1
|
Mutlu H. Chemical design and synthesis of macromolecular profluorescent nitroxide systems as self-reporting probes. Polym Chem 2022. [DOI: 10.1039/d1py01645h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The objective of this mini-review article is to highlight the importance of the chemical design towards the synthesis of polymeric profluorescent nitroxides applicable as self-reporting probes.
Collapse
Affiliation(s)
- Hatice Mutlu
- Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
|
3
|
Tsao KK, Lee AC, Racine KÉ, Keillor JW. Site-Specific Fluorogenic Protein Labelling Agent for Bioconjugation. Biomolecules 2020; 10:E369. [PMID: 32121143 PMCID: PMC7175205 DOI: 10.3390/biom10030369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/29/2023] Open
Abstract
Many clinically relevant therapeutic agents are formed from the conjugation of small molecules to biomolecules through conjugating linkers. In this study, two novel conjugating linkers were prepared, comprising a central coumarin core, functionalized with a dimaleimide moiety at one end and a terminal alkyne at the other. In our first design, we developed a protein labelling method that site-specifically introduces an alkyne functional group to a dicysteine target peptide tag that was genetically fused to a protein of interest. This method allows for the subsequent attachment of azide-functionalized cargo in the facile synthesis of novel protein-cargo conjugates. However, the fluorogenic aspect of the reaction between the linker and the target peptide was less than we desired. To address this shortcoming, a second linker reagent was prepared. This new design also allowed for the site-specific introduction of an alkyne functional group onto the target peptide, but in a highly fluorogenic and rapid manner. The site-specific addition of an alkyne group to a protein of interest was thus monitored in situ by fluorescence increase, prior to the attachment of azide-functionalized cargo. Finally, we also demonstrated that the cargo can also be attached first, in an azide/alkyne cycloaddition reaction, prior to fluorogenic conjugation with the target peptide-fused protein.
Collapse
Affiliation(s)
| | | | | | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.K.T.); (A.C.L.); (K.É.R.)
| |
Collapse
|
4
|
López-Puertollano D, Agulló C, Mercader JV, Abad-Somovilla A, Abad-Fuentes A. Click Chemistry-Assisted Bioconjugates for Hapten Immunodiagnostics. Bioconjug Chem 2020; 31:956-964. [DOI: 10.1021/acs.bioconjchem.0c00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniel López-Puertollano
- Department of Organic Chemistry, Universitat de València, Doctor Moliner 50, 46100 Burjassot, València, Spain
| | - Consuelo Agulló
- Department of Organic Chemistry, Universitat de València, Doctor Moliner 50, 46100 Burjassot, València, Spain
| | - Josep V. Mercader
- Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Agustí Escardino 7, 46980 Paterna, València, Spain
| | - Antonio Abad-Somovilla
- Department of Organic Chemistry, Universitat de València, Doctor Moliner 50, 46100 Burjassot, València, Spain
| | - Antonio Abad-Fuentes
- Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Agustí Escardino 7, 46980 Paterna, València, Spain
| |
Collapse
|
5
|
Liu G, Hu J, Liu S. Emerging Applications of Fluorogenic and Non-fluorogenic Bifunctional Linkers. Chemistry 2018; 24:16484-16505. [PMID: 29893499 DOI: 10.1002/chem.201801290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 01/06/2023]
Abstract
Homo- and hetero-bifunctional linkers play vital roles in constructing a variety of functional systems, ranging from protein bioconjugates with drugs and functional agents, to surface modification of nanoparticles and living cells, and to the cyclization/dimerization of synthetic polymers and biomolecules. Conventional approaches for assaying conjugation extents typically rely on ex situ techniques, such as mass spectrometry, gel electrophoresis, and size-exclusion chromatography. If the conjugation process involving bifunctional linkers was rendered fluorogenic, then in situ monitoring, quantification, and optical tracking/visualization of relevant processes would be achieved. In this review, conventional non-fluorogenic linkers are first discussed. Then the focus is on the evolution and emerging applications of fluorogenic bifunctional linkers, which are categorized into hetero-bifunctional single-caging fluorogenic linkers, homo-bifunctional double-caging fluorogenic linkers, and hetero-bifunctional double-caging fluorogenic linkers. In addition, stimuli-cleavable bifunctional linkers designed for both conjugation and subsequent site-specific triggered release are also summarized.
