1
|
Krysztofik A, Warżajtis M, Pochylski M, Boecker M, Yu J, Marchesi D'Alvise T, Puła P, Majewski PW, Synatschke CV, Weil T, Graczykowski B. Multi-responsive poly-catecholamine nanomembranes. NANOSCALE 2024; 16:16227-16237. [PMID: 39140363 DOI: 10.1039/d4nr01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The contraction of nanomaterials triggered by stimuli can be harnessed for micro- and nanoscale energy harvesting, sensing, and artificial muscles toward manipulation and directional motion. The search for these materials is dictated by optimizing several factors, such as stimulus type, conversion efficiency, kinetics and dynamics, mechanical strength, compatibility with other materials, production cost and environmental impact. Here, we report the results of studies on bio-inspired nanomembranes made of poly-catecholamines such as polydopamine, polynorepinephrine, and polydextrodopa. Our findings reveal robust mechanical features and remarkable multi-responsive properties of these materials. In particular, their immediate contraction can be triggered globally by atmospheric moisture reduction and temperature rise and locally by laser or white light irradiation. For each scenario, the process is fully reversible, i.e., membranes spontaneously expand upon removing the stimulus. Our results unveil the universal multi-responsive nature of the considered polycatecholamine membranes, albeit with distinct differences in their mechanical features and response times to light stimulus. We attribute the light-triggered contraction to photothermal heating, leading to water desorption and subsequent contraction of the membranes. The combination of multi-responsiveness, mechanical robustness, remote control via light, low-cost and large-scale fabrication, biocompatibility, and low-environment impact makes polycatecholamine materials promising candidates for advancing technologies.
Collapse
Affiliation(s)
- Adam Krysztofik
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - Marta Warżajtis
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - Mikołaj Pochylski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - Marcel Boecker
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jiyao Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Przemysław Puła
- Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland
| | - Paweł W Majewski
- Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland
| | | | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bartlomiej Graczykowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| |
Collapse
|
2
|
Rader C, Grillo L, Weder C. Water and Oxygen Barrier Properties of All-Cellulose Nanocomposites. Biomacromolecules 2024; 25:1906-1915. [PMID: 38394342 DOI: 10.1021/acs.biomac.3c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Hydroxypropyl cellulose (HPC) is potentially interesting as a biobased, rigid food packaging material, but its stiffness and strength are somewhat low, and its water and oxygen transport rates are too high. To improve these characteristics, we investigated nanocomposites of HPC and cellulose nanocrystals (CNCs). These high-aspect-ratio nanoparticles display high stiffness and strength, and their high crystallinity renders them virtually impermeable. Exchanging the counterions of sulfate-ester decorated CNCs with cetyltrimethylammonium ions affords particles that are dispersible in ethanol (CTA.CNC) and allows solvent casting of HPC/CTA.CNC nanocomposite films, which, even at a CTA.CNC content of 90 wt %, are highly transparent. The introduction of CTA.CNC considerably increases the Young's modulus (Ey) and upper tensile strength (σUTS). For example, in the nanocomposite with 90% CTA.CNC, Ey = 7.6 GPa is increased 20-fold and σUTS = 42.7 MPa is more than doubled in comparison to HPC, whereas the extensibility (1.1%) remains appreciable. Composites with a CTA.CNC content of 70 wt % or less show a lower water vapor permeability (6.4-9.2 × 10-5 g μm m-2 s-1 Pa-1) than the neat HPC (1.5 × 10-4 g μm m-2 s-1 Pa-1), whereas the oxygen permeability (5.6 × 10-7-1.3 × 10-6 cm3 μm m-2 s-1 Pa-1) is reduced by 1 order of magnitude compared to HPC (3.2 × 10-6 cm3 μm m-2 s-1 Pa-1). The biobased nanocomposites retain their mechanical integrity at a relative humidity of 75% but readily disintegrate in water.
Collapse
Affiliation(s)
- Chris Rader
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Luca Grillo
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| |
Collapse
|
3
|
Edirisinghe EAKD, Haddad C, Ostrowski AD. Controlled Delivery and Photopatterning of Mechanical Properties in Polysaccharide Hydrogels Using Vanadium Coordination and Photochemistry. ACS APPLIED BIO MATERIALS 2022; 5:4827-4837. [PMID: 36149805 DOI: 10.1021/acsabm.2c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Incorporation of the transition metal ion V(V) into hydrogels has been used to impart photoresponsive behavior, which was used to tune materials properties during light irradiation. The photoreaction in QHE-cellulose/agarose hydrogels coordinated with vanadium was evidenced by a clear color change of yellow to blue through a green intermediate. This color change was attributed to the reduction of V(V) to V(IV) as described in our previous work. A concomitant oxidative breakdown of the polysaccharide chain was noticeable upon the reduction of V(V) with a decrease in stiffness (G') of the hydrogel material. This reduction of the metal ion and breakdown of polysaccharide chain induced irreversible changes in the microstructure of the hydrogel, enabling the controlled delivery of V(IV) and/or encapsulated cargo. Scanning electron microscopy studies showed an increase in pore sizes and guest cavity formation during irradiation. In addition to the significant drop in mechanical properties like storage and loss modulus in the gel materials, a viscosity drop in the polymer solution was observed through irradiation, indicating breakdown of the polysaccharide chain. A photomask can be used to create discrete patterns on these materials upon irradiation.
