1
|
Dini C, Borges MHR, Malheiros SS, Piazza RD, van den Beucken JJJP, de Avila ED, Souza JGS, Barão VAR. Progress in Designing Therapeutic Antimicrobial Hydrogels Targeting Implant-associated Infections: Paving the Way for a Sustainable Platform Applied to Biomedical Devices. Adv Healthc Mater 2024:e2402926. [PMID: 39440583 DOI: 10.1002/adhm.202402926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Implantable biomedical devices have found widespread use in restoring lost functions or structures within the human body, but they face a significant challenge from microbial-related infections, which often lead to implant failure. In this context, antimicrobial hydrogels emerge as a promising strategy for treating implant-associated infections owing to their tunable physicochemical properties. However, the literature lacks a comprehensive analysis of antimicrobial hydrogels, encompassing their development, mechanisms, and effect on implant-associated infections, mainly in light of existing in vitro, in vivo, and clinical evidence. Thus, this review addresses the strategies employed by existing studies to tailor hydrogel properties to meet the specific needs of each application. Furthermore, this comprehensive review critically appraises the development of antimicrobial hydrogels, with a particular focus on solving infections related to metallic orthopedic or dental implants. Then, preclinical and clinical studies centering on providing quantitative microbiological results associated with the application of antimicrobial hydrogels are systematically summarized. Overall, antimicrobial hydrogels benefit from the tunable properties of polymers and hold promise as an effective strategy for the local treatment of implant-associated infections. However, future clinical investigations, grounded on robust evidence from in vitro and preclinical studies, are required to explore and validate new antimicrobial hydrogels for clinical use.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Samuel Santana Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Rodolfo Debone Piazza
- Physical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-900, Brazil
| | | | - Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, São Paulo, 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| |
Collapse
|
2
|
Abe F, Nakano A, Hirata I, Tanimoto K, Kato K. Structure and function of engineered stromal cell-derived factor-1α. Dent Mater J 2024; 43:286-293. [PMID: 38417858 DOI: 10.4012/dmj.2023-247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
To design biologically active, collagen-based scaffolds for bone tissue engineering, we have synthesized chimeric proteins consisting of stromal cell-derived factor-1α (SDF) and the von Willebrand factor A3 collagen-binding domain (CBD). The chimeric proteins were used to evaluate the effect of domain linkage and its order on the structure and function of the SDF and CBD. The structure of the chimeric proteins was analyzed by circular dichroism spectroscopy, while functional analysis was performed by a cell migration assay for the SDF domain and a collagen-binding assay for the CBD domain. Furthermore, computational structural prediction was conducted for the chimeric proteins to examine the consistency with the results of structural and functional analyses. Our structural and functional analyses as well as structural prediction revealed that linking two domains can affect their functions. However, their order had minor effects on the three-dimensional structure of CBD and SDF in the chimeric proteins.
Collapse
Affiliation(s)
- Fumika Abe
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Ayana Nakano
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Isao Hirata
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Koichi Kato
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University
- Nanomedicine Research Division, Research Institute for Nanodevices, Hiroshima University
| |
Collapse
|
3
|
Dutta D, Pirolli NH, Levy D, Tsao J, Seecharan N, Wang Z, Xu X, Jia X, Jay SM. Differentiation state and culture conditions impact neural stem/progenitor cell-derived extracellular vesicle bioactivity. Biomater Sci 2023; 11:5474-5489. [PMID: 37367824 PMCID: PMC10529403 DOI: 10.1039/d3bm00340j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Extracellular vesicles (EVs) derived from neural progenitor/stem cells (NPSCs) have shown promising efficacy in a variety of preclinical models. However, NPSCs lack critical neuroregenerative functionality such as myelinating capacity. Further, culture conditions used in NPSC EV production lack standardization, limiting reproducibility challenging and potentially potency of the overall approach via lack of optimization. Here, we assessed whether oligodendrocyte precursor cells (OPCs) and immature oligodendrocytes (iOLs), which are further differentiated than NPSCs and which both give rise to mature myelinating oligodendrocytes, could yield EVs with neurotherapeutic properties comparable or superior to those from NPSCs. We additionally examined the effects of extracellular matrix (ECM) coating materials and the presence or absence of growth factors in cell culture on the ultimate properties of EVs. The data show that OPC EVs and iOL EVs performed similarly to NPSC EVs in cell proliferation and anti-inflammatory assays, but NPSC EVs performed better in a neurite outgrowth assay. Additionally, the presence of nerve growth factor (NGF) in culture was found to maximize NPSC EV bioactivity among the conditions tested. NPSC EVs produced under rationally-selected culture conditions (fibronectin + NGF) enhanced axonal regeneration and muscle reinnervation in a rat nerve crush injury model. These results highlight the need for standardization of culture conditions for neurotherapeutic NPSC EV production.
