the coil). The results also indicate that the MSs can retain a greater amount of hydrophobic drug compared to the NPs, which is associated with the formation of drug aggregates inside the PLA microparticles.
Collapse
|
23
|
Han X, Li S, Li X, Zhan Q, Zhan Y, Zhao J, Hou X, Yuan X. The effect of zwitterionic surface content on blood circulation time of nanocapsule. J Biomater Appl 2020; 35:371-384. [PMID: 32571174 DOI: 10.1177/0885328220935381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zwitterionic modification can prolong the blood circulation time of nanocarrier in vivo, but zwitterionic content will affect the functions of nanocarrier such as enzyme-responsive and intracellular or extracellular delivery. Therefore, it is necessary to explore the relationship between the zwitterionic content and circulation time of nanocarrier so as to figure out what content of zwitterion can enable the nanocarrier to obtain both the long blood circulation ability and other functions mentioned above. Herein, using nanocapsule as a research model, we investigated the nanocapsule modified with zwitterion of phosphorylcholine (PC) or carboxybetaine (CB) respectively, and through 1H-NMR quantification we determined the zwitterionic surface content, so as to study the effect of PC or CB surface content on blood circulation performance of nanocapsule. In vivo study showed that the nanocapsule possessed an optimal surface filling ratios range for blood circulation of 43-68% for PC and of 20-68% for CB, with the longest t1/2=37.35 h for PC-nanocapsule and t1/2=45.27 h for CB-nanocapsule. Furthermore, the protein adsorption and macrophage endocytosis experiments indicated that when the surface filling ratio reached 43% for PC-nanocapsule and 20% for CB-nanocapsule, it could effectively reduce the protein adsorption and weaken macrophage endocytosis, thus explaining the phenomenon of long circulation time of nanocapsules from the point of protein adsorption and interaction with immune cells. This study proposes a new direction for designing long-circulating nanocarrier, and provides basis for constructing enzyme-responsive and intracellular or extracellular delivery platform.
Collapse
Affiliation(s)
- Xing Han
- School of Material, Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Sidi Li
- School of Material, Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Xueping Li
- School of Material, Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Qi Zhan
- School of Material, Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Yueying Zhan
- School of Material, Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Jin Zhao
- School of Material, Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Xin Hou
- School of Material, Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Xubo Yuan
- School of Material, Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
24
|
Ting JM, Marras AE, Mitchell JD, Campagna TR, Tirrell MV. Comparing Zwitterionic and PEG Exteriors of Polyelectrolyte Complex Micelles. Molecules 2020; 25:E2553. [PMID: 32486282 PMCID: PMC7321349 DOI: 10.3390/molecules25112553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
A series of model polyelectrolyte complex micelles (PCMs) was prepared to investigate the consequences of neutral and zwitterionic chemistries and distinct charged cores on the size and stability of nanocarriers. Using aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization, we synthesized a well-defined diblock polyelectrolyte system, poly(2-methacryloyloxyethyl phosphorylcholine methacrylate)-block-poly((vinylbenzyl) trimethylammonium) (PMPC-PVBTMA), at various neutral and charged block lengths to compare directly against PCM structure-property relationships centered on poly(ethylene glycol)-block-poly((vinylbenzyl) trimethylammonium) (PEG-PVBTMA) and poly(ethylene glycol)-block-poly(l-lysine) (PEG-PLK). After complexation with a common polyanion, poly(sodium acrylate), the resulting PCMs were characterized by dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). We observed uniform assemblies of spherical micelles with a diameter ~1.5-2× larger when PMPC-PVBTMA was used compared to PEG-PLK and PEG-PVBTMA via SAXS and DLS. In addition, PEG-PLK PCMs proved most resistant to dissolution by both monovalent and divalent salt, followed by PEG-PVBTMA then PMPC-PVBTMA. All micelle systems were serum stable in 100% fetal bovine serum over the course of 8 h by time-resolved DLS, demonstrating minimal interactions with serum proteins and potential as in vivo drug delivery vehicles. This thorough study of the synthesis, assembly, and characterization of zwitterionic polymers in PCMs advances the design space for charge-driven micelle assemblies.
Collapse
Affiliation(s)
- Jeffrey M. Ting
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (J.M.T.); (A.E.M.); (J.D.M.); (T.R.C.)
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Alexander E. Marras
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (J.M.T.); (A.E.M.); (J.D.M.); (T.R.C.)