Collapse
Affiliation(s)
- E A Kalani D Edirisinghe
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Carina Haddad
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Alexis D Ostrowski
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
4
|
Temperature triggered aggregation toward nanoparticles formation from tri-arm poly(HEAAm-b-NIPAAm) in aqueous solutions. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Huang Y, Yang N, Teng D, Mao R, Hao Y, Ma X, Wei L, Wang J. Antibacterial peptide NZ2114-loaded hydrogel accelerates Staphylococcus aureus-infected wound healing. Appl Microbiol Biotechnol 2022; 106:3639-3656. [PMID: 35524777 DOI: 10.1007/s00253-022-11943-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 12/19/2022]
Abstract
Wound infection caused by Staphylococcus aureus (S. aureus) is a great challenge which has caused significant burden and economic loss to the medical system. NZ2114, a plectasin-derived peptide, is an antibacterial agent for preventing and treating S. aureus infection, especially for methicillin-resistant S. aureus (MRSA) infection. Here, three-dimensional reticulated antimicrobial peptide (AMP) NZ2114 hydrogels were developed based on hydroxypropyl cellulose (HPC) and sodium alginate (SA); they displayed sustained and stable release properties (97.88 ± 1.79% and 91.1 ± 10.52% release rate in 72 h, respectively) and good short-term cytocompatibility and hemocompatibility. But the HPC-NZ2114 hydrogel had a smaller pore size (diameter 0.832 ± 0.420 μm vs. 3.912 ± 2.881 μm) and better mechanical properties than that of the SA-NZ2114 hydrogel. HPC/SA-NZ2114 hydrogels possess efficient antimicrobial activity in vitro and in vivo. In a full-thickness skin defect model, the wound closure of the 1.024 mg/g HPC-NZ2114 hydrogel group was superior to those of the SA-NZ2114 hydrogel and antibiotic groups on day 7. The HPC-NZ2114 hydrogel accelerated wound healing by reducing inflammation and promoting the production of vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and angiogenesis (CD31) through histological and immunohistochemistry evaluation. These data indicated that the HPC-NZ2114 hydrogel is an excellent candidate for S. aureus infection wound dressing. KEY POINTS: •NZ2114 hydrogels showed potential in vitro bactericidal activity against S. aureus •NZ2114 hydrogels could release continuously for 72 h and had good biocompatibility •NZ2114 hydrogels could effectively promote S. aureus-infected wound healing.
Collapse
Affiliation(s)
- Yan Huang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology - WIT, Wuhan, People's Republic of China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, and Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Na Yang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, and Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| | - Da Teng
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, and Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, and Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ya Hao
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, and Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Xuanxuan Ma
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, and Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Lingyun Wei
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology - WIT, Wuhan, People's Republic of China.
| | - Jianhua Wang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, and Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
6
|
Jia Y, Wei Z, Zhang S, Yang B, Li Y. Instructive Hydrogels for Primary Tumor Cell Culture: Current Status and Outlook. Adv Healthc Mater 2022; 11:e2102479. [PMID: 35182456 DOI: 10.1002/adhm.202102479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Primary tumor organoids (PTOs) growth in hydrogels have emerged as an important in vitro model that recapitulates many characteristics of the native tumor tissue, and have important applications in fundamental cancer research and for the development of useful therapeutic treatment. This paper begins with reviewing the methods of isolation of primary tumor cells. Then, recent advances on the instructive hydrogels as biomimetic extracellular matrix for primary tumor cell culture and construction of PTO models are summarized. Emerging microtechnology for growth of PTOs in microscale hydrogels and the applications of PTOs are highlighted. This paper concludes with an outlook on the future directions in the investigation of instructive hydrogels for PTO growth.
Collapse
Affiliation(s)
- Yiyang Jia
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Zhentong Wei
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Songling Zhang
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| |
Collapse
|
7
|
Amphiphilic Graft Copolymers of Hydroxypropyl Cellulose Backbone with Nonpolar Polyisobutylene Branches. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2546-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Gosecki M, Setälä H, Virtanen T, Ryan AJ. A facile method to control the phase behavior of hydroxypropyl cellulose. Carbohydr Polym 2020; 251:117015. [PMID: 33152849 DOI: 10.1016/j.carbpol.2020.117015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
We report a facile chemical method to convert the hydroxyl groups of hydroxypropyl cellulose (HPC) into carbamates. It was achieved by the reaction of HPC with N-methyl carbamoylimidazole, which is a safe and easy to handle replacement for the particularly hazardous reagent methyl isocyanate. Using a series of HPC with a range of molar substitution of hydroxypropyl groups, we synthesized HPC methylcarbamates showing lower critical solution temperature (LCST) in the range between 94 and 15 °C. A linear dependence of LCST versus methylcarbamate degree of substitution is observed. The lower the initial hydroxypropyl content of HPC, the greater the effect of methylcarbamate on the LCST. Surface tension study showed that methylcarbamate modification has an insignificant effect on the hydrophilic-hydrophobic balance of the macromolecules below LCST unless the molecular substitution of hydroxypropyl groups is so low (0.8) that the native cellulose OH groups can react with N-methyl carbamoylimidazole.
Collapse
Affiliation(s)
- Mateusz Gosecki
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK; Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Harri Setälä
- VTT Technical Research Centre of Finland, FI-02044, Espoo, Finland.
| | - Tommi Virtanen
- VTT Technical Research Centre of Finland, FI-02044, Espoo, Finland.
| | - Anthony J Ryan
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| |
Collapse
|
9
|
Chen R, Xiang Z, Xia Y, Ma Z, Shi Q, Wong S, Yin J. Thermal and Reactive Oxygen Species Dual‐Responsive OEGylated Polysulfides with Oxidation‐Tunable Lower Critical Solution Temperatures. Macromol Rapid Commun 2020; 41:e2000206. [DOI: 10.1002/marc.202000206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Runhai Chen
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230027 P. R. China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230027 P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Shing‐Chung Wong
- Department of Mechanical EngineeringUniversity of Akron Akron OH 44325‐3903 USA
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
10
|
Deng JR, Zhao CL, Wu YX. Antibacterial and pH-responsive Quaternized Hydroxypropyl Cellulose-g-Poly(THF-co-epichlorohydrin) Graft Copolymer: Synthesis, Characterization and Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2372-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Shao C, Yang J. Dynamics in Cellulose-Based Hydrogels with Reversible Cross-Links. SELF-HEALING AND SELF-RECOVERING HYDROGELS 2020. [DOI: 10.1007/12_2019_58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
12
|
Deng J, Wu Y. Green Synthesis and Biomedical Properties of Novel Hydroxypropyl Cellulose-g-Polytetrahydrofuran Graft Copolymers with Silver Nanoparticles. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jinrui Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yixian Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Nguyen DD, Luo L, Lai J. Dendritic Effects of Injectable Biodegradable Thermogels on Pharmacotherapy of Inflammatory Glaucoma-Associated Degradation of Extracellular Matrix. Adv Healthc Mater 2019; 8:e1900702. [PMID: 31746141 DOI: 10.1002/adhm.201900702] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/25/2019] [Indexed: 01/01/2023]
Abstract
The development of advanced drug delivery systems with extensively sustained release and multiple functions is highly imperative for effective attenuation of the degradation of ocular extracellular matrix that is associated with inflammatory glaucoma. Here, the generation of amine-terminated polyamidoamine dendrimers in an injectable biodegradable thermogel is demonstrated to be important for achieving prolonged drug release profiles and potent anti-inflammatory effects. Among various generations (Gx, x = 0, 1, 3, 5), third-generation G3 is proved as the most effective material for optimizing the synergistic effects of gelatin and poly(N-isopropylacrylamide) and generating a thermogel with the highest biodegradation resistance, the best drug encapsulation/extended-release performance, and the best ability to reduce the elevated expression of inflammatory molecules. A pharmacotherapy based on intracameral injection of thermogels coloaded with pilocarpine and ascorbic acid results in effective alleviation of progressive glaucoma owing to the anti-inflammatory activity and long-acting drug release (above a therapeutic level of 10 µg mL-1 over 80 days) of thermogels, which simultaneously suppress inflammation and stimulate regeneration of stromal collagen and retinal laminin. These findings on the dendritic effects of rationally designed injectable biomaterials with potent anti-inflammatory effects and controlled drug release demonstrate great promise of their use for pharmacological treatment of progressive glaucoma.