Collapse
Affiliation(s)
- Dipankar Dutta
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Jeffrey Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Nicholas Seecharan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Zihui Wang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Xiang Xu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
4
|
Yazdani N, Willits RK. Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1086099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
Collapse
|
5
|
Lv Z, Dong C, Zhang T, Zhang S. Hydrogels in Spinal Cord Injury Repair: A Review. Front Bioeng Biotechnol 2022; 10:931800. [PMID: 35800332 PMCID: PMC9253563 DOI: 10.3389/fbioe.2022.931800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
Traffic accidents and falling objects are responsible for most spinal cord injuries (SCIs). SCI is characterized by high disability and tends to occur among the young, seriously affecting patients' lives and quality of life. The key aims of repairing SCI include preventing secondary nerve injury, inhibiting glial scarring and inflammatory response, and promoting nerve regeneration. Hydrogels have good biocompatibility and degradability, low immunogenicity, and easy-to-adjust mechanical properties. While providing structural scaffolds for tissues, hydrogels can also be used as slow-release carriers in neural tissue engineering to promote cell proliferation, migration, and differentiation, as well as accelerate the repair of damaged tissue. This review discusses the characteristics of hydrogels and their advantages as delivery vehicles, as well as expounds on the progress made in hydrogel therapy (alone or combined with cells and molecules) to repair SCI. In addition, we discuss the prospects of hydrogels in clinical research and provide new ideas for the treatment of SCI.
Collapse
Affiliation(s)
- Zhenshan Lv
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Tianjiao Zhang
- Medical Insurance Management Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaokun Zhang
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| |
Collapse
|
6
|
Rezaei A, Aligholi H, Zeraatpisheh Z, Gholami A, Mirzaei E. Collagen/chitosan-functionalized graphene oxide hydrogel provide a 3D matrix for neural stem/precursor cells survival, adhesion, infiltration and migration. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211022453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To have therapeutic promise of neural stem/precursor cells (NS/PCs) an appropriate scaffold is mostly essential. This study was conducted to fabricate collagen (Col)/chitosan-functionalized graphene oxide (CSGO) nanocomposite hydrogel and evaluated it as scaffold for NS/PCs. Graphene oxide was first functionalized with chitosan and the obtained CSGO was then added to Col solution and the solution underwent hydrogel formation. GO sheets were exfoliated after CS functionalization and the CSGO was homogenously dispersed in Col hydrogel. CSGO addition resulted in hydrogels with higher porosity and smaller Col fibers. Furthermore, CSGO increased the gelation time and water absorption capacity while the degradation was decreased. Cell studies demonstrated higher viability of NS/PCs on Col/CSGO hydrogel comparing with Col and poly-l-lysine as control (Cnt). NS/PCs were also penetrated into the Col/CSGO hydrogel and showed more cell spreading, neurite outgrowth and inter-cell connections in comparison with Col hydrogel. In addition, the cells traveled longer distance on Col/CSGO hydrogels than on Col and Cnt, indicating excellent migration capacity of NS/PCs on Col/CSGO hydrogel. Our results indicate the potential Col/CSGO hydrogels as an appropriate scaffold for NS/PCs.
Collapse
Affiliation(s)
- Anita Rezaei
- School of Advanced Medical Sciences and Technologies, Department of Medical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- School of Advanced Medical Sciences and Technologies, Department of Neuroscience, Shiraz University of Medical Sciences, Shiraz, Iran
- Epilepsy research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zeraatpisheh
- School of Advanced Medical Sciences and Technologies, Department of Neuroscience, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Pharmaceutical Science Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- School of Advanced Medical Sciences and Technologies, Department of Medical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Powell R, Eleftheriadou D, Kellaway S, Phillips JB. Natural Biomaterials as Instructive Engineered Microenvironments That Direct Cellular Function in Peripheral Nerve Tissue Engineering. Front Bioeng Biotechnol 2021; 9:674473. [PMID: 34113607 PMCID: PMC8185204 DOI: 10.3389/fbioe.2021.674473] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Nerve tissue function and regeneration depend on precise and well-synchronised spatial and temporal control of biological, physical, and chemotactic cues, which are provided by cellular components and the surrounding extracellular matrix. Therefore, natural biomaterials currently used in peripheral nerve tissue engineering are selected on the basis that they can act as instructive extracellular microenvironments. Despite emerging knowledge regarding cell-matrix interactions, the exact mechanisms through which these biomaterials alter the behaviour of the host and implanted cells, including neurons, Schwann cells and immune cells, remain largely unclear. Here, we review some of the physical processes by which natural biomaterials mimic the function of the extracellular matrix and regulate cellular behaviour. We also highlight some representative cases of controllable cell microenvironments developed by combining cell biology and tissue engineering principles.
Collapse
Affiliation(s)
- Rebecca Powell
- UCL Centre for Nerve Engineering, University College London, London, United Kingdom.,Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Despoina Eleftheriadou
- UCL Centre for Nerve Engineering, University College London, London, United Kingdom.,Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom.,Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Simon Kellaway
- UCL Centre for Nerve Engineering, University College London, London, United Kingdom.,Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - James B Phillips
- UCL Centre for Nerve Engineering, University College London, London, United Kingdom.,Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
8
|
Ali MA, Bhuiyan MH. Types of biomaterials useful in brain repair. Neurochem Int 2021; 146:105034. [PMID: 33789130 DOI: 10.1016/j.neuint.2021.105034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 01/21/2023]
Abstract
Biomaterials is an emerging field in the study of brain tissue engineering and repair or neurogenesis. The fabrication of biomaterials that can replicate the mechanical and viscoelastic features required by the brain, including the poroviscoelastic responses, force dissipation, and solute diffusivity are essential to be mapped from the macro to the nanoscale level under physiological conditions in order for us to gain an effective treatment for neurodegenerative diseases. This research topic has identified a critical study gap that must be addressed, and that is to source suitable biomaterials and/or create reliable brain-tissue-like biomaterials. This chapter will define and discuss the various types of biomaterials, their structures, and their function-properties features which would enable the development of next-generation biomaterials useful in brain repair.