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Joseph D. Mitchell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (J.M.T.); (A.E.M.); (J.D.M.); (T.R.C.)
| | - Trinity R. Campagna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (J.M.T.); (A.E.M.); (J.D.M.); (T.R.C.)
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (J.M.T.); (A.E.M.); (J.D.M.); (T.R.C.)
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
25
|
Banskota S, Saha S, Bhattacharya J, Kirmani N, Yousefpour P, Dzuricky M, Zakharov N, Li X, Spasojevic I, Young K, Chilkoti A. Genetically Encoded Stealth Nanoparticles of a Zwitterionic Polypeptide-Paclitaxel Conjugate Have a Wider Therapeutic Window than Abraxane in Multiple Tumor Models. NANO LETTERS 2020; 20:2396-2409. [PMID: 32125864 DOI: 10.1021/acs.nanolett.9b05094] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Small-molecule therapeutics demonstrate suboptimal pharmacokinetics and bioavailability due to their hydrophobicity and size. One way to overcome these limitations-and improve their efficacy-is to use "stealth" macromolecular carriers that evade uptake by the reticuloendothelial system. Although unstructured polypeptides are of increasing interest as macromolecular drug carriers, current recombinant polypeptides in the clinical pipeline typically lack stealth properties. We address this challenge by developing new unstructured polypeptides, called zwitterionic polypeptides (ZIPPs), that exhibit "stealth" behavior in vivo. We show that conjugating paclitaxel to a ZIPP imparts amphiphilicity to the polypeptide chain that is sufficient to drive its self-assembly into micelles. This in turn increases the half-life of paclitaxel by 17-fold compared to free paclitaxel, and by 1.6-fold compared to the nonstealth control, i.e., ELP-paclitaxel. Treatment of mice bearing highly aggressive prostate or colon cancer with a single dose of ZIPP-paclitaxel nanoparticles leads to near-complete eradication of the tumor, and these nanoparticles have a wider therapeutic window than Abraxane, an FDA-approved taxane nanoformulation.
Collapse
Affiliation(s)
- Samagya Banskota
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Soumen Saha
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Jayanta Bhattacharya
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nadia Kirmani
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, North Carolina 27708, United States
| | - Parisa Yousefpour
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Michael Dzuricky
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Nikita Zakharov
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Xinghai Li
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ivan Spasojevic
- Department of Medicine, Pharmaceutical Research PK/PD Core Laboratory, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kenneth Young
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
26
|
Han Y, Yuan Z, Zhang P, Jiang S. Zwitterlation mitigates protein bioactivity loss in vitro over PEGylation. Chem Sci 2018; 9:8561-8566. [PMID: 30568780 PMCID: PMC6253718 DOI: 10.1039/c8sc01777h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022] Open
Abstract
Conjugation with poly(ethylene glycol) (PEG) or PEGylation is a widely used tool to overcome the shortcomings of native proteins, such as poor stability, inadequate pharmacokinetic (PK) profiles, and immunogenicity. However, PEGylation is often accompanied by an unwanted detrimental effect on bioactivity, particularly, resulting from the amphiphilic nature of PEG. This is especially true for PEGylated proteins with large binding targets. Pegasys, a PEGylated interferon alpha-2a (IFN-α2a) bearing a 40 kDa branched PEG, is a typical example that displays only 7% in vitro activity of the unmodified IFN-α2a. In this work, by employing IFN-α2a as a model protein, we demonstrated that a protein conjugated with zwitterionic polymers (or zwitterlation) could significantly mitigate the antiproliferative bioactivity loss in vitro after polymer conjugation. The retained antiproliferative activity of zwitterlated IFN-α2a is 4.4-fold higher than that of the PEGylated IFN-α2a with the same polymer molecular weight, or 3-fold higher than that of the PEGylated IFN-α2a with a similar hydrodynamic size. It is hypothesized that nonspecific interactions between zwitterionic polymers and IFN-α2a/IFN-α2a receptors can be mitigated due to the super-hydrophilic nature of zwitterionic polymers. This, in turn, reduces the 'nonspecific blocking' between IFN-α2a and IFN-α2a receptors. In addition, we demonstrated that zwitterlated IFN-α2a showed a prolonged circulation time and a mitigated accelerated blood clearance after repeated injections in rats.