Collapse
Affiliation(s)
- Duc Dung Nguyen
- Graduate Institute of Biomedical EngineeringChang Gung University Taoyuan 33302 Taiwan ROC
| | - Li‐Jyuan Luo
- Graduate Institute of Biomedical EngineeringChang Gung University Taoyuan 33302 Taiwan ROC
| | - Jui‐Yang Lai
- Graduate Institute of Biomedical EngineeringChang Gung University Taoyuan 33302 Taiwan ROC
- Department of OphthalmologyChang Gung Memorial Hospital, Linkou Taoyuan 33305 Taiwan ROC
- Department of Materials EngineeringMing Chi University of Technology New Taipei City 24301 Taiwan ROC
| |
Collapse
|
14
|
Zhang L, Peng X, Zhong L, Chua W, Xiang Z, Sun R. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering. Curr Med Chem 2019; 26:2456-2474. [PMID: 28925867 DOI: 10.2174/0929867324666170918122125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 11/22/2022]
Abstract
The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmentally friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure is comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc. are reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.,Department of Chemistry, National University of Singapore, Singapore 117543, Singapore, China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weitian Chua
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore, China
| | - Zhihua Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Runcang Sun
- Center for Lignocellulose Science and Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
15
|
Amination degree of gelatin is critical for establishing structure-property-function relationships of biodegradable thermogels as intracameral drug delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:897-909. [DOI: 10.1016/j.msec.2019.01.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 01/01/2019] [Accepted: 01/11/2019] [Indexed: 12/17/2022]
|
16
|
Shukla A, Singh AP, Dubey T, Hemalatha S, Maiti P. Third Generation Cyclodextrin Graft with Polyurethane Embedded in Hydrogel for a Sustained Drug Release: Complete Shrinkage of Melanoma. ACS APPLIED BIO MATERIALS 2019; 2:1762-1771. [DOI: 10.1021/acsabm.9b00171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Aparna Shukla
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Akhand Pratap Singh
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Tarkeshwar Dubey
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Siva Hemalatha
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
17
|
A Simple Approach to Bioconjugation at Diverse Levels: Metal-Free Click Reactions of Activated Alkynes with Native Groups of Biotargets without Prefunctionalization. RESEARCH 2018; 2018:3152870. [PMID: 31549027 PMCID: PMC6750040 DOI: 10.1155/2018/3152870] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
The efficient bioconjugation of functional groups/molecules to targeted matrix and bio-related species drives the great development of material science and biomedicine, while the dilemma of metal catalysis, uneasy premodification, and limited reaction efficiency in traditional bioconjugation has restricted the booming development to some extent. Here, we provide a strategy for metal-free click bioconjugation at diverse levels based on activated alkynes. As a proof-of-concept, the abundant native groups including amine, thiol, and hydroxyl groups can directly react with activated alkynes without any modification in the absence of metal catalysis. Through this strategy, high-efficient modification and potential functionalization can be achieved for natural polysaccharide, biocompatible polyethylene glycol (PEG), synthetic polymers, cell penetrating peptide, protein, fast whole-cell mapping, and even quick differentiation and staining of Gram-positive bacteria, etc. Therefore, current metal-free click bioconjugation strategy based on activated alkynes is promising for the development of quick fluorescence labeling and functional modification of many targets and can be widely applied towards the fabrication of complex biomaterials and future in vivo labeling and detection.
Collapse
|
18
|
Kabir SMF, Sikdar PP, Haque B, Bhuiyan MAR, Ali A, Islam MN. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog Biomater 2018; 7:153-174. [PMID: 30182344 PMCID: PMC6173681 DOI: 10.1007/s40204-018-0095-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022] Open
Abstract
Hydrogels based on cellulose comprising many organic biopolymers including cellulose, chitin, and chitosan are the hydrophilic material, which can absorb and retain a huge proportion of water in the interstitial sites of their structures. These polymers feature many amazing properties such as responsiveness to pH, time, temperature, chemical species and biological conditions besides a very high-water absorption capacity. Biopolymer hydrogels can be manipulated and crafted for numerous applications leading to a tremendous boom in research during recent times in scientific communities. With the growing environmental concerns and an emergent demand, researchers throughout the globe are concentrating particularly on naturally derived hydrogels due to their biocompatibility, biodegradability and abundance. Cellulose-based hydrogels are considered as useful biocompatible materials to be used in medical devices to treat, augment or replace any tissue, organ, or help function of the body. These hydrogels also hold a great promise for applications in agricultural activity, as smart materials and some other useful industrial purposes. This review offers an overview of the recent and contemporary research regarding physiochemical properties of cellulose-based hydrogels along with their applications in multidisciplinary areas including biomedical fields such as drug delivery, tissue engineering and wound healing, healthcare and hygienic products as well as in agriculture, textiles and industrial applications as smart materials.