Collapse
Affiliation(s)
- Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P.R. China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P.R. China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
6
|
Affiliation(s)
- Yanjing Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
|
8
|
Doubly Caged Linker for AND-Type Fluorogenic Construction of Protein/Antibody Bioconjugates and In Situ Quantification. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Liu G, Shi G, Sheng H, Jiang Y, Liang H, Liu S. Doubly Caged Linker for AND-Type Fluorogenic Construction of Protein/Antibody Bioconjugates and In Situ Quantification. Angew Chem Int Ed Engl 2017; 56:8686-8691. [PMID: 28524357 DOI: 10.1002/anie.201702748] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 12/15/2022]
Abstract
In situ quantification of the conjugation efficiency of azide-terminated synthetic polymers/imaging probes and thiol-functionalized antibodies/proteins/peptides was enabled by a doubly caged profluorescent and heterodifunctional core molecule C1 as a self-sorting bridging unit. Orthogonal dual "click" coupling of C1 with azide- and thiol-functionalized precursors led to highly fluorescent bioconjugates, whereas single-click products remained essentially nonfluorescent. Integration with FRET processes was also possible. For the construction of antibody-probe conjugates from an anti-carcinoembryonic antigen and a quinone-caged profluorescent naphthalimide derivative, the dual "click" coupling process with C1 was monitored on the basis of the emission turn-on of C1, whereas prominent changes in FRET ratios occurred for antibody-imaging-probe conjugates when specifically triggered by quinone oxidoreductase (NQO1), which is overexpressed in various types of cancer cells.
Collapse
Affiliation(s)
- Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'An Road, Shanghai, 200032, China
| | - Haoyue Sheng
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'An Road, Shanghai, 200032, China
| | - Yanyan Jiang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| |
Collapse
|
10
|
Wang T, Riegger A, Lamla M, Wiese S, Oeckl P, Otto M, Wu Y, Fischer S, Barth H, Kuan SL, Weil T. Water-soluble allyl sulfones for dual site-specific labelling of proteins and cyclic peptides. Chem Sci 2016; 7:3234-3239. [PMID: 29997815 PMCID: PMC6006486 DOI: 10.1039/c6sc00005c] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 01/27/2016] [Indexed: 12/19/2022] Open
Abstract
Allyl sulfones as efficient disulfide rebridging agents for site-specific protein modifications with up to two additional functionalities in water.
Water-soluble allyl sulfones provide convenient site-specific disulfide rebridging of native proteins and cyclic peptides. The site-selective functionalization of (a) the peptide hormone somatostatin, (b) the interchain disulfide of bovine insulin and (c) functionalization of the proteins GFP and lysozyme with allyl sulfones proceeds in aqueous solution. Allyl sulfones offer three functionalizable sites that react with thiol containing molecules in a step-wise fashion. Dual labeling of proteins and cyclic peptides is achieved i.e. the attachment of a chromophore and an affinity tag in a single reaction step, which is of great significance for the construction of precise multifunctional peptide and protein conjugates.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Organic Chemistry III , Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany .
| | - Andreas Riegger
- Institute of Organic Chemistry III , Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany .
| | - Markus Lamla
- Institute of Organic Chemistry III , Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany .
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics , University of Ulm Medical Center , D-89081 Ulm , Germany
| | - Patrick Oeckl
- Department of Neurology , University of Ulm Medical Center , Oberer Eselsberg 45 , D-89081 Ulm , Germany
| | - Markus Otto
- Department of Neurology , University of Ulm Medical Center , Oberer Eselsberg 45 , D-89081 Ulm , Germany
| | - Yuzhou Wu
- Institute of Organic Chemistry III , Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany .
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology , University of Ulm Medical Center , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology , University of Ulm Medical Center , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany
| | - Seah Ling Kuan
- Institute of Organic Chemistry III , Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany .
| | - Tanja Weil
- Institute of Organic Chemistry III , Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany .
| |
Collapse
|
11
|
Döhler D, Rana S, Rupp H, Bergmann H, Behzadi S, Crespy D, Binder WH. Qualitative sensing of mechanical damage by a fluorogenic “click” reaction. Chem Commun (Camb) 2016; 52:11076-9. [DOI: 10.1039/c6cc05390d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A simple and unique damage-sensing tool mediated by a Cu(i)-catalyzed [3+2] cycloaddition reaction is reported, where a fluorogenic “click”-reaction highlights physical damage by a strong fluorescence increase accompanied by in situ monitoring of localized self-healing.
Collapse
Affiliation(s)
- Diana Döhler
- Faculty of Natural Science II (Chemistry, Physics and Mathematics)
- Institute of Chemistry
- Chair of Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Martin Luther University Halle-Wittenberg
| | - Sravendra Rana
- Faculty of Natural Science II (Chemistry, Physics and Mathematics)
- Institute of Chemistry
- Chair of Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Martin Luther University Halle-Wittenberg
| | - Harald Rupp
- Faculty of Natural Science II (Chemistry, Physics and Mathematics)
- Institute of Chemistry
- Chair of Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Martin Luther University Halle-Wittenberg
| | - Henrik Bergmann
- Faculty of Natural Science II (Chemistry, Physics and Mathematics)
- Institute of Chemistry
- Chair of Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Martin Luther University Halle-Wittenberg
| | - Shahed Behzadi
- Max Planck Institute for Polymer Research
- Physical Chemistry of Polymers
- Mainz D-55128
- Germany
| | - Daniel Crespy
- Max Planck Institute for Polymer Research
- Physical Chemistry of Polymers
- Mainz D-55128
- Germany
- Department of Materials Science and Engineering
| | - Wolfgang H. Binder
- Faculty of Natural Science II (Chemistry, Physics and Mathematics)
- Institute of Chemistry
- Chair of Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Martin Luther University Halle-Wittenberg
| |
Collapse
|
12
|
Abstract
Synthetic polymer chemistry has undergone two major developments in the last two decades. About 20 years ago, reversible-deactivation radical polymerization processes started to give access to a wide range of polymeric architectures made from an almost infinite reservoir of functional building blocks. A few years later, the concept of click chemistry revolutionized the way polymer chemists approached synthetic routes. Among the few reactions that could qualify as click, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) initially stood out. Soon, many old and new reactions, including cycloadditions, would further enrich the synthetic macromolecular chemistry toolbox. Whether click or not, cycloadditions are in any case powerful tools for designing polymeric materials in a modular fashion, with a high level of functionality and, sometimes, responsiveness. Here, we wish to describe cycloaddition methodologies that have been reported in the last 10 years in the context of macromolecular engineering, with a focus on those developed in our laboratories. The overarching structure of this Account is based on the three most commonly encountered cycloaddition subclasses in organic and macromolecular chemistry: 1,3-dipolar cycloadditions, (hetero-)Diels-Alder cycloadditions ((H)DAC), and [2+2] cycloadditions. Our goal is to briefly describe the relevant reaction conditions, the advantages and disadvantages, and the realized polymer applications. Furthermore, the orthogonality of most of these reactions is highlighted because it has proven highly beneficial for generating unique, multifunctional polymers in a one-pot reaction. The overview on 1,3-dipolar cycloadditions is mostly centered on the application of CuAAC as the most travelled route, by far. Besides illustrating the capacity of CuAAC to generate complex polymeric architectures, alternative 1,3-dipolar cycloadditions operating without the need for a catalyst are described. In the area of (H)DA cycloadditions, beyond the popular maleimide/furan couple, we present chemistries based on more reactive species, such as cyclopentadienyl or thiocarbonylthio moieties, particularly stressing the reversibility of these systems. In these two greater families, as well as in the last section on [2+2] cycloadditions, we highlight phototriggered chemistries as a powerful tool for spatially and temporally controlled materials synthesis. Clearly, cycloaddition chemistry already has and will continue to transform the field of polymer chemistry in the years to come. Applying this chemistry enables better control over polymer composition, the development of more complicated polymer architectures, the simplification of polymer library production, and the discovery of novel applications for all of these new polymers.