Collapse
Affiliation(s)
- M Azam Ali
- Center for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand.
| | - Mozammel Haque Bhuiyan
- Center for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
9
|
Amores de Sousa MC, Rodrigues CAV, Ferreira IAF, Diogo MM, Linhardt RJ, Cabral JMS, Ferreira FC. Functionalization of Electrospun Nanofibers and Fiber Alignment Enhance Neural Stem Cell Proliferation and Neuronal Differentiation. Front Bioeng Biotechnol 2020; 8:580135. [PMID: 33195141 PMCID: PMC7649414 DOI: 10.3389/fbioe.2020.580135] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/24/2020] [Indexed: 01/29/2023] Open
Abstract
Neural stem cells (NSCs) have the potential to generate the cells of the nervous system and, when cultured on nanofiber scaffolds, constitute a promising approach for neural tissue engineering. In this work, the impact of combining nanofiber alignment with functionalization of the electrospun poly-ε-caprolactone (PCL) nanofibers with biological adhesion motifs on the culture of an NSC line (CGR8-NS) is evaluated. A five-rank scale for fiber density was introduced, and a 4.5 level, corresponding to 70–80% fiber density, was selected for NSC in vitro culture. Aligned nanofibers directed NSC distribution and, especially in the presence of laminin (PCL-LN) and the RGD-containing peptide GRGDSP (PCL-RGD), promoted higher cell elongation, quantified by the eccentricity and axis ratio. In situ differentiation resulted in relatively higher percentage of cells expressing Tuj1 in PCL-LN, as well as significantly longer neurite development (41.1 ± 1.0 μm) than PCL-RGD (32.0 ± 1.0 μm), pristine PCL (25.1 ± 1.2 μm), or PCL-RGD randomly oriented fibers (26.5 ± 1.4 μm), suggesting that the presence of LN enhances neuronal differentiation. This study demonstrates that aligned nanofibers, functionalized with RGD, perform as well as PCL-LN fibers in terms of cell adhesion and proliferation. The presence of the full LN protein improves neuronal differentiation outcomes, which may be important for the use of this system in tissue engineering applications.
Collapse
Affiliation(s)
- Miriam C Amores de Sousa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos A V Rodrigues
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês A F Ferreira
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Margarida Diogo
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Joaquim M S Cabral
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Samadian H, Maleki H, Fathollahi A, Salehi M, Gholizadeh S, Derakhshankhah H, Allahyari Z, Jaymand M. Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. Int J Biol Macromol 2020; 154:795-817. [DOI: 10.1016/j.ijbiomac.2020.03.155] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
|
11
|
Liu D, Pavathuparambil Abdul Manaph N, Al-Hawwas M, Bobrovskaya L, Xiong LL, Zhou XF. Coating Materials for Neural Stem/Progenitor Cell Culture and Differentiation. Stem Cells Dev 2020; 29:463-474. [PMID: 32106778 DOI: 10.1089/scd.2019.0288] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neural stem/progenitor cells (NSPCs) have a potential to treat various neurological diseases, such as Parkinson's Disease, Alzheimer's Disease, and Spinal Cord Injury. However, the limitation of NSPC sources and the difficulty to maintain their stemness or to differentiate them into specific therapeutic cells are the main hurdles for clinical research and application. Thus, for obtaining a therapeutically relevant number of NSPCs in vitro, it is important to understand factors regulating their behaviors and to establish a protocol for stable NSPC proliferation and differentiation. Coating materials for cell culture, such as Matrigel, laminin, collagen, and other coating materials, can significantly affect NSPC characteristics. This article provides a review of coating materials for NSPC culturing in both two dimensions and three dimensions, and their functions in NSPC proliferation and differentiation, and presents a useful guide to select coating materials for researchers.
Collapse
Affiliation(s)
- Donghui Liu
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Liu-Lin Xiong
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
12
|
Self-Healing Collagen-Based Hydrogel for Brain Injury Therapy. SELF-HEALING AND SELF-RECOVERING HYDROGELS 2020. [DOI: 10.1007/12_2019_57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Barros D, Amaral IF, Pêgo AP. Laminin-Inspired Cell-Instructive Microenvironments for Neural Stem Cells. Biomacromolecules 2019; 21:276-293. [PMID: 31789020 DOI: 10.1021/acs.biomac.9b01319] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Laminin is a heterotrimeric glycoprotein with a key role in the formation and maintenance of the basement membrane architecture and properties, as well as on the modulation of several biological functions, including cell adhesion, migration, differentiation and matrix-mediated signaling. In the central nervous system (CNS), laminin is differentially expressed during development and homeostasis, with an impact on the modulation of cell function and fate. Within neurogenic niches, laminin is one of the most important and well described extracellular matrix (ECM) proteins. Specifically, efforts have been made to understand laminin assembly, domain architecture, and interaction of its different bioactive domains with cell surface receptors, soluble signaling molecules, and ECM proteins, to gain insight into the role of this ECM protein and its receptors on the modulation of neurogenesis, both in homeostasis and during repair. This is also expected to provide a rational basis for the design of biomaterial-based matrices mirroring the biological properties of the basement membrane of neural stem cell niches, for application in neural tissue repair and cell transplantation. This review provides a general overview of laminin structure and domain architecture, as well as the main biological functions mediated by this heterotrimeric glycoprotein. The expression and distribution of laminin in the CNS and, more specifically, its role within adult neural stem cell niches is summarized. Additionally, a detailed overview on the use of full-length laminin and laminin derived peptide/recombinant laminin fragments for the development of hydrogels for mimicking the neurogenic niche microenvironment is given. Finally, the main challenges associated with the development of laminin-inspired hydrogels and the hurdles to overcome for these to progress from bench to bedside are discussed.