Collapse
Affiliation(s)
- S M Fijul Kabir
- Department of Textiles, Apparel Design and Merchandising, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Partha P Sikdar
- Department of Textiles, Merchandising and Interiors, University of Georgia, Athens, GA, 30602, USA
| | - B Haque
- College of Textile Engineering, University of Chittagong, Chittagong, 4331, Bangladesh
| | - M A Rahman Bhuiyan
- Department of Textile Engineering, Dhaka University of Engineering and Technology, DUET, Gazipur, 1700, Bangladesh
| | - A Ali
- Department of Textile Engineering, Dhaka University of Engineering and Technology, DUET, Gazipur, 1700, Bangladesh
| | - M N Islam
- Department of Chemistry, Dhaka University of Engineering and Technology, DUET, Gazipur, 1700, Bangladesh
| |
Collapse
|
19
|
Cicotte KN, Reed JA, Nguyen PAH, De Lora JA, Hedberg-Dirk EL, Canavan HE. Optimization of electrospun poly(N-isopropyl acrylamide) mats for the rapid reversible adhesion of mammalian cells. Biointerphases 2017; 12:02C417. [PMID: 28610429 PMCID: PMC5469682 DOI: 10.1116/1.4984933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Poly(N-isopropyl acrylamide) (pNIPAM) is a "smart" polymer that responds to changes in altering temperature near physiologically relevant temperatures, changing its relative hydrophobicity. Mammalian cells attach to pNIPAM at 37 °C and detach spontaneously as a confluent sheet when the temperature is shifted below the lower critical solution temperature (∼32 °C). A variety of methods have been used to create pNIPAM films, including plasma polymerization, self-assembled monolayers, and electron beam ionization. However, detachment of confluent cell sheets from these pNIPAM films can take well over an hour to achieve potentially impacting cellular behavior. In this work, pNIPAM mats were prepared via electrospinning (i.e., espNIPAM) by a previously described technique that the authors optimized for cell attachment and rapid cell detachment. Several electrospinning parameters were varied (needle gauge, collection time, and molecular weight of the polymer) to determine the optimum parameters. The espNIPAM mats were then characterized using Fourier-transform infrared, x-ray photoelectron spectroscopy, and scanning electron microscopy. The espNIPAM mats showing the most promise were seeded with mammalian cells from standard cell lines (MC3T3-E1) as well as cancerous tumor (EMT6) cells. Once confluent, the temperature of the cells and mats was changed to ∼25 °C, resulting in the extremely rapid swelling of the mats. The authors find that espNIPAM mats fabricated using small, dense fibers made of high molecular weight pNIPAM are extremely well-suited as a rapid release method for cell sheet harvesting.
Collapse
Affiliation(s)
- Kirsten N Cicotte
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131; and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Jamie A Reed
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131; and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Phuong Anh H Nguyen
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131 and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Jacqueline A De Lora
- Biomedical Sciences Graduate Program, University of New Mexico Health Sciences Center and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Elizabeth L Hedberg-Dirk
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131; and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Heather E Canavan
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131; and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
20
|
Injectable thermosensitive hydrogel containing hyaluronic acid and chitosan as a barrier for prevention of postoperative peritoneal adhesion. Carbohydr Polym 2017; 173:721-731. [PMID: 28732919 DOI: 10.1016/j.carbpol.2017.06.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/16/2017] [Accepted: 06/05/2017] [Indexed: 01/28/2023]
Abstract
Peritoneal adhesion is one of the common complications after abdominal surgery. Injectable thermosensitive hydrogel could serve as an ideal barrier to prevent this postoperative tissue adhesion. In this study, poly(N-isopropylacrylamide) (PNIPAm) was grafted to chitosan (CS) and the polymer was further conjugated with hyaluronic acid (HA) to form thermosensitive HA-CS-PNIPAm hydrogel. Aqueous solutions of PNIPAm and HA-CS-PNIPAm at 10%(w/v) are both free-flowing and injectable at room temperature and exhibit sol-gel phase transition around 31°C; however, HA-CS-PNIPAm shows less volume shrinkage after gelation and higher complex modulus than PNIPAm. Cell culture studies indicate both injectable hydrogel show barrier effects to reduce fibroblasts penetration while induce little cytotoxicity in vitro. From a sidewall defect-bowel abrasion model in rats, significant reduction of postoperative peritoneal adhesion was found for peritoneal defects treated with HA-CS-PNIPAm compared with those treated with PNIPAm and untreated controls from gross and histological evaluation. Furthermore, HA-CS-PNIPAm did not interfere with normal peritoneal tissue healing and did not elicit acute toxicity from blood analysis and tissue biopsy examination. By taking advantage of the easy handling and placement properties of HA-CS-PNIPAm during application, this copolymer hydrogel would be a potentially ideal injectable anti-adhesion barrier after abdominal surgeries.