Collapse
Affiliation(s)
- Guillaume Delaittre
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nathalie K. Guimard
- INM − Leibniz
Institute for New Materials, Functional Surfaces Group, and Saarland
University, Campus D2 2, 66123 Saarbruecken, Germany
| | - Christopher Barner-Kowollik
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
13
|
Dag A, Jiang Y, Karim KJA, Hart-Smith G, Scarano W, Stenzel MH. Polymer-Albumin Conjugate for the Facilitated Delivery of Macromolecular Platinum Drugs. Macromol Rapid Commun 2015; 36:890-897. [DOI: 10.1002/marc.201400576] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Aydan Dag
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Bezmialem Vakif University; 34093 Fatih Istanbul Turkey
| | - Yanyan Jiang
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Khairil Juhanni Abd Karim
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
- Department of Chemistry; Faculty of Science; Universiti Teknologi Malaysia (UTM); 81310 UTM Skudai Johor Malaysia
| | - Gene Hart-Smith
- Systems Biology Initiative; School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney 2052 Australia
| | - Wei Scarano
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| |
Collapse
|
14
|
Abstract
Bioorthogonal chemistry has enabled the selective labeling and detection of biomolecules in living systems. Bioorthogonal smart probes, which become fluorescent or deliver imaging or therapeutic agents upon reaction, allow for the visualization of biomolecules or targeted delivery even in the presence of excess unreacted probe. This review discusses the strategies used in the development of bioorthogonal smart probes and highlights the potential of these probes to further our understanding of biology.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Kahveci MU, Ciftci M, Evran S, Timur S, Yagci Y. Photoinducedin situformation of clickable PEG hydrogels and their antibody conjugation. Des Monomers Polym 2014. [DOI: 10.1080/15685551.2014.971392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Muhammet U. Kahveci
- Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34220 Istanbul, Turkey
| | - Mustafa Ciftci
- Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Serap Evran
- Faculty of Science, Department of Biochemistry, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Faculty of Science, Department of Biochemistry, Ege University, Bornova, Izmir 35100, Turkey
| | - Yusuf Yagci
- Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- Faculty of Science, Center of Excellence for Advanced Materials Research (CEAMR), Chemistry Department, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Jiang Y, Lu H, Khine YY, Dag A, Stenzel MH. Polyion complex micelle based on albumin-polymer conjugates: multifunctional oligonucleotide transfection vectors for anticancer chemotherapeutics. Biomacromolecules 2014; 15:4195-205. [PMID: 25290019 DOI: 10.1021/bm501205x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Novel biocompatible polyion complex micelles, containing bovine serum albumin (BSA), polymer, and oligonucleotide, were synthesized as a generation of vectors for the gene transfection. Maleimide-terminated poly((N,N-dimethyl amino) ethyl methacrylate) (PDMAEMA) was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization and subsequently deprotected. Precise one to one albumin-PDMAEMA bioconjugates have been achieved via 1,4-addition with the free thiol group on Cys34 on the BSA protein. SDS-PAGE and GPC (water) confirmed and quantified the successful conjugation. The conjugation efficiency was found to be independent of the molecular weight of PDMAEMA. After careful pH adjustment, the conjugate could efficiently condense anticancer oligonucleotide, ISIS 5132, which resulted in particles of 15-35 nm with a negative zeta-potential. The size was easily controlled by the polymer chain length. The albumin corona provides complete protection of the cationic polymer and genetic drug, which gave rise to lower potential toxicity from the polymer and higher gene transfection efficiency. Although a control experiment with a traditional PEG-based polyion complex micelle could deliver the drug just as effectively, if not more so, to the ovarian cancer cell line OVCAR-3, this carrier had no selectivity toward cancerous cells and proved just as toxic to HS27 (fibroblast) cell line. In contrast, the albumin-coated particles demonstrated desirable selectivity toward cancerous cells and have been shown to have outstanding performance in the cytotoxicity tests of several carcinoma monolayer cell models. In addition, the complex micelles were able to destroy pancreatic multicellular tumor spheroids, while free ISIS 5132 could not penetrate the spheroid at all. Hence, albumin-coated/oligonucleotide complex micelles are far more promising than the most classical gene delivery vectors.