Collapse
Affiliation(s)
- Daniela Barros
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto (UPorto) , Porto 4200-153 , Portugal.,INEB - Instituto de Engenharia Biomédica , UPorto , Porto 4200-153 , Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar , UPorto , Porto 4200-153 , Portugal
| | - Isabel F Amaral
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto (UPorto) , Porto 4200-153 , Portugal.,INEB - Instituto de Engenharia Biomédica , UPorto , Porto 4200-153 , Portugal.,FEUP - Faculdade de Engenharia , UPorto , Porto 4200-153 , Portugal
| | - Ana P Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto (UPorto) , Porto 4200-153 , Portugal.,INEB - Instituto de Engenharia Biomédica , UPorto , Porto 4200-153 , Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar , UPorto , Porto 4200-153 , Portugal.,FEUP - Faculdade de Engenharia , UPorto , Porto 4200-153 , Portugal
| |
Collapse
|
14
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 498] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
15
|
Jain R, Roy S. Designing a bioactive scaffold from coassembled collagen–laminin short peptide hydrogels for controlling cell behaviour. RSC Adv 2019; 9:38745-38759. [PMID: 35540202 PMCID: PMC9075944 DOI: 10.1039/c9ra07454f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023] Open
Abstract
Exploring the potential of bifunctional collagen–laminin mimetic peptide based co-assembling gels for cell culture applications.
Collapse
Affiliation(s)
- Rashmi Jain
- Institute of Nano Science and Technology
- Mohali
- India
| | - Sangita Roy
- Institute of Nano Science and Technology
- Mohali
- India
| |
Collapse
|
16
|
Kornev VA, Grebenik EA, Solovieva AB, Dmitriev RI, Timashev PS. Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review. Comput Struct Biotechnol J 2018; 16:488-502. [PMID: 30455858 PMCID: PMC6232648 DOI: 10.1016/j.csbj.2018.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Abstract
Recent years have witnessed the development of an enormous variety of hydrogel-based systems for neuroregeneration. Formed from hydrophilic polymers and comprised of up to 90% of water, these three-dimensional networks are promising tools for brain tissue regeneration. They can assist structural and functional restoration of damaged tissues by providing mechanical support and navigating cell fate. Hydrogels also show the potential for brain injury therapy due to their broadly tunable physical, chemical, and biological properties. Hydrogel polymers, which have been extensively implemented in recent brain injury repair studies, include hyaluronic acid, collagen type I, alginate, chitosan, methylcellulose, Matrigel, fibrin, gellan gum, self-assembling peptides and proteins, poly(ethylene glycol), methacrylates, and methacrylamides. When viewed as tools for neuroregeneration, hydrogels can be divided into: (1) hydrogels suitable for brain injury therapy, (2) hydrogels that do not meet basic therapeutic requirements and (3) promising hydrogels which meet the criteria for further investigations. Our analysis shows that fibrin, collagen I and self-assembling peptide-based hydrogels display very attractive properties for neuroregeneration.
Collapse
Affiliation(s)
- Vladimir A. Kornev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
| | - Ekaterina A. Grebenik
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
| | - Anna B. Solovieva
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., Moscow 117977, Russian Federation
| | - Ruslan I. Dmitriev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., Moscow 117977, Russian Federation
- Institute of Photonic Technologies, Research Center “Crystallography and Photonics” Russian Academy of Sciences, 2 Pionerskaya st., Troitsk, Moscow 108840, Russian Federation
| |
Collapse
|
17
|
Sato-Nishiuchi R, Li S, Ebisu F, Sekiguchi K. Recombinant laminin fragments endowed with collagen-binding activity: A tool for conferring laminin-like cell-adhesive activity to collagen matrices. Matrix Biol 2017; 65:75-90. [PMID: 28801205 DOI: 10.1016/j.matbio.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 01/21/2023]
Abstract
Laminins are major components of basement membranes that sustain a wide variety of stem cells. Among 15 laminin isoforms, laminin-511 and its E8 fragment (LM511E8) have been shown to strongly promote the adhesion and proliferation of human pluripotent stem cells. The aim of this study was to endow the cell-adhesive activity of laminin-511 on collagen matrices, thereby fabricating collagen-based culture scaffolds for stem cells with defined composition. To achieve this goal, we utilized the collagen-binding domain (CBD) of fibronectin to immobilize LM511E8 on collagen matrices. CBD was attached to the N-termini of individual laminin chains (α5E8, β1E8, γ1E8), producing LM511E8s having one, two, or three CBDs. While LM511E8 did not bind to collagen, CBD-attached LM511E8s (CBD-LM511E8s) exhibited significant collagen-binding activity, dependent on the number of attached CBDs. Human iPS cells were cultured on collagen-coated plates preloaded with CBD-LM511E8s. Although iPS cells did not attach or grow on collagen, they robustly proliferated on CBD-LM511E8-loaded collagen matrices, similar to the case with LM511E8-coated plates. Importantly, iPS cells proliferated and yielded round-shaped colonies even on collagen gels preloaded with CBD-LM511E8s. These results demonstrate that CBD-attached laminin E8 fragments are promising tools for fabrication of collagen-based matrices having the cell-adhesive activity of laminins.