Collapse
Affiliation(s)
- Yanjiao Han
- Molecular Engineering and Science Institute , University of Washington , Seattle , WA 98195 , USA .
| | - Zhefan Yuan
- Department of Chemical Engineering , University of Washington , Seattle , WA 98195 , USA
| | - Peng Zhang
- Department of Chemical Engineering , University of Washington , Seattle , WA 98195 , USA
| | - Shaoyi Jiang
- Molecular Engineering and Science Institute , University of Washington , Seattle , WA 98195 , USA .
- Department of Chemical Engineering , University of Washington , Seattle , WA 98195 , USA
| |
Collapse
|
27
|
Liu GW, Prossnitz AN, Eng DG, Cheng Y, Subrahmanyam N, Pippin JW, Lamm RJ, Ngambenjawong C, Ghandehari H, Shankland SJ, Pun SH. Glomerular disease augments kidney accumulation of synthetic anionic polymers. Biomaterials 2018; 178:317-325. [DOI: 10.1016/j.biomaterials.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 12/22/2022]
|
28
|
Liu X, Sun J, Gao W. Site-selective protein modification with polymers for advanced biomedical applications. Biomaterials 2018; 178:413-434. [DOI: 10.1016/j.biomaterials.2018.04.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
|
29
|
Villegas MR, Baeza A, Vallet-Regí M. Nanotechnological Strategies for Protein Delivery. Molecules 2018; 23:E1008. [PMID: 29693640 PMCID: PMC6100203 DOI: 10.3390/molecules23051008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 12/22/2022] Open
Abstract
The use of therapeutic proteins plays a fundamental role in the treatment of numerous diseases. The low physico-chemical stability of proteins in physiological conditions put their function at risk in the human body until they reach their target. Moreover, several proteins are unable to cross the cell membrane. All these facts strongly hinder their therapeutic effect. Nanomedicine has emerged as a powerful tool which can provide solutions to solve these limitations and improve the efficacy of treatments based on protein administration. This review discusses the advantages and limitations of different types of strategies employed for protein delivery, such as PEGylation, transport within liposomes or inorganic nanoparticles or their in situ encapsulation.
Collapse
Affiliation(s)
- María Rocío Villegas
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, UCM, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - Alejandro Baeza
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, UCM, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, UCM, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
30
|
Faivre J, Shrestha BR, Xie G, Delair T, David L, Matyjaszewski K, Banquy X. Unraveling the Correlations between Conformation, Lubrication, and Chemical Stability of Bottlebrush Polymers at Interfaces. Biomacromolecules 2017; 18:4002-4010. [DOI: 10.1021/acs.biomac.7b01063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jimmy Faivre
- Canada
Research Chair in Bioinspired Materials, Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères
(IMP-UMR 5223), 15 Boulevard
Latarjet, 69622 Villeurbanne Cedex, France
| | - Buddha Ratna Shrestha
- Canada
Research Chair in Bioinspired Materials, Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada
| | - Guojun Xie
- Center
for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Thierry Delair
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères
(IMP-UMR 5223), 15 Boulevard
Latarjet, 69622 Villeurbanne Cedex, France
| | - Laurent David
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères
(IMP-UMR 5223), 15 Boulevard
Latarjet, 69622 Villeurbanne Cedex, France
| | - Krzysztof Matyjaszewski
- Center
for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xavier Banquy
- Canada
Research Chair in Bioinspired Materials, Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
31
|
Paik BA, Mane SR, Jia X, Kiick KL. Responsive Hybrid (Poly)peptide-Polymer Conjugates. J Mater Chem B 2017; 5:8274-8288. [PMID: 29430300 PMCID: PMC5802422 DOI: 10.1039/c7tb02199b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(Poly)peptide-polymer conjugates continue to garner significant interest in the production of functional materials given their composition of natural and synthetic building blocks that confer select and synergistic properties. Owing to opportunities to design predefined architectures and structures with different morphologies, these hybrid conjugates enable new approaches for producing micro- or nanomaterials. Their modular design enables the incorporation of multiple responsive properties into a single conjugate. This review presents recent advances in (poly)peptide-polymer conjugates for drug-delivery applications, with a specific focus on the utility of the (poly)peptide component in the assembly of particles and nanogels, as well as the role of the peptide in triggered drug release.
