1
|
Assali M, Kittana N, Badran I, Omari S. Covalent functionalization of graphene sheets for plasmid DNA delivery: experimental and theoretical study. RSC Adv 2023; 13:7000-7008. [PMID: 36874935 PMCID: PMC9979783 DOI: 10.1039/d3ra00727h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Several approaches, including plasmid transfection and viral vectors, were used to deliver genes into cells for therapeutic and experimental purposes. However, due to the limited efficacy and questionable safety issues, researchers are looking for better new approaches. Over the past decade, graphene has attracted tremendous attention in versatile medical applications, including gene delivery, which could be safer than the traditional viral vectors. This work aims to covalently functionalize pristine graphene sheets with a polyamine to allow the loading of plasmid DNA (pDNA) and enhance its delivery into cells. Graphene sheets were successfully covalently functionalized with a derivative of tetraethylene glycol connected to polyamine groups to improve their water dispersibility and capacity to interact with the pDNA. The improved dispersibility of the graphene sheets was demonstrated visually and by transmission electron microscopy. Also, it was shown by thermogravimetric analysis that the degree of functionalization was about 58%. Moreover, the surface charge of the functionalized graphene was +29 mV as confirmed by zeta potential analysis. The complexion of f-graphene with pDNA was achieved at a relatively low mass ratio (10 : 1). The incubation of HeLa cells with f-graphene loaded with pDNA that encodes enhanced green fluorescence protein (eGFP) resulted in the detection of fluorescence signal in the cells within one hour. f-Graphene showed no toxic effect in vitro. Density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) calculations revealed strong binding with ΔH 298 = 74.9 kJ mol-1. QTAIM between the f-graphene and a simplified model of pDNA. Taken together, the developed functionalized graphene could be used for the development of a new non-viral gene delivery system.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University Nablus Palestine
| | - Naim Kittana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University Nablus Palestine
| | - Ismail Badran
- Department of Chemistry, Faculty of Sciences, An-Najah National University Nablus Palestine
| | - Safa Omari
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University Nablus Palestine
| |
Collapse
|
2
|
Puchkov PA, Maslov MA. Lipophilic Polyamines as Promising Components of Liposomal Gene Delivery Systems. Pharmaceutics 2021; 13:920. [PMID: 34205825 PMCID: PMC8234823 DOI: 10.3390/pharmaceutics13060920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Gene therapy requires an effective and safe delivery vehicle for nucleic acids. In the case of non-viral vehicles, including cationic liposomes, the structure of compounds composing them determines the efficiency a lot. Currently, cationic amphiphiles are the most frequently used compounds in liposomal formulations. In their structure, which is a combination of hydrophobic and cationic domains and includes spacer groups, each component contributes to the resulting delivery efficiency. This review focuses on polycationic and disulfide amphiphiles as prospective cationic amphiphiles for gene therapy and includes a discussion of the mutual influence of structural components.