Collapse
Affiliation(s)
- Yanyan Jiang
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales , Sydney, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
17
|
Robin MP, O'Reilly RK. Fluorescent and chemico-fluorescent responsive polymers from dithiomaleimide and dibromomaleimide functional monomers. Chem Sci 2014. [DOI: 10.1039/c4sc00753k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Goswami LN, Houston ZH, Sarma SJ, Jalisatgi SS, Hawthorne MF. Efficient synthesis of diverse heterobifunctionalized clickable oligo(ethylene glycol) linkers: potential applications in bioconjugation and targeted drug delivery. Org Biomol Chem 2013; 11:1116-26. [PMID: 23296079 DOI: 10.1039/c2ob26968f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe the sequential synthesis of a variety of azide-alkyne click chemistry-compatible heterobifunctional oligo(ethylene glycol) (OEG) linkers for bioconjugation chemistry applications. Synthesis of these bioorthogonal linkers was accomplished through desymmetrization of OEGs by conversion of one of the hydroxyl groups to either an alkyne or azido functionality. The remaining distal hydroxyl group on the OEGs was activated by either a 4-nitrophenyl carbonate or a mesylate (-OMs) group. The -OMs functional group served as a useful precursor to form a variety of heterobifunctionalized OEG linkers containing different highly reactive end groups, e.g., iodo, -NH(2), -SH and maleimido, that were orthogonal to the alkyne or azido functional group. Also, the alkyne- and azide-terminated OEGs are useful for generating larger discrete poly(ethylene glycol) (PEG) linkers (e.g., PEG(16) and PEG(24)) by employing a Cu(I)-catalyzed 1,3-dipolar cycloaddition click reaction. The utility of these clickable heterobifunctional OEGs in bioconjugation chemistry was demonstrated by attachment of the integrin (α(v)β(3)) receptor targeting peptide, cyclo-(Arg-Gly-Asp-D-Phe-Lys) (cRGfKD) and to the fluorescent probe sulfo-rhodamine B. The synthetic methodology presented herein is suitable for the large scale production of several novel heterobifunctionalized OEGs from readily available and inexpensive starting materials.
Collapse
Affiliation(s)
- Lalit N Goswami
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri, 1514 Research Park Drive, Columbia, Missouri 65211-3450, USA
| | | | | | | | | |
Collapse
|
19
|
Goldstein DC, Peterson JR, Cheng YY, Clady RGC, Schmidt TW, Thordarson P. Synthesis and luminescence properties of iridium(III) azide- and triazole-bisterpyridine complexes. Molecules 2013; 18:8959-75. [PMID: 23896620 PMCID: PMC6270445 DOI: 10.3390/molecules18088959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 11/20/2022] Open
Abstract
We describe here the synthesis of azide-functionalised iridium(III) bisterpyridines using the “chemistry on the complex” strategy. The resulting azide-complexes are then used in the copper(I)-catalysed azide-alkyne Huisgen 1,3-dipolar cycloaddition “click chemistry” reaction to from the corresponding triazole-functionalised iridium(III) bisterpyridines. The photophysical characteristics, including lifetimes, of these compounds were also investigated. Interestingly, oxygen appears to have very little effect on the lifetime of these complexes in aqueous solutions. Unexpectedly, sodium ascorbate acid appears to quench the luminescence of triazole-functionalised iridium(III) bisterpyridines, but this effect can be reversed by the addition of copper(II) sulfate, which is known to oxidize ascorbate under aerobic conditions. The results demonstrate that iridium(III) bisterpyridines can be functionalized for use in “click chemistry” facilitating the use of these photophysically interesting complexes in the modification of polymers or surfaces, to highlight just two possible applications.