Collapse
Affiliation(s)
- Bradford A Paik
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
| | - Shivshankar R Mane
- The Institude For Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 18, 76128 Karlsruhe, Germany
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| |
Collapse
|
32
|
Johnson RP, Uthaman S, Augustine R, Zhang Y, Jin H, Choi CI, Park IK, Kim I. Glutathione and endosomal pH-responsive hybrid vesicles fabricated by zwitterionic polymer block poly( l -aspartic acid) as a smart anticancer delivery platform. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Breathing air as oxidant: Optimization of 2-chloro-2-oxo-1,3,2-dioxaphospholane synthesis as a precursor for phosphoryl choline derivatives and cyclic phosphate monomers. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Kondo T, Kimura Y, Yamada H, Aoyama Y. Polymeric 1 H MRI Probes for Visualizing Tumor In Vivo. CHEM REC 2017; 17:555-568. [PMID: 28387472 DOI: 10.1002/tcr.201600144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Indexed: 11/09/2022]
Abstract
Magnetic resonance imaging (MRI) has become a prominent non- or low-invasive imaging technique, providing high-resolution, three-dimensional images as well as physiological information about tissues. Low-molecular-weight Gd-MRI contrast agents (CAs), such as Gd-DTPA (DTPA: diethylenetriaminepentaacetic acid), are commonly used in the clinical diagnosis, while macromolecular Gd-MRI CAs have several advantages over low-molecular-weight Gd-MRI CAs, which help minimize the dose of CAs and the risk of side effects. Accordingly, we developed chiral dendrimer Gd-MRI CAs, which showed high r1 values. The association constant values (Ka ) of S-isomeric dendrimer CAs to bovine serum albumin (BSA) were higher than those of R-isomeric dendrimer CAs. Besides, based on a totally new concept, we developed 13 C/15 N-enriched multiple-resonance NMR/MRI probes, which realized highly selective observation of the probes and analysis of metabolic reactions of interest. This account summarizes our recent study on developing both chiral dendrimer Gd-MRI CAs, and self-traceable 13 C/15 N-enriched phosphorylcholine polymer probes for early detection of tumors.
Collapse
Affiliation(s)
- Teruyuki Kondo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 6158510, JAPAN
| | - Yu Kimura
- Research and Educational Unit of Leaders for Integrated Medical Systems, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 6158510, JAPAN
| | - Hisatsugu Yamada
- Field of Bioresource Chemistry and Technology, Graduate School of Bioscience and Bioindustry, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima, 7708506, JAPAN
| | - Yasuhiro Aoyama
- Professor emeritus, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 6158510, JAPAN
| |
Collapse
|
35
|
Riegger A, Chen C, Zirafi O, Daiss N, Mukherji D, Walter K, Tokura Y, Stöckle B, Kremer K, Kirchhoff F, Yuen Wah Ng D, Christian Hermann P, Münch J, Weil T. Synthesis of Peptide-Functionalized Poly(bis-sulfone) Copolymers Regulating HIV-1 Entry and Cancer Stem Cell Migration. ACS Macro Lett 2017; 6:241-246. [PMID: 35650920 DOI: 10.1021/acsmacrolett.7b00030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peptide-polymer conjugates have been regarded as primary stronghold in biohybrid nanomedicine, which has seen extensive development due to its intrinsic property to provide complementary functions of both the peptide material and the synthetic polymer platform. Here we present an advanced macromolecular therapeutic that targets two exclusive classes of important diseases (namely, the HIV and cancer) that are implicated by extremely different causative agents. Using a facile thiol-reactive monomer, the eventual polymer facilitates multivalent conjugation of an endogenous peptide WSC02 that targets the CXCR4 chemokine receptor. The biohybrid material demonstrated both potent antiviral effects against HIV-1 as well as inhibiting cancer stem cell migration thus establishing the foundation for multimodal nanotherapeutics that simultaneously target more than one class of disease implications.