Collapse
Affiliation(s)
- Ryoko Sato-Nishiuchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Shaoliang Li
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Fumi Ebisu
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Division of Research and Development, Matrixome Inc., Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Division of Research and Development, Matrixome Inc., Suita, Osaka, Japan.
| |
Collapse
|
18
|
Neuronal production from induced pluripotent stem cells in self-assembled collagen-hyaluronic acid-alginate microgel scaffolds with grafted GRGDSP/Ln5-P4. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:760-774. [PMID: 28482588 DOI: 10.1016/j.msec.2017.03.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 01/22/2023]
Abstract
Self-assembled microgel functionalized with peptides was developed and applied to regenerate neurons from induced pluripotent stem cells (iPSCs). Collagen (COL), hyaluronic acid (HA), and alginate (ALG) were modified with methacrylic anhydride (MA), photocrosslinked for patterned particles, grafted with GRGDSP and Ln5-P4, and self-assembled to integrate the microgel into three-dimensional scaffolds. Physicochemical assessments revealed that the ternary microgel scaffolds had an optimal chemical composition at COLMA:HAMA:ALGMA=1:2:1. In fabricating cell-laden constructs, modified GRGDSP/Ln5-P4 in linear self-assembled scaffolds could significantly improve the entrapment efficiency and viability of iPSCs. In addition, GRGDSP/Ln5-P4 in the microgel constructs triggered the differentiation of iPSCs toward neurons, since the percentage of neurite-like cells could be higher than 98% after induction of nerve growth factor. Self-assembled microgel comprising COLMA, HAMA, ALGMA, and GRGDSP/Ln5-P4 may be promising in producing mature neural lineage from iPSCs, to provide better treatment for damaged nervous tissue.
Collapse
|
19
|
Addi C, Murschel F, De Crescenzo G. Design and Use of Chimeric Proteins Containing a Collagen-Binding Domain for Wound Healing and Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:163-182. [PMID: 27824290 DOI: 10.1089/ten.teb.2016.0280] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Collagen-based biomaterials are widely used in the field of tissue engineering; they can be loaded with biomolecules such as growth factors (GFs) to modulate the biological response of the host and thus improve its potential for regeneration. Recombinant chimeric GFs fused to a collagen-binding domain (CBD) have been reported to improve their bioavailability and the host response, especially when combined with an appropriate collagen-based biomaterial. This review first provides an extensive description of the various CBDs that have been fused to proteins, with a focus on the need for accurate characterization of their interaction with collagen. The second part of the review highlights the benefits of various CBD/GF fusion proteins that have been designed for wound healing and bone regeneration.
Collapse
Affiliation(s)
- Cyril Addi
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Frederic Murschel
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Gregory De Crescenzo
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| |
Collapse
|
20
|
Koss K, Unsworth L. Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides. Acta Biomater 2016; 44:2-15. [PMID: 27544809 DOI: 10.1016/j.actbio.2016.08.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/26/2016] [Accepted: 08/16/2016] [Indexed: 12/25/2022]
Abstract
UNLABELLED Rescuing or repairing neural tissues is of utmost importance to the patient's quality of life after an injury. To remedy this, many novel biomaterials are being developed that are, ideally, non-invasive and directly facilitate neural wound healing. As such, this review surveys the recent approaches and applications of self-assembling peptides and peptide amphiphiles, for building multi-faceted nanoscaffolds for direct application to neural injury. Specifically, methods enabling cellular interactions with the nanoscaffold and controlling the release of bioactive molecules from the nanoscaffold for the express purpose of directing endogenous cells in damaged or diseased neural tissues is presented. An extensive overview of recently derived self-assembling peptide-based materials and their use as neural nanoscaffolds is presented. In addition, an overview of potential bioactive peptides and ligands that could be used to direct behaviour of endogenous cells are categorized with their biological effects. Finally, a number of neurotrophic and anti-inflammatory drugs are described and discussed. Smaller therapeutic molecules are emphasized, as they are thought to be able to have less potential effect on the overall peptide self-assembly mechanism. Options for potential nanoscaffolds and drug delivery systems are suggested. STATEMENT OF SIGNIFICANCE Self-assembling nanoscaffolds have many inherent properties making them amenable to tissue engineering applications: ease of synthesis, ease of customization with bioactive moieties, and amenable for in situ nanoscaffold formation. The combination of the existing knowledge on bioactive motifs for neural engineering and the self-assembling propensity of peptides is discussed in specific reference to neural tissue engineering.