Collapse
|
21
|
Chitosan- g -poly( N -isopropylacrylamide) copolymers as delivery carriers for intracameral pilocarpine administration. Eur J Pharm Biopharm 2017; 113:140-148. [DOI: 10.1016/j.ejpb.2016.11.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/27/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022]
|
22
|
Hu Y, Li Y, Xu FJ. Versatile Functionalization of Polysaccharides via Polymer Grafts: From Design to Biomedical Applications. Acc Chem Res 2017; 50:281-292. [PMID: 28068064 DOI: 10.1021/acs.accounts.6b00477] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Because of their biocompatibility, biodegradability, and unique bioactive properties, polysaccharides have been recognized and directly applied as excellent candidates for various biomedical applications. In order to introduce more functionalities onto polysaccharides, various modification methods were applied to improve the physical-chemical and biochemical properties. Grafting polysaccharides with functional polymers with limited reaction sites maximizes the structural integrity. To the best of our knowledge, great efforts have been made by scientists across the world, including our research group, to explore different strategies for the synthesis and design of controllable polymer-grafted polysaccharides. By the application of some reasonable strategies, a series of polymer-grafted polysaccharides with satisfactory biocharacteristics were obtained. The first strategy involves facile modification of polysaccharides with living radical polymerization (LRP). Functionalized polysaccharides with diverse grafts can be flexibly and effectively achieved. The introduced grafts include cationic components for nuclei acid delivery, PEGylated and zwitterionic moieties for shielding effects, and functional species for bioimaging applications as well as bioresponsive drug release applications. The second synthetic model refers to biodegradable polymer-grafted polysaccharides prepared by ring-opening polymerization (ROP). Inspired by pathways to introduce initiation sites onto polysaccharides, the use of amine-functionalized polysaccharides was explored in-depth to trigger ROP of amino acids. A series of poly(amino acid)-grafted polysaccharides with advanced structures (including linear, star-shaped, and comb-shaped copolymers) were developed to study and optimize the structural effects. In addition, biodegradable polyester-grafted polysaccharides were prepared and utilized for drug delivery. Another emerging strategy was to design polysaccharide-based assemblies with supramolecular structures. A variety of assembly techniques using non-covalent interactions were established to construct different types of polysaccharide-based assemblies with various bioapplications. On the basis of these strategies, polymer-grafted polysaccharides with controllable functions were reported to be well-suited for different kinds of biomedical applications. The exciting results were obtained from both in vitro and in vivo models. Viewing the rapid growth of this field, the present Account will update the concepts, trends, perspectives, and applications of functionalized polysaccharides, guiding and inspiring researchers to explore new polysaccharide-based systems for wider applications.
Collapse
Affiliation(s)
- Yang Hu
- Beijing
Advanced Innovation Center for Soft Matter Science and Engineering,
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key
Laboratory of Carbon Fiber and Functional Polymers (Beijing University
of Chemical Technology), Ministry of Education, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- Beijing
Advanced Innovation Center for Soft Matter Science and Engineering,
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key
Laboratory of Carbon Fiber and Functional Polymers (Beijing University
of Chemical Technology), Ministry of Education, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- Beijing
Advanced Innovation Center for Soft Matter Science and Engineering,
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key
Laboratory of Carbon Fiber and Functional Polymers (Beijing University
of Chemical Technology), Ministry of Education, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
23
|
Wu J, Wu Z, Sun X, Yuan S, Zhang R, Lu Q, Yu Y. Effect of Sodium Alginate on the Properties of Thermosensitive Hydrogels. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201600152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Wu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 P. R. China
| | - Zongmei Wu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 P. R. China
| | - Xuejiao Sun
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 P. R. China
| | - Shichao Yuan
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 P. R. China
| | - Ruling Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 P. R. China
| | - Qingliang Lu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 P. R. China
| | - Yueqin Yu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 P. R. China
| |
Collapse
|
24
|
Wassel E, Jiang S, Song Q, Vogt S, Nöll G, Druzhinin SI, Schönherr H. Thickness Dependence of Bovine Serum Albumin Adsorption on Thin Thermoresponsive Poly(diethylene glycol) Methyl Ether Methacrylate Brushes by Surface Plasmon Resonance Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9360-9370. [PMID: 27531168 DOI: 10.1021/acs.langmuir.6b02708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study reports on the dependence of the temperature-induced changes in the properties of thin thermoresponsive poly(diethylene glycol) methyl ether methacrylate (PDEGMA) layers of end-tethered chains on polymer thickness and grafting density. PDEGMA layers with a dry ellipsometric thickness of 5-40 nm were synthesized by surface-initiated atom transfer radical polymerization on gold. To assess the temperature-induced changes, the adsorption of bovine serum albumin (BSA) was investigated systematically as a function of film thickness, temperature, and grafting density by surface plasmon resonance (SPR), complemented by wettability and quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. BSA adsorption on PDEGMA brushes is shown to differ significantly above and below an apparent transition temperature. This surface transition temperature was found to depend linearly on the PDEGMA thickness and changed from 35 °C at 5 nm thickness to 48 °C at 23 nm. Similarly, a change of the grafting density enables the adjustment of this transition temperature presumably via a transition from the mushroom to the brush regime. Finally, BSA that adsorbed irreversibly on polymer brushes at temperatures above the transition temperature can be desorbed by reducing the temperature to 25 °C, underlining the reversibly switchable properties of PDEGMA brushes in response to temperature changes.
Collapse
Affiliation(s)
- Ekram Wassel
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), and ‡NRW Junior Research Group for Nanotechnology, Organic Chemistry, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Siyu Jiang
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), and ‡NRW Junior Research Group for Nanotechnology, Organic Chemistry, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Qimeng Song
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), and ‡NRW Junior Research Group for Nanotechnology, Organic Chemistry, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Stephan Vogt
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), and ‡NRW Junior Research Group for Nanotechnology, Organic Chemistry, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Gilbert Nöll
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), and ‡NRW Junior Research Group for Nanotechnology, Organic Chemistry, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Sergey I Druzhinin
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), and ‡NRW Junior Research Group for Nanotechnology, Organic Chemistry, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), and ‡NRW Junior Research Group for Nanotechnology, Organic Chemistry, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| |
Collapse
|
25
|
Yuan H, Chi H, Yuan W. Ethyl cellulose amphiphilic graft copolymers with LCST-UCST transition: Opposite self-assembly behavior, hydrophilic-hydrophobic surface and tunable crystalline morphologies. Carbohydr Polym 2016; 147:261-271. [DOI: 10.1016/j.carbpol.2016.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/20/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
|
26
|
Alkynyl-functionalization of hydroxypropyl cellulose and thermoresponsive hydrogel thereof prepared with P(NIPAAm- co -HEMAPCL). Carbohydr Polym 2016; 137:433-440. [DOI: 10.1016/j.carbpol.2015.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 11/24/2022]
|
27
|
Kim YJ, Yamamoto S, Takahashi H, Sasaki N, Matsunaga YT. Multiwalled carbon nanotube reinforced biomimetic bundled gel fibres. Biomater Sci 2016; 4:1197-201. [DOI: 10.1039/c6bm00292g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Biomimetic bundled fibre: Multiwalled carbon nanotube (MWCNT) reinforced bundled gel fibre is reported to obtain a cell culture scaffold with enhanced mechanical and electrical properties.