Collapse
Affiliation(s)
- Daniel C. Goldstein
- School of Chemistry, The University of New South Wales, NSW 2052, Australia; E-Mails: (D.C.G.); (J.R.P.)
| | - Joshua R. Peterson
- School of Chemistry, The University of New South Wales, NSW 2052, Australia; E-Mails: (D.C.G.); (J.R.P.)
| | - Yuen Yap Cheng
- School of Chemistry, The University of Sydney, NSW 2006, Australia; E-Mails: (Y.Y.C.), (R.G.C.C.); (T.W.S.)
| | - Raphael G. C. Clady
- School of Chemistry, The University of Sydney, NSW 2006, Australia; E-Mails: (Y.Y.C.), (R.G.C.C.); (T.W.S.)
| | - Timothy W. Schmidt
- School of Chemistry, The University of Sydney, NSW 2006, Australia; E-Mails: (Y.Y.C.), (R.G.C.C.); (T.W.S.)
| | - Pall Thordarson
- School of Chemistry, The University of New South Wales, NSW 2052, Australia; E-Mails: (D.C.G.); (J.R.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-2-9385-54478; Fax: +61-2-9385-6141
| |
Collapse
|
20
|
Goonewardena SN, Zong H, Leroueil PR, Baker JR. Bioorthogonal Chemical Handle for Tracking Multifunctional Nanoparticles. Chempluschem 2013. [DOI: 10.1002/cplu.201300007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Messaoudi S, Gabillet M, Brion JD, Alami M. An efficient synthesis of 3-triazolyl-2(1H
)-quinolones by CuTC-catalyzed azide-alkyne cycloaddition reaction. Appl Organomet Chem 2013. [DOI: 10.1002/aoc.2946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Samir Messaoudi
- Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie; Université Paris-Sud; Châtenay-Malabry France
| | - Marie Gabillet
- Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie; Université Paris-Sud; Châtenay-Malabry France
| | - Jean-Daniel Brion
- Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie; Université Paris-Sud; Châtenay-Malabry France
| | - Mouâd Alami
- Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie; Université Paris-Sud; Châtenay-Malabry France
| |
Collapse
|
22
|
Wang T, Pfisterer A, Kuan SL, Wu Y, Dumele O, Lamla M, Müllen K, Weil T. Cross-conjugation of DNA, proteins and peptides via a pH switch. Chem Sci 2013. [DOI: 10.1039/c3sc22015j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
23
|
Fischer-Durand N, Salmain M, Vessières A, Jaouen G. A new bioorthogonal cross-linker with alkyne and hydrazide end groups for chemoselective ligation. Application to antibody labelling. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.09.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Glassner M, Delaittre G, Kaupp M, Blinco JP, Barner-Kowollik C. (Ultra)Fast Catalyst-Free Macromolecular Conjugation in Aqueous Environment at Ambient Temperature. J Am Chem Soc 2012; 134:7274-7. [DOI: 10.1021/ja301762y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mathias Glassner
- Preparative Macromolecular Chemistry,
Institut für Technische Chemie und Polymerchemie and Centre
for Functional Nanostructures, Karlsruhe Institute of Technology, Engesserstraße 18, 76128 Karlsruhe,
Germany
| | - Guillaume Delaittre
- Preparative Macromolecular Chemistry,
Institut für Technische Chemie und Polymerchemie and Centre
for Functional Nanostructures, Karlsruhe Institute of Technology, Engesserstraße 18, 76128 Karlsruhe,
Germany
- Zoologisches Institut,
Zell-
und Neurobiologie and Centre for Functional Nanostructures, Karlsruhe Institute of Technology, 76131 Karlsruhe,
Germany
| | - Michael Kaupp
- Preparative Macromolecular Chemistry,
Institut für Technische Chemie und Polymerchemie and Centre
for Functional Nanostructures, Karlsruhe Institute of Technology, Engesserstraße 18, 76128 Karlsruhe,
Germany
| | - James P. Blinco
- Preparative Macromolecular Chemistry,
Institut für Technische Chemie und Polymerchemie and Centre
for Functional Nanostructures, Karlsruhe Institute of Technology, Engesserstraße 18, 76128 Karlsruhe,
Germany
- ARC Centre of Excellence
for Free
Radical Chemistry and Biotechnology, Queensland University of Technology, Brisbane 4001, Australia
| | - Christopher Barner-Kowollik
- Preparative Macromolecular Chemistry,
Institut für Technische Chemie und Polymerchemie and Centre
for Functional Nanostructures, Karlsruhe Institute of Technology, Engesserstraße 18, 76128 Karlsruhe,
Germany
| |
Collapse
|
25
|
Li XY, Li TH, Guo JS, Wei Y, Jing XB, Chen XS, Huang YB. PEGylation of bovine serum albumin using click chemistry for the application as drug carriers. Biotechnol Prog 2012; 28:856-61. [PMID: 22275125 DOI: 10.1002/btpr.1526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/17/2012] [Indexed: 12/29/2022]
Abstract