Collapse
Affiliation(s)
- Andreas Riegger
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Chaojian Chen
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Onofrio Zirafi
- Institute
of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| | | | - Debashish Mukherji
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | | | - Yu Tokura
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | | | - Kurt Kremer
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Frank Kirchhoff
- Institute
of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| | - David Yuen Wah Ng
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | | | - Jan Münch
- Institute
of Molecular Virology, Ulm University Medical Centre, 89081 Ulm, Germany
| | - Tanja Weil
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| |
Collapse
|
36
|
Ishihara K, Mu M, Konno T, Inoue Y, Fukazawa K. The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:884-899. [DOI: 10.1080/09205063.2017.1298278] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Mingwei Mu
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Konno
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuuki Inoue
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
|
38
|
In situ growth of a C-terminal interferon-alpha conjugate of a phospholipid polymer that outperforms PEGASYS in cancer therapy. J Control Release 2016; 237:71-7. [DOI: 10.1016/j.jconrel.2016.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/15/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
|
39
|
Pang Y, Liu J, Qi Y, Li X, Chilkoti A. A Modular Method for the High-Yield Synthesis of Site-Specific Protein-Polymer Therapeutics. Angew Chem Int Ed Engl 2016; 55:10296-300. [PMID: 27439953 PMCID: PMC5320947 DOI: 10.1002/anie.201604661] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 02/03/2023]
Abstract
A versatile method is described to engineer precisely defined protein/peptide-polymer therapeutics by a modular approach that consists of three steps: 1) fusion of a protein/peptide of interest with an elastin-like polypeptide that enables facile purification and high yields; 2) installation of a clickable group at the C terminus of the recombinant protein/peptide with almost complete conversion by enzyme-mediated ligation; and 3) attachment of a polymer by a click reaction with near-quantitative conversion. We demonstrate that this modular approach is applicable to various protein/peptide drugs and used it to conjugate them to structurally diverse water-soluble polymers that prolong the plasma circulation duration of these proteins. The protein/peptide-polymer conjugates exhibited significantly improved pharmacokinetics and therapeutic effects over the native protein/peptide upon administration to mice. The studies reported here provide a facile method for the synthesis of protein/peptide-polymer conjugates for therapeutic use and other applications.
Collapse
Affiliation(s)
- Yan Pang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jinyao Liu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Yizhi Qi
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
40
|
Montagner IM, Merlo A, Carpanese D, Dalla Pietà A, Mero A, Grigoletto A, Loregian A, Renier D, Campisi M, Zanovello P, Pasut G, Rosato A. A site-selective hyaluronan-interferonα2a conjugate for the treatment of ovarian cancer. J Control Release 2016; 236:79-89. [DOI: 10.1016/j.jconrel.2016.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/16/2022]
|
41
|
Pang Y, Liu J, Qi Y, Li X, Chilkoti A. A Modular Method for the High-Yield Synthesis of Site-Specific Protein-Polymer Therapeutics. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yan Pang
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Jinyao Liu
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Yizhi Qi
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Xinghai Li
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| |
Collapse
|
42
|
Zhang P, Sun F, Liu S, Jiang S. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J Control Release 2016; 244:184-193. [PMID: 27369864 DOI: 10.1016/j.jconrel.2016.06.040] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/15/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022]
Abstract
The technique of attaching the polymer polyethylene glycol (PEG), or PEGylation, has brought more than ten protein drugs into market. The surface conjugation of PEG on proteins prolongs their blood circulation time and reduces immunogenicity by increasing their hydrodynamic size and masking surface epitopes. Despite this success, an emerging body of literature highlights the presence of antibodies produced by the immune system that specifically recognize and bind to PEG (anti-PEG Abs), including both pre-existing and treatment-induced Abs. More importantly, the existence of anti-PEG Abs has been correlated with loss of therapeutic efficacy and increase in adverse effects in several clinical reports examining different PEGylated therapeutics. To better understand the nature of anti-PEG immunity, we summarize a number of clinical reports and some critical animal studies regarding pre-existing and treatment-induced anti-PEG Abs. Various anti-PEG detection methods used in different studies were provided. Several protein modification technologies beyond PEGylation were also highlighted.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Fang Sun
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Sijun Liu
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
| | - Shaoyi Jiang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States; Department of Bioengineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
43
|
Ginn C, Choi JW, Brocchini S. Disulfide-bridging PEGylation during refolding for the more efficient production of modified proteins. Biotechnol J 2016; 11:1088-99. [DOI: 10.1002/biot.201600035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/07/2016] [Accepted: 05/17/2016] [Indexed: 01/18/2023]
Affiliation(s)
| | - Ji-won Choi
- PolyTherics Ltd; Babraham Research Campus, Babraham; Cambridge UK
| | | |
Collapse
|
44
|
Cao Z, Wu M, Zhao Y, Dai L, Zeng R, Tu M, Zhao J. Bioinspired double-positively charged phosphodicholine-chitosan and zwitterionic phosphorylcholine-chitosan conjugates: The associated water structure, biocompatibility and antibacterial action. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Abstract
INTRODUCTION Many of the biotherapeutics approved or under development suffer from a short half-life necessitating frequent applications in order to maintain a therapeutic concentration over an extended period of time. The implementation of half-life extension strategies allows the generation of long-lasting therapeutics with improved pharmacokinetic and pharmacodynamic properties. AREAS COVERED This review gives an overview of the different half-life extension strategies developed over the past years and their application to generate next-generation biotherapeutics. It focuses on srategies already used in approved drugs and drugs that are in clinical development. These strategies include those aimed at increasing the hydrodynamic radius of the biotherapeutic and strategies which further implement recycling by the neonatal Fc receptor (FcRn). EXPERT OPINION Half-life extension strategies have become an integral part of development for many biotherapeutics. A diverse set of these strategies is available for the fine-tuning of half-life and adaption to the intended treatment modality and disease. Currently, half-life extension is dominated by strategies utilizing albumin binding or fusion, fusion to an immunoglobulin Fc region and PEGylation. However, a variety of alternative strategies, such as fusion of flexible polypeptide chains as PEG mimetic substitute, have reached advanced stages and offer further alternatives for half-life extension.