Collapse
Affiliation(s)
- Young-Jin Kim
- Center for International Research on Integrative Biomedical Systems (CIBiS)
- The University of Tokyo
- Tokyo
- Japan
- Japan Society for the Promotion of Science (JSPS)
| | - Seiichiro Yamamoto
- Center for International Research on Integrative Biomedical Systems (CIBiS)
- The University of Tokyo
- Tokyo
- Japan
- Department of Materials and Life Science
| | - Haruko Takahashi
- Center for International Research on Integrative Biomedical Systems (CIBiS)
- The University of Tokyo
- Tokyo
- Japan
| | - Naruo Sasaki
- Department of Materials and Life Science
- Seikei University
- Tokyo
- Japan
- Department of Applied Physics
| | - Yukiko T. Matsunaga
- Center for International Research on Integrative Biomedical Systems (CIBiS)
- The University of Tokyo
- Tokyo
- Japan
| |
Collapse
|
28
|
Hacker MC, Nawaz HA. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine. Int J Mol Sci 2015; 16:27677-706. [PMID: 26610468 PMCID: PMC4661914 DOI: 10.3390/ijms161126056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 01/09/2023] Open
Abstract
Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications.
Collapse
Affiliation(s)
- Michael C Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15a, D-04317 Leipzig, Germany.
| | - Hafiz Awais Nawaz
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15a, D-04317 Leipzig, Germany.
| |
Collapse
|
29
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
30
|
Grate JW, Mo KF, Shin Y, Vasdekis A, Warner MG, Kelly RT, Orr G, Hu D, Dehoff KJ, Brockman FJ, Wilkins MJ. Alexa Fluor-Labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments. Bioconjug Chem 2015; 26:593-601. [DOI: 10.1021/acs.bioconjchem.5b00048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jay W. Grate
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Kai-For Mo
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Yongsoon Shin
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Andreas Vasdekis
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Marvin G. Warner
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Ryan T. Kelly
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Galya Orr
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Dehong Hu
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Karl J. Dehoff
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Fred J. Brockman
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Michael J. Wilkins
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
31
|
Li P, Kang H, Che N, Liu Z, Zhang C, Cao C, Li W, Liu R, Huang Y. Synthesis, self-assembly and redox-responsive properties of well-defined hydroxypropylcellulose-graft
-poly(2-acryloyloxyethyl ferrocenecarboxylate) copolymers. POLYM INT 2015. [DOI: 10.1002/pi.4879] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pingping Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Hongliang Kang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Ning Che
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhijing Liu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Chao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Chun Cao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Weiwei Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Ruigang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Yong Huang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- National Research Center for Engineering Plastics, Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
32
|
|
33
|
Li Q, Yang S, Zhu L, Kang H, Qu X, Liu R, Huang Y. Dual-stimuli sensitive keratin graft PHPMA as physiological trigger responsive drug carriers. Polym Chem 2015. [DOI: 10.1039/c4py01750a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Keratin graft PHPMA copolymers were successfully synthesized and can be used as drug carriers with physiological stimuli responsive properties.
Collapse
Affiliation(s)
- Qinmei Li
- Sate Key Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory of Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Saina Yang
- Sate Key Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory of Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Lijun Zhu
- Sate Key Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory of Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Hongliang Kang
- Sate Key Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory of Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xiaozhong Qu
- University of Chinese Academy of Science
- Beijing 100049
- China
| | - Ruigang Liu
- Sate Key Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory of Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yong Huang
- Sate Key Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory of Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
34
|
Yang X, Zhao N, Xu FJ. Biocleavable graphene oxide based-nanohybrids synthesized via ATRP for gene/drug delivery. NANOSCALE 2014; 6:6141-6150. [PMID: 24789325 DOI: 10.1039/c4nr00907j] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Graphene oxide (GO) has been proven to be promising in many biomedical fields due to its biocompatibility, unique conjugated structure, easily tunable surface functionalization and facile synthesis. In this work, a flexible two-step method was first developed to introduce the atom transfer radical polymerization (ATRP) initiation sites containing disulfide bonds onto GO surfaces. Surface-initiated ATRP of (2-dimethyl amino)ethyl methacrylate (DMAEMA) was then employed to tailor the GO surfaces in a well-controlled manner, producing a series of organic-inorganic hybrids (termed as SS-GPDs) for highly efficient gene delivery. Under reducible conditions, the PDMAEMA side chains can be readily cleavable from the GO backbones, benefiting the resultant gene delivery process. Moreover, due to the conjugated structure of the graphene basal plane, SS-GPD can attach and absorb aromatic, water insoluble drugs, such as 10-hydroxycamptothecin (CPT), producing SS-GPD-CPT. The MTT assay and the simultaneous double-staining procedure revealed that SS-GPD-CPT possessed a high potency of killing cancer cells in vitro. With a high aqueous solubility and coulombic interaction with cell membrane, SS-GPDs may have great potential in gene/drug delivery fields.
Collapse
Affiliation(s)
- Xinchao Yang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science & Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | |
Collapse
|
35
|
Jian C, Gong C, Wang S, Wang S, Xie X, Wei Y, Yuan J. Multifunctional comb copolymer ethyl cellulose-g-poly(ε-caprolactone)-rhodamine B/folate: Synthesis, characterization and targeted bonding application. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Yang XC, Niu YL, Zhao NN, Mao C, Xu FJ. A biocleavable pullulan-based vector via ATRP for liver cell-targeting gene delivery. Biomaterials 2014; 35:3873-84. [DOI: 10.1016/j.biomaterials.2014.01.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
|
37
|
Li RQ, Niu YL, Zhao NN, Yu BR, Mao C, Xu FJ. Series of new β-cyclodextrin-cored starlike carriers for gene delivery. ACS APPLIED MATERIALS & INTERFACES 2014; 6:3969-3978. [PMID: 24579564 DOI: 10.1021/am5005255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The development of safe and effective β-cyclodextrin (β-CD)-cored cationic star gene carriers has attracted considerable attention. In this work, a series of star-shaped hemocompatible CD-PGPP, CD-PGAEPP, and CD-PGAPP vectors composed of β-CD cores and piperazine (PP)-, N-(aminoethyl)piperazine (AEPP)-, or N-(3-aminopropyl)-2-pyrrolidinone (APP)-functionalized poly(glycidyl methacrylate) arms were successfully proposed and compared for highly efficient gene delivery. Such star carriers possess plentiful secondary amine, tertiary amine, and nonionic hydroxyl groups. CD-PGPP, CD-PGAEPP, and CD-PGAPP were effective in condensing plasmid DNA into nanoparticles, whose sizes were 100-200 nm and positive ζ potentials were 25-40 mV at nitrogen/phosphate (N/P) ratios of 10 and above. CD-PGPP, CD-PGAEPP, and CD-PGAPP showed significantly lower cytotoxicity than control poly(ethylenimine) (PEI; ∼25 kDa). At most N/P ratios, CD-PGAPP exhibited better gene transfection performance than CD-PGPP and CD-PGAEPP particularly in HepG2 cells. More importantly, in comparison with PEI, all of the CD-PGPP, CD-PGAEPP, and CD-PGAPP vectors did not cause undesirable hemolysis.