Monomethyl poly(ethylene glycol) (mPEG)-modified bovine serum albumin (BSA) conjugates (BSA-mPEG) were obtained by the mild Cu(I)-mediated cycloaddition reaction of azided BSA (BSA-N(3) ) and alkyne-terminated mPEG. The structure and characteristics of BSA-mPEG conjugates were thoroughly investigated. There were about two PEG chains conjugated onto each BSA molecule as determined by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) analysis. The intrinsic nonspecific binding ability of BSA was used for adsorption and sustained release of both rifampicn and 5-fluorouracil (5-FU). The helical structures of BSA were preserved to a large extent after modification and drug adsorption on BSA was confirmed via circular dichroism spectroscopy. Drugs adsorbed onto the conjugated formulation to a lesser extent than on BSA due to mPEG modification. The in vitro release of both rifampicin and 5-FU, however, indicated that BSA-mPEG can function as a drug carrier. Overall, the click reaction provided a convenient tool for the pegylation of BSA. The biological activity of the BSA-mPEG conjugates, including the drug transportation capacity and biocompatibility, were largely retained.
Collapse
Affiliation(s)
- Xiao-Yuan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | | | | | | | | | | | | |
Collapse
|
26
|
Li C, Liu S. Polymeric assemblies and nanoparticles with stimuli-responsive fluorescence emission characteristics. Chem Commun (Camb) 2012; 48:3262-78. [PMID: 22367463 DOI: 10.1039/c2cc17695e] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent polymeric assemblies and nanoparticles (NPs) of nanoscale dimensions have become a focus of intensive investigations during the past few decades due to combined advantages such as improved biocompatibility, water dispersibility, stimuli-responsiveness, facile integration into optical detection devices, and the ability of further functionalization. In addition, the chemical composition and morphology of polymeric assemblies and NPs can be modulated via synthetic approaches, leading to the precise spatial organization of multiple fluorophores. Thus, polymeric assemblies and NPs have been utilized to optimize the photoluminescent properties of covalently or physically attached fluorophores and facilely modulate the fluorescence resonance energy transfer (FRET) processes when the polymeric matrix is endowed with stimuli-responsiveness. These fascinating fluorescent polymeric assemblies and NPs offer unique and versatile platforms for the construction of novel detection, imaging, biolabeling, and optoelectronic systems. This feature article focuses on the recent developments of polymeric assemblies and NPs-based stimuli-tunable fluorescent systems and highlights their future practical applications with selected literature reports.
Collapse
Affiliation(s)
- Changhua Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | |
Collapse
|
27
|
Meeuwissen SA, Debets MF, van Hest JCM. Copper-free click chemistry on polymersomes: pre- vs. post-self-assembly functionalisation. Polym Chem 2012. [DOI: 10.1039/c2py00466f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Catalyst-Free Conjugation and In Situ Quantification of Nanoparticle Ligand Surface Density Using Fluorogenic Cu-Free Click Chemistry. Chemistry 2011; 17:3326-31. [DOI: 10.1002/chem.201003131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Indexed: 12/21/2022]
|
29
|
Li WT, Wu WH, Tang CH, Tai R, Chen ST. One-pot tandem copper-catalyzed library synthesis of 1-thiazolyl-1,2,3-triazoles as anticancer agents. ACS COMBINATORIAL SCIENCE 2011; 13:72-8. [PMID: 21247128 DOI: 10.1021/co1000234] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One-pot multicomponent synthesis to assemble compounds has been an efficient method for constructing a compound library. We have developed one-pot tandem copper-catalyzed azidation and CuAAC reactions that afford 1-thiazolyl-1,2,3-triazoles with anticancer activity. By utilizing this one-pot synthetic strategy, we constructed a library of 1-thiazolyl-1,2,3-triazoles in search of the potent lead compound. Furthermore, 1-thiazolyl-1,2,3-triazoles were evaluated for anticancer activity against the multidrug-resistant cancer cells MES-SA/Dx5. Most of the 1-thiazolyl-1,2,3-triazoles revealed cytotoxic effect against cancer cells at micromolar to low micromolar range. Testing some of the most potent compounds (5{4,2-4} and 5{5,1-3}) against the normal cell line Vero showed no significant toxicity (except 5{4,2}) to normal cells. This result indicates that compounds 5{4,3-4} and 5{5,1-3} possessed good potency and selectivity to cancer cells over normal cells.