Collapse
Affiliation(s)
| | - Michael A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia;
| |
Collapse
|
3
|
Peng Y, Bariwal J, Kumar V, Tan C, Mahato RI. Organic Nanocarriers for Delivery and Targeting of Therapeutic Agents for Cancer Treatment. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Peng
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Jitender Bariwal
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Virender Kumar
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug DeliveryUniversity of Mississippi University MS 38677 USA
| | - Ram I. Mahato
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
4
|
Sako M, Song F, Okamoto A, Koide H, Dewa T, Oku N, Asai T. Key determinants of siRNA delivery mediated by unique pH-responsive lipid-based liposomes. Int J Pharm 2019; 569:118606. [PMID: 31415879 DOI: 10.1016/j.ijpharm.2019.118606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/21/2019] [Accepted: 08/09/2019] [Indexed: 11/28/2022]
Abstract
Lipid-based nanoparticles, a potential nonviral vector due to their good biocompatibility and biodegradability, have been extensively developed for the delivery of small interfering RNA (siRNA). We designed a unique pH-responsive lipid derivative, a dioleylphosphate-diethylenetriamine conjugate (DOP-DETA). DOP-DETA consists of a pH-responsive triamine and unsaturated fatty acids that accelerate membrane fusion. Our results showed that DOP-DETA-based liposomes (DL) efficiently delivered siRNA into the cytoplasm and induced RNA interference even at a low siRNA concentration. The knockdown efficiency of DL depended on the molar ratio of total DL lipids to siRNA. When siRNA was formulated with a sufficient amount of DL, it was efficiently taken up by cells and induced effective gene silencing. Time-lapse imaging showed that siRNA transfected with DL was rapidly internalized into the cells and uniformly dispersed in the cytoplasm within a few minites. The results also showed that DL induced sufficient change in surface charge to allow it to interact with the cell membrane and to allow for rapid endosomal escape. Uptake pathway and time-lapse imaging studies revealed that siRNA was delivered by DL into the cytoplasm, possibly through both macropinocytosis and membrane fusion. The present results emphasize that the modulation of surface charge on nanoparticles is crucial for each siRNA delivery process. Our results also suggest that DL is a potentially useful vector for inducing gene silencing with low-doses of siRNA.
Collapse
Affiliation(s)
- Mariko Sako
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Furan Song
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ayaka Okamoto
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Koide
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takehisa Dewa
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
5
|
Okamoto A, Koide H, Morita N, Hirai Y, Kawato Y, Egami H, Hamashima Y, Asai T, Dewa T, Oku N. Rigorous control of vesicle-forming lipid pK a by fluorine-conjugated bioisosteres for gene-silencing with siRNA. J Control Release 2018; 295:87-92. [PMID: 30593831 DOI: 10.1016/j.jconrel.2018.12.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/08/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022]
Abstract
While the influence of pKa provided by amine-containing materials in siRNA delivery vectors for use in gene-silencing has been widely studied, there are little reports in which amine pKa is controlled rigorously by using bioisosteres and its effect on gene-silencing. Here, we report that amine pKa could be rigorously controlled by replacement of hydrogen atom(s) with fluorine atom(s). A series of mono- and di-amine lipids with a different number of fluorine atoms were synthesized. The pKa of the polyamine lipids was shifted to a lower value with an increase in the number of fluorine atoms. The optimal pKa for high gene-silencing efficiency varied according to the number of amine residues in the polyamine lipid. Whereas the endosomal escape ability of mono-amine lipid-containing lipid vesicles (LVs) depended on the pKa, that of all tested di-amine lipid-containing LVs showed equal membrane-destabilizing activity. LVs showing moderately weak interactions with siRNA facilitated cytoplasmic release of siRNA, resulting in strong gene-silencing. These findings indicate that appropriate amine pKa engineering depending on the number of amines is important for the induction of effective RNA interference.
Collapse
Affiliation(s)
- Ayaka Okamoto
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Koide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Naoki Morita
- Department of Synthetic Organic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yusuke Hirai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuji Kawato
- Department of Synthetic Organic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiromichi Egami
- Department of Synthetic Organic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- Department of Synthetic Organic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takehisa Dewa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
6
|