Collapse
Affiliation(s)
- R Q Li
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science & Engineering, Beijing University of Chemical Technology , Beijing 100029 China
| | | | | | | | | | | |
Collapse
|
38
|
Synthesis and optimization of fluorescent poly(N-isopropyl acrylamide)-coated surfaces by atom transfer radical polymerization for cell culture and detachment. Biointerphases 2014; 10:019001. [PMID: 25708629 DOI: 10.1116/1.4894530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although there are many stimulus-responsive polymers, poly(N-isopropyl acrylamide) (pNIPAM) is of special interest due to the phase change it undergoes in a physiologically relevant temperature range that leads to the release of cells and proteins. The nondestructive release of cells opens up a wide range of applications, including the use of pNIPAM for cell sheet and tissue engineering. In this work, pNIPAM surfaces were generated that can be distinguished from the extracellular matrix. A polymerization technique was adapted that was previously used by Mendez, and the existing protocol was optimized for the culture of mammalian cells. The resulting surfaces were characterized with X-ray photoelectron spectroscopy and goniometry. The developed pNIPAM surfaces were further adapted by incorporation of 5-acrylamidofluorescein to generate fluorescent pNIPAM-coated surfaces. Both types of surfaces (fluorescent and nonfluorescent) sustained cellular attachment and produced cellular detachment of ∼90%, and are therefore suitable for the generation of cell sheets for engineered tissues and other purposes. These surfaces will be useful tools for experiments investigating cellular detachment from pNIPAM and the pNIPAM/cell interface.
Collapse
|
39
|
Joubert F, Musa OM, Hodgson DRW, Cameron NR. The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chem Soc Rev 2014; 43:7217-35. [DOI: 10.1039/c4cs00053f] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Atom transfer radical polymerisation (ATRP) is used to modify cellulose and cellulose derivatives under homogeneous conditions, yielding novel materials for application in areas such as drug delivery.
Collapse
Affiliation(s)
- Fanny Joubert
- Department of Chemistry
- Durham University
- Science Laboratories
- Durham DH1 3LE, UK
- Biophysical Sciences Institute
| | | | - David R. W. Hodgson
- Department of Chemistry
- Durham University
- Science Laboratories
- Durham DH1 3LE, UK
- Biophysical Sciences Institute
| | - Neil R. Cameron
- Department of Chemistry
- Durham University
- Science Laboratories
- Durham DH1 3LE, UK
- Biophysical Sciences Institute
| |
Collapse
|
40
|
Lou SF, Wang L, Williams GR, Nie H, Quan J, Zhu L. Galactose functionalized injectable thermoresponsive microgels for sustained protein release. Colloids Surf B Biointerfaces 2014; 113:368-74. [DOI: 10.1016/j.colsurfb.2013.08.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/02/2013] [Accepted: 08/29/2013] [Indexed: 12/28/2022]
|
41
|
Cooperstein MA, Canavan HE. Assessment of cytotoxicity of (N-isopropyl acrylamide) and poly(N-isopropyl acrylamide)-coated surfaces. Biointerphases 2013; 8:19. [PMID: 24706136 PMCID: PMC3979476 DOI: 10.1186/1559-4106-8-19] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/15/2013] [Indexed: 12/30/2022] Open
Abstract
Poly(N-isopropyl acrylamide) (pNIPAM) is one of the most popular stimulus-responsive polymers for research. It is especially of great interest in the field of tissue engineering. While it is known that the NIPAM monomer is toxic, there is little conclusive research on the cytotoxicity of the polymer. In this work, the relative biocompatibility of the NIPAM monomer, pNIPAM, and pNIPAM-coated substrates prepared using different polymerization (free radical and plasma polymerization) and deposition (spin coating and plasma polymerization) techniques was evaluated using appropriate cytotoxicity tests (MTS, Live/Dead, plating efficiency). Four different mammalian cell types (endothelial, epithelial, smooth muscle, and fibroblasts) were used for the cytotoxicity testing. The pNIPAM-coated surfaces were evaluated for their thermoresponse and surface chemistry using X-ray photoelectron spectroscopy and goniometry. We found that while cell viability on pNIPAM surfaces decreases when compared to controls, the viability also seems to be deposition type dependent, with sol-gel based pNIPAM surfaces being the least biocompatible. Long term experiments proved that all pNIPAM-coated surfaces were not cytotoxic to the four cell types evaluated in a direct contact test. Plating efficiency experiments did not show cytotoxicity. Cellular sensitivity to pNIPAM and to the NIPAM monomer varied depending on cell type. Endothelial cells consistently showed decreased viability after 48 hours of exposure to pNIPAM extracts and were more sensitive than the other cell lines to impurities in the polymer.