Collapse
Affiliation(s)
- Wen-Tai Li
- Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wan-Hsun Wu
- Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chien-Hsiang Tang
- Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ready Tai
- Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Shui-Tein Chen
- Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
30
|
Lavigueur C, García JG, Hendriks L, Hoogenboom R, Cornelissen JJLM, Nolte RJM. Thermoresponsive giant biohybrid amphiphiles. Polym Chem 2011. [DOI: 10.1039/c0py00229a] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Jutz G, Böker A. Bionanoparticles as functional macromolecular building blocks – A new class of nanomaterials. POLYMER 2011. [DOI: 10.1016/j.polymer.2010.11.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Prusty DK, Herrmann A. A Fluorogenic Reaction Based on Heavy-Atom Removal for Ultrasensitive DNA Detection. J Am Chem Soc 2010; 132:12197-9. [DOI: 10.1021/ja105181v] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deepak K. Prusty
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andreas Herrmann
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
33
|
Li SY, Liu HW, Zhang K, Lo KW. Modification of Luminescent Iridium(III) Polypyridine Complexes with Discrete Poly(ethylene glycol) (PEG) Pendants: Synthesis, Emissive Behavior, Intracellular Uptake, and PEGylation Properties. Chemistry 2010; 16:8329-39. [DOI: 10.1002/chem.201000474] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
del Barrio J, Oriol L, Alcalá R, Sánchez C. Photoresponsive poly(methyl methacrylate)-b
-azodendron block copolymers prepared by ATRP and click chemistry. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.23920] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Velonia K. Protein-polymer amphiphilic chimeras: recent advances and future challenges. Polym Chem 2010. [DOI: 10.1039/b9py00362b] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Hong V, Presolski S, Ma C, Finn M. Analysis and Optimization of Copper-Catalyzed Azide-Alkyne Cycloaddition for Bioconjugation. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200905087] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Sumerlin BS, Vogt AP. Macromolecular Engineering through Click Chemistry and Other Efficient Transformations. Macromolecules 2009. [DOI: 10.1021/ma901447e] [Citation(s) in RCA: 606] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Brent S. Sumerlin
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314
| | - Andrew P. Vogt
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314
| |
Collapse
|
38
|
Debets MF, van Berkel SS, Schoffelen S, Rutjes FPJT, van Hest JCM, van Delft FL. Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition. Chem Commun (Camb) 2009; 46:97-9. [PMID: 20024305 DOI: 10.1039/b917797c] [Citation(s) in RCA: 445] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A strained aza-dibenzocyclooctyne was prepared via a high-yielding synthetic route. Copper-free, strain-promoted click reaction with azides showed excellent kinetics, and a functionalised aza-cyclooctyne was applied in fast and efficient PEGylation of enzymes.
Collapse
Affiliation(s)
- Marjoke F Debets
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Fluorogenic Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reactions have emerged as a powerful tool for bioconjugation, materials science, organic synthesis and drug discovery. This review highlights the design of the recent development of fluorogenic CuAAC reactions as well as their applications.
Collapse
Affiliation(s)
- Céline Le Droumaguet
- Department of Chemistry and Biochemistry and Nanocenter, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | | | | |
Collapse
|
40
|
Hong V, Presolski SI, Ma C, Finn MG. Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew Chem Int Ed Engl 2009; 48:9879-83. [PMID: 19943299 PMCID: PMC3410708 DOI: 10.1002/anie.200905087] [Citation(s) in RCA: 788] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vu Hong
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1)858-784-8850
| | - Stanislav I. Presolski
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1)858-784-8850
| | - Celia Ma
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1)858-784-8850
| | - M. G. Finn
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1)858-784-8850
| |
Collapse
|