Collapse
|
21
|
Ahadian S, Sadeghian RB, Salehi S, Ostrovidov S, Bae H, Ramalingam M, Khademhosseini A. Bioconjugated Hydrogels for Tissue Engineering and Regenerative Medicine. Bioconjug Chem 2015; 26:1984-2001. [DOI: 10.1021/acs.bioconjchem.5b00360] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samad Ahadian
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Ramin Banan Sadeghian
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Serge Ostrovidov
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Hojae Bae
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong,
Kwangjin-gu, Seoul 143-701, Republic of Korea
| | - Murugan Ramalingam
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Centre
for Stem Cell Research, Institute for Stem Cell Biology and Regenerative Medicine, Christian Medical College Campus, Vellore 632002, India
| | - Ali Khademhosseini
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong,
Kwangjin-gu, Seoul 143-701, Republic of Korea
- Department
of Medicine, Center for Biomedical Engineering, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
22
|
Nafea EH, Poole-Warren LA, Martens PJ. Structural and permeability characterization of biosynthetic PVA hydrogels designed for cell-based therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1771-90. [DOI: 10.1080/09205063.2014.950033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Tjin MS, Chua AWC, Ma DR, Lee ST, Fong E. Human epidermal keratinocyte cell response on integrin-specific artificial extracellular matrix proteins. Macromol Biosci 2014; 14:1125-34. [PMID: 24789105 DOI: 10.1002/mabi.201400015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/10/2014] [Indexed: 11/11/2022]
Abstract
Cell-matrix interactions play critical roles in regulating cellular behavior in wound repair and regeneration of the human skin. In particular, human skin keratinocytes express several key integrins such as alpha5beta1, alpha3beta1, and alpha2beta1 for binding to the extracellular matrix (ECM) present in the basement membrane in uninjured skin. To mimic these key integrin-ECM interactions, artificial ECM (aECM) proteins containing functional domains derived from laminin 5, type IV collagen, fibronectin, and elastin are prepared. Human skin keratinocyte cell responses on the aECM proteins are specific to the cell-binding domain present in each construct. Keratinocyte attachment to the aECM protein substrates is also mediated by specific integrin-material interactions. In addition, the aECM proteins are able to support the proliferation of keratinocyte stem cells, demonstrating their promise for use in skin tissue engineering.
Collapse
Affiliation(s)
- Monica Suryana Tjin
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, 639798, Singapore
| | | | | | | | | |
Collapse
|
24
|
Rodda AE, Meagher L, Nisbet DR, Forsythe JS. Specific control of cell–material interactions: Targeting cell receptors using ligand-functionalized polymer substrates. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Abstract
Injury to the CNS typically results in significant morbidity and endogenous repair mechanisms are limited in their ability to restore fully functional CNS tissue. Biologic scaffolds composed of individual purified components have been shown to facilitate functional tissue reconstruction following CNS injury. Extracellular matrix scaffolds derived from mammalian tissues retain a number of bioactive molecules and their ability for CNS repair has recently been recognized. In addition, novel biomaterials for dural mater repairs are of clinical interest as the dura provides barrier function and maintains homeostasis to CNS. The present article describes the application of regenerative medicine principles to the CNS tissues and dural mater repair. While many approaches have been exploring the use of cells and/or therapeutic molecules, the strategies described herein focus upon the use of extracellular matrix scaffolds derived from mammalian tissues that are free of cells and exogenous factors.
Collapse
Affiliation(s)
- Fanwei Meng
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15203, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15203, USA
| |
Collapse
|
26
|
Ma F, Xiao Z, Chen B, Hou X, Han J, Zhao Y, Dai J, Xu R. Accelerating proliferation of neural stem/progenitor cells in collagen sponges immobilized with engineered basic fibroblast growth factor for nervous system tissue engineering. Biomacromolecules 2014; 15:1062-8. [PMID: 24527809 DOI: 10.1021/bm500062n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neural stem/progenitor cells (NS/PCs) play a therapeutic role in nervous system diseases and contribute to functional recovery. However, their efficacy is limited as the majority of cells die post-transplantation. In this study, collagen sponges were utilized as carriers for NS/PCs. Basic fibroblast growth factor (bFGF), a mitogen for NS/PCs, was incorporated into the collagen sponges to stimulate NS/PC proliferation. However, the effect of native bFGF is limited because it diffuses into the culture medium and is lost following medium exchange. To overcome this problem, a collagen-binding polypeptide domain, which has high affinity to collagen, was fused with bFGF to sustain the exposure of NS/PCs within the collagen sponges to bFGF. The results indicated that the number of NS/PCs was significantly higher in collagen sponges incorporating engineered bFGF than in those with native bFGF or the PBS control after 7 days in culture. Here, we designed a natural biological neural scaffold consisting of collagen sponges, engineered bFGF, and NS/PCs. In addition to the effect of proliferated NS/PCs, the engineered bFGF retained in the natural biological neural scaffolds could have a direct effect on nervous system reconstruction. The two aspects of the natural biological neural scaffolds may produce synergistic effects, and so they represent a promising candidate for nervous system repair.