Collapse
Affiliation(s)
- Roland E Kontermann
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
46
|
|
47
|
Affiliation(s)
- Gaojie Hu
- Polymer Science and Engineering
Department, University of Massachusetts Amherst, 120 Governors
Drive, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science and Engineering
Department, University of Massachusetts Amherst, 120 Governors
Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
48
|
Gunnoo SB, Madder A. Bioconjugation – using selective chemistry to enhance the properties of proteins and peptides as therapeutics and carriers. Org Biomol Chem 2016; 14:8002-13. [DOI: 10.1039/c6ob00808a] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Both peptide and protein therapeutics are becoming increasingly important for treating a wide range of diseases. Functionalisation of theseviasite-selective chemical modification leads to enhancement of their therapeutic properties.
Collapse
Affiliation(s)
- Smita B. Gunnoo
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- Ghent
- Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- Ghent
- Belgium
| |
Collapse
|
49
|
Lee MTW, Maruani A, Baker JR, Caddick S, Chudasama V. Next-generation disulfide stapling: reduction and functional re-bridging all in one. Chem Sci 2016; 7:799-802. [PMID: 28966772 PMCID: PMC5580075 DOI: 10.1039/c5sc02666k] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/13/2015] [Indexed: 01/30/2023] Open
Abstract
Herein we present a significant step towards next-generation disulfide stapling reagents. A novel class of reagent has been designed to effect both disulfide reduction and functional re-bridging. The strategy has been applied to great success across various peptides and proteins. Moreover, application to a multi-disulfide system resulted in functional re-bridging without disulfide scrambling.
Collapse
Affiliation(s)
- Maximillian T W Lee
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom . ; Tel: +44207 679 2077
| | - Antoine Maruani
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom . ; Tel: +44207 679 2077
| | - James R Baker
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom . ; Tel: +44207 679 2077
| | - Stephen Caddick
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom . ; Tel: +44207 679 2077
| | - Vijay Chudasama
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom . ; Tel: +44207 679 2077
| |
Collapse
|
50
|
Yang T, Choi SK, Lee YR, Cho Y, Kim JW. Novel associative nanoparticles grafted with hydrophobically modified zwitterionic polymer brushes for the rheological control of aqueous polymer gel fluids. Polym Chem 2016. [DOI: 10.1039/c6py00359a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Novel associative nanoparticles (ANPs) are synthesized by grafting poly(2-methacryloyloxyethyl phosphorylcholine-co-stearyl methacrylate) polymer brushes on silica nanoparticles by using surface-mediated living radical polymerization.
Collapse
Affiliation(s)
- Taeseung Yang
- Department of Bionano Technology
- Hanyang University
- Ansan
- Republic of Korea
| | - Sang Koo Choi
- Department of Bionano Technology
- Hanyang University
- Ansan
- Republic of Korea
- Department of Applied Chemistry
| | - Yea Ram Lee
- Department of Bionano Technology
- Hanyang University
- Ansan
- Republic of Korea
| | | | - Jin Woong Kim
- Department of Bionano Technology
- Hanyang University
- Ansan
- Republic of Korea
- Department of Applied Chemistry
| |
Collapse
|