Collapse
Affiliation(s)
- Marta A Cooperstein
- Department of Chemical and Nuclear Engineering, Center for Biomedical Engineering, University of New Mexico, MSC01 1141, Albuquerque, NM, 87131-0001, USA,
| | | |
Collapse
|
42
|
Hu H, Xiu KM, Xu SL, Yang WT, Xu FJ. Functionalized Layered Double Hydroxide Nanoparticles Conjugated with Disulfide-Linked Polycation Brushes for Advanced Gene Delivery. Bioconjug Chem 2013; 24:968-78. [DOI: 10.1021/bc300683y] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- H. Hu
- State Key Laboratory of Chemical Resource
Engineering, Key Laboratory of Carbon Fiber and Functional Polymers,
Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China
| | - K. M. Xiu
- State Key Laboratory of Chemical Resource
Engineering, Key Laboratory of Carbon Fiber and Functional Polymers,
Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China
| | - S. L. Xu
- State Key Laboratory of Chemical Resource
Engineering, Key Laboratory of Carbon Fiber and Functional Polymers,
Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China
| | - W. T. Yang
- State Key Laboratory of Chemical Resource
Engineering, Key Laboratory of Carbon Fiber and Functional Polymers,
Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China
| | - F. J. Xu
- State Key Laboratory of Chemical Resource
Engineering, Key Laboratory of Carbon Fiber and Functional Polymers,
Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China
| |
Collapse
|
43
|
Jin X, Kang H, Liu R, Huang Y. Regulation of the thermal sensitivity of hydroxypropyl cellulose by poly(N-isopropylacryamide) side chains. Carbohydr Polym 2013; 95:155-60. [DOI: 10.1016/j.carbpol.2013.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/26/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022]
|
44
|
Lou SF, Zhang H, Williams GR, Branford-White C, Nie HL, Quan J, Zhu LM. Fabrication and aggregation of thermoresponsive glucose-functionalized double hydrophilic copolymers. Colloids Surf B Biointerfaces 2013; 105:180-6. [DOI: 10.1016/j.colsurfb.2012.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/13/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
|
45
|
Zhu Y, Tang GP, Xu FJ. Efficient poly(N-3-hydroxypropyl)aspartamide-based carriers via ATRP for gene delivery. ACS APPLIED MATERIALS & INTERFACES 2013; 5:1840-1848. [PMID: 23421311 DOI: 10.1021/am400022q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
High-molecular-weight comb-shaped cationic copolymers have been of interest and importance as nonviral gene delivery carriers. Poly(DL-aspartamide)-based biomaterials with good degradability and excellent biocompatibility could be used as the potential backbones of gene vectors. In this work, atom transfer radical polymerization (ATRP) was proposed to prepare the biocleavable and biodegradable comb-shaped poly(N-3-hydroxypropyl)aspartamide (PHPA)-based gene carriers. The bioreducible ATRP initiation sites were first introduced onto PHPA backbones. Then, the well-defined comb-shaped vectors (SS-PHPDs) consisting of degradable PHPD backbones and disulfide-linked cationic P(DMAEMA) side chains were produced for gene delivery. The P(DMAEMA) side chains were readily cleavable from the backbones under reducible conditions. The degradability of PHPA backbones would benefit the final removal of the gene carriers from the body.
Collapse
Affiliation(s)
- Yun Zhu
- State Key Laboratory of Chemical Resource Engineering, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 China
| | | | | |
Collapse
|
46
|
Qiu X, Hu S. "Smart" Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications. MATERIALS (BASEL, SWITZERLAND) 2013; 6:738-781. [PMID: 28809338 PMCID: PMC5512797 DOI: 10.3390/ma6030738] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 11/16/2022]
Abstract
Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. "Smart" materials based on cellulose have great advantages-especially their intelligent behaviors in reaction to environmental stimuli-and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of "smart" materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of "smart" materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these "smart" materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review.
Collapse
Affiliation(s)
- Xiaoyun Qiu
- Department of Environmental Sciences & Engineering, College of Resources & Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Shuwen Hu
- Department of Environmental Sciences & Engineering, College of Resources & Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
47
|
Hu Y, Zhu Y, Yang WT, Xu FJ. New star-shaped carriers composed of β-cyclodextrin cores and disulfide-linked poly(glycidyl methacrylate) derivative arms with plentiful flanking secondary amine and hydroxyl groups for highly efficient gene delivery. ACS APPLIED MATERIALS & INTERFACES 2013; 5:703-712. [PMID: 23270523 DOI: 10.1021/am302249x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The biocleavable star-shaped vectors (CD-SS-PGEAs) consisting of nonionic β-cyclodextrin (β-CD) cores and disulfide-linked low-molecular-weight poly(glycidyl methacrylate) (PGMA) derivative arms with plentiful flanking secondary amine and hydroxyl groups were successfully proposed for highly efficient gene delivery. A simple two-step method was first adopted to introduce reduction-sensitive disulfide-linked initiation sites of atom transfer radical polymerization (ATRP) onto β-CD cores. The disulfide-linked PGMA arms prepared subsequently via ATRP were functionalized via the ring-opening reaction with ethanolamine (EA) to produce the cationic EA-functionalized PGMA (PGEA) arms with plentiful secondary amine and nonionic hydroxyl units. The cationic PGEA arms can be readily cleavable from the β-CD cores under reducible conditions. Such biocleavable star-shaped CD-SS-PGEA vectors possessed the good pDNA condensation ability, low cytotoxicity, and efficient gene delivery ability.
Collapse
Affiliation(s)
- Y Hu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, College of Materials Science & Engineering, Beijing University of Chemical Technology, Beijing 100029 China
| | | | | | | |
Collapse
|
48
|
Kang H, Liu R, Huang Y. Cellulose derivatives and graft copolymers as blocks for functional materials. POLYM INT 2013. [DOI: 10.1002/pi.4455] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hongliang Kang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Ruigang Liu
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Yong Huang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
49
|
Chen C, Liu M, Gao C, Lü S, Chen J, Yu X, Ding E, Yu C, Guo J, Cui G. A convenient way to synthesize comb-shaped chitosan-graft-poly (N-isopropylacrylamide) copolymer. Carbohydr Polym 2013; 92:621-8. [DOI: 10.1016/j.carbpol.2012.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/07/2012] [Accepted: 09/09/2012] [Indexed: 10/27/2022]
|
50
|
Biocleavable comb-shaped gene carriers from dextran backbones with bioreducible ATRP initiation sites. Biomaterials 2012; 33:1873-83. [DOI: 10.1016/j.biomaterials.2011.11.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/13/2011] [Indexed: 02/02/2023]
|