Collapse
Affiliation(s)
- Fukai Ma
- The Affiliated Bayi Brain Hospital, Bayi Clinical College, Southern Medical University , No. 1838, North of Guangzhou Avenue, Guangzhou 510515, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wilkinson AE, Kobelt LJ, Leipzig ND. Immobilized ECM molecules and the effects of concentration and surface type on the control of NSC differentiation. J Biomed Mater Res A 2013. [DOI: 10.1002/jbm.a.35001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ashley E. Wilkinson
- Department of Chemical and Biomolecular Engineering; University of Akron; 200 East Buchtel Common, Whitby Hall 211 Akron Ohio 44325
| | - Liza J. Kobelt
- Department of Chemical and Biomolecular Engineering; University of Akron; 200 East Buchtel Common, Whitby Hall 211 Akron Ohio 44325
| | - Nic D. Leipzig
- Department of Chemical and Biomolecular Engineering; University of Akron; 200 East Buchtel Common, Whitby Hall 211 Akron Ohio 44325
| |
Collapse
|
28
|
Nakaji-Hirabayashi T, Kato K, Iwata H. In Vivo Study on the Survival of Neural Stem Cells Transplanted into the Rat Brain with a Collagen Hydrogel That Incorporates Laminin-Derived Polypeptides. Bioconjug Chem 2013; 24:1798-804. [DOI: 10.1021/bc400005m] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tadashi Nakaji-Hirabayashi
- Frontier
Research Core for Life Science, University of Toyama, 3190, Gofuku, Toyama 930-8555, Japan
- Institute
for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koichi Kato
- Graduate
School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Institute
for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroo Iwata
- Institute
for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
29
|
Preparation of cell-culturing glass surfaces that release branched polyethyleneimine triggered by thiol-disulfide exchange. Colloids Surf B Biointerfaces 2013; 103:360-5. [PMID: 23261556 DOI: 10.1016/j.colsurfb.2012.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 11/21/2022]
Abstract
To develop a chemical stimulus-responsive substrate for culturing cells, polyethyleneimine (PEI) having a pyridyl disulfide moiety was attached via disulfide linkages to a glass coverslip modified with a silane coupling agent having a thiol group. The surface modification was confirmed by X-ray photoelectron spectroscopy and zeta potential analysis. The obtained surface exhibited sufficiently high cell adhesiveness. Zeta potential measurements revealed that the PEI derivatives were released from the surface through thiol-disulfide exchange when the modified glass coverslip was immersed in a neutral pH buffer containing cysteine. The cell viability assay demonstrated that this chemical stimulus was substantially nontoxic to 293T cells. Because PEI is a widely used transfection reagent, this functional glass coverslip would be potentially useful as an experimental platform for reverse transfection.
Collapse
|
30
|
Custódio CA, Frias AM, del Campo A, Reis RL, Mano JF. Selective cell recruitment and spatially controlled cell attachment on instructive chitosan surfaces functionalized with antibodies. Biointerphases 2012; 7:65. [PMID: 23109106 DOI: 10.1007/s13758-012-0065-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/09/2012] [Indexed: 11/27/2022] Open
Abstract
Bioactive constructs to guide cellular mobilization and function have been proposed as an approach for a new generation of biomaterials in functional tissue engineering. Adult mesenchymal stem cells have been widely used as a source for cell based therapeutic strategies, namely tissue engineering. This is a heterogeneous cell population containing many subpopulations with distinct regenerative capacity. Thus, one of the issues for the effective clinical use of stem cells in tissue engineering is the isolation of a highly purified, expandable specific subpopulation of stem cells. Antibody functionalized biomaterials could be promising candidates to isolate and recruit specific cell types. Here we propose a new concept of instructive biomaterials that are able to recruit and purify specific cell types from a mixed cell population. This biomimetic concept uses a target-specific chitosan substrate to capture specific adipose derived stem cells. Specific antibodies were covalently immobilized onto chitosan membranes using bis[sulfosuccinimidyl] suberate (BS3). Quartz crystal microbalance (QCM) was used to monitor antibody immobilization/adsorption onto the chitosan films. Specific antibodies covalently immobilized, kept their bioactivity and captured specific cell types from a mixed cell population. Microcontact printing allowed to covalently immobilize antibodies in patterns and simultaneously a spatial control in cell attachment.
Collapse
Affiliation(s)
- C A Custódio
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco Guimarães, Caldas das Taipas, 4806-909 Guimaraães, Portugal
| | | | | | | | | |
Collapse
|
31
|
Li X, Katsanevakis E, Liu X, Zhang N, Wen X. Engineering neural stem cell fates with hydrogel design for central nervous system regeneration. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2012.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Nakaji-Hirabayashi T, Kato K, Iwata H. Improvement of neural stem cell survival in collagen hydrogels by incorporating laminin-derived cell adhesive polypeptides. Bioconjug Chem 2012; 23:212-21. [PMID: 22229651 DOI: 10.1021/bc200481v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell transplantation is a potential methodology for the treatment of Parkinson's disease. However, the therapeutic effect is limited by poor viability of transplanted cells. To overcome this problem, we hypothesized that a dual step approach, whereby providing an adhesive substrate for transplanted cells and, at the same time, by preventing the infiltration of activated microglia into the site of transplantation promotes the cell survival. To establish above conditions, attempts were made to prepare 3-D matrices using collagen hydrogels that incorporated integrin-binding polypeptides derived from laminin-1. Tandem combinations of laminin globular domains as well as a single globular domain 3 were prepared using recombinant DNA technology as a fusion with hexahistidine and bound to metal chelated surfaces to screen for the adhesion and proliferation of neural stem cells (NSCs). In addition, a small peptide derived from laminin γ1 chain was prepared and heterodimerized with the globular domain-containing chimeric proteins to evaluate for the enhancement of integrin-mediated cell adhesion. As a result, a heterodimer consisting of the globular domain 3 of the laminin α1 chain and the peptide from the laminin γ1 chain was selected as the best candidate among the polypeptides studied here for the incorporation into a collagen hydrogel. It was shown that the survival of NSCs was indeed promoted in the collagen hydrogel incorporating the heterodimer compared to the pure collagen hydrogel.
Collapse
Affiliation(s)
- Tadashi Nakaji-Hirabayashi
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
33
|
Konagaya S, Kato K, Nakaji-Hirabayashi T, Arima Y, Iwata H. Array-based functional screening of growth factors toward optimizing neural stem cell microenvironments. Biomaterials 2011; 32:5015-22. [DOI: 10.1016/j.biomaterials.2011.03.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/28/2011] [Indexed: 01/28/2023]
|
34
|
Perale G, Rossi F, Sundstrom E, Bacchiega S, Masi M, Forloni G, Veglianese P. Hydrogels in spinal cord injury repair strategies. ACS Chem Neurosci 2011; 2:336-45. [PMID: 22816020 PMCID: PMC3369745 DOI: 10.1021/cn200030w] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/04/2011] [Indexed: 12/13/2022] Open
Abstract
Nowadays there are at present no efficient therapies for spinal cord injury (SCI), and new approaches have to be proposed. Recently, a new regenerative medicine strategy has been suggested using smart biomaterials able to carry and deliver cells and/or drugs in the damaged spinal cord. Among the wide field of emerging materials, research has been focused on hydrogels, three-dimensional polymeric networks able to swell and absorb a large amount of water. The present paper intends to give an overview of a wide range of natural, synthetic, and composite hydrogels with particular efforts for the ones studied in the last five years. Here, different hydrogel applications are underlined, together with their different nature, in order to have a clearer view of what is happening in one of the most sparkling fields of regenerative medicine.
Collapse
Affiliation(s)
- Giuseppe Perale
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, via La Masa 19, 20156 Milan, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, via La Masa 19, 20156 Milan, Italy
| | - Erik Sundstrom
- Department of NeuroBiology, Karolinska Institutet, Novum 5, 14186 Stockholm, Sweden
| | - Sara Bacchiega
- Mi.To. Technology s.r.l., Licensing Department, Viale Vittorio Veneto 2/a, 20124 Milan, Italy
| | - Maurizio Masi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, via La Masa 19, 20156 Milan, Italy
| | - Pietro Veglianese
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, via La Masa 19, 20156 Milan, Italy
| |
Collapse
|
35
|
Egawa EY, Kato K, Hiraoka M, Nakaji-Hirabayashi T, Iwata H. Enhanced proliferation of neural stem cells in a collagen hydrogel incorporating engineered epidermal growth factor. Biomaterials 2011; 32:4737-43. [DOI: 10.1016/j.biomaterials.2011.03.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/12/2011] [Indexed: 11/30/2022]
|
36
|
Stabenfeldt SE, Munglani G, García AJ, LaPlaca MC. Biomimetic microenvironment modulates neural stem cell survival, migration, and differentiation. Tissue Eng Part A 2010; 16:3747-58. [PMID: 20666608 DOI: 10.1089/ten.tea.2009.0837] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Biomaterial matrices presenting extracellular matrix (ECM) components in a controlled three-dimensional configuration provide a unique system to study neural stem cell (NSC)-ECM interactions. We cultured primary murine neurospheres in a methylcellulose (MC) scaffold functionalized with laminin-1 (MC-x-LN1) and monitored NSC survival, apoptosis, migration, differentiation, and matrix production. Overall, MC-x-LN1 enhanced both NSC survival and maturation compared with MC controls. Significantly lower levels of apoptotic activity were observed in MC-x-LN1 than in MC controls, as measured by bcl-2/bax gene expression and tetramethylrhodamine-dUTP nick end labeling. A higher percentage of NSCs extended neurites in a β₁-integrin-mediated fashion in MC-x-LN1 than in MC controls. Further, the differentiation profiles of NSCs in MC-x-LN1 exhibited higher levels of neuronal and oligodendrocyte precursor markers than in MC controls. LN1 production and co-localization with α₆β₁ integrins was markedly increased within MC-x-LN1, whereas the production of fibronectin was more pronounced in MC controls. These findings demonstrate that NSC microenvironments modulate cellular activity throughout the neurosphere, contributing to our understanding of ECM-mediated NSC behavior and provide new avenues for developing rationally designed couriers for neurotransplantation.
Collapse
Affiliation(s)
- Sarah E Stabenfeldt
- Laboratory for Neuroengineering, Coulter Department of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
37
|
Ananthanarayanan B, Little L, Schaffer DV, Healy KE, Tirrell M. Neural stem cell adhesion and proliferation on phospholipid bilayers functionalized with RGD peptides. Biomaterials 2010; 31:8706-15. [PMID: 20728935 DOI: 10.1016/j.biomaterials.2010.07.104] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 07/28/2010] [Indexed: 12/21/2022]
Abstract
Peptide-functionalized materials show promise in controlling stem cell behavior by mimicking cell-matrix interactions. Supported lipid bilayers are an excellent platform for displaying peptides due to their ease of fabrication and low non-specific interactions with cells. In this paper, we report on the behavior of adult hippocampal neural stem cells (NSCs) on phospholipid bilayers functionalized with different RGD-containing peptides: either GGGNGEPRGDTYRAY ('bsp-RGD(15)') or GRGDSP. Fluid supported bilayers were prepared on glass surfaces by adsorption and fusion of small lipid vesicles incorporating synthetic peptide amphiphiles. NSCs adhered to bilayers with either GRGDSP or bsp-RGD(15) peptide. After 5 days in culture, NSCs formed neurosphere-like aggregates on GRGDSP bilayers, whereas on bsp-RGD(15) bilayers a large fraction of single adhered cells were observed, comparable to monolayer growth seen on laminin controls. NSCs retained their ability to differentiate into neurons and astrocytes on both peptide surfaces. This work illustrates the utility of supported bilayers in displaying peptide ligands and demonstrates that RGD peptides may be useful in synthetic culture systems for stem cells.
Collapse
Affiliation(s)
- Badriprasad Ananthanarayanan
- Department of Chemical Engineering and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, United States.
| | | | | | | | | |
Collapse
|