Puchkov PA, Perevoshchikova KA, Kartashova IA, Luneva AS, Kabilova TO, Morozova NG, Zenkova MA, Maslov MA. Polycationic amphiphiles based on triethylenetetramine and their transfection efficacy. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017050107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Puchkov PA, Kartashova IA, Shmendel EV, Luneva AS, Morozova NG, Zenkova MA, Maslov MA. Spacer structure and hydrophobicity influences transfection activity of novel polycationic gemini amphiphiles. Bioorg Med Chem Lett 2017. [DOI: 10.1016/j.bmcl.2017.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Oku N. Innovations in Liposomal DDS Technology and Its Application for the Treatment of Various Diseases. Biol Pharm Bull 2017; 40:119-127. [PMID: 28154249 DOI: 10.1248/bpb.b16-00857] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liposomes have been widely used as drug carriers in the field of drug delivery systems (DDS), and they are thought to be ideal nano-capsules for targeting DDS after being injected into the bloodstream. In general, DDS drugs meet the needs of aged and super-aged societies, since the administration route of drugs can be changed, the medication frequency reduced, the adverse effects of drugs suppressed, and so on. In fact, a number of liposomal drugs have been launched and used worldwide including liposomal anticancer drugs, and these drugs have appeared on the market owing to various innovations in liposomal DDS technologies. The accumulation of long-circulating liposomes in cancer tissue is driven by the enhanced permeability and retention (EPR) effect. In this review, liposome-based targeting DDS for cancer therapy is briefly discussed. Since cancer angiogenic vessels are the ideal target of drug carriers after their injection and are critical for cancer growth, damaging of these neovessels has been an approach for eradicating cancer cells. Also, the usage of liposomal DDS for the treatment of ischemic stroke is possible, since we observed that PEGylated liposomes accumulate in the site of cerebral ischemia in transient middle cerebral artery occlusion (t-MCAO) model rats. Interestingly, liposomes carrying neuroprotectants partly suppress ischemia/reperfusion injury of these model rats, suggesting that the EPR effect also works in ischemic diseases by causing an increase in the permeability of the blood vessel endothelium. The potential of liposomal DDS against life-threatening diseases might thus be attractive for supporting long-lived societies.
Collapse
Affiliation(s)
- Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
9
|
Junquera E, Aicart E. Recent progress in gene therapy to deliver nucleic acids with multivalent cationic vectors. Adv Colloid Interface Sci 2016; 233:161-175. [PMID: 26265376 DOI: 10.1016/j.cis.2015.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/10/2015] [Accepted: 07/12/2015] [Indexed: 12/16/2022]
Abstract
Due to the potential use as transfecting agents of nucleic acids (DNA or RNA), multivalent cationic non-viral vectors have received special attention in the last decade. Much effort has been addressed to synthesize more efficient and biocompatible gene vectors able to transport nucleic acids into the cells without provoking an immune response. Among them, the mostly explored to compact and transfect nucleic acids are: (a) gemini and multivalent cationic lipids, mixed with a helper lipid, by forming lipoplexes; and (b) cationic polymers, polycations, and polyrotaxanes, by forming polyplexes. This review is focused on the progress and recent advances experimented in this area, mainly during the present decade, devoting special attention to the lipoplexes and polyplexes, as follows: (a) to its biophysical characterization (mainly electrostatics, structure, size and morphology) using a wide variety of experimental methods; and (b) to its biological activity (transfection efficacy and cytotoxicity) addressed to confirm the optimum formulations and viability of these complexes as very promising gene vectors of nucleic acids in nanomedicine.
Collapse
Affiliation(s)
- Elena Junquera
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Emilio Aicart
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Koide H, Okamoto A, Tsuchida H, Ando H, Ariizumi S, Kiyokawa C, Hashimoto M, Asai T, Dewa T, Oku N. One-step encapsulation of siRNA between lipid-layers of multi-layer polycation liposomes by lipoplex freeze-thawing. J Control Release 2016; 228:1-8. [DOI: 10.1016/j.jconrel.2016.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/05/2016] [Accepted: 01/18/2016] [Indexed: 01/09/2023]
|
11
|
Navarro G, Pan J, Torchilin VP. Micelle-like nanoparticles as carriers for DNA and siRNA. Mol Pharm 2015; 12:301-13. [PMID: 25557580 DOI: 10.1021/mp5007213] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gene therapy represents a potential efficient approach of disease prevention and therapy. However, due to their poor in vivo stability, gene molecules need to be associated with delivery systems to overcome extracellular and intracellular barriers and allow access to the site of action. Cationic polymeric nanoparticles are popular carriers for small interfering RNA (siRNA) and DNA-based therapeutics for which efficient and safe delivery are important factors that need to be optimized. Micelle-like nanoparticles (MNP) (half micelles, half polymeric nanoparticles) can overcome some of the disadvantages of such cationic carriers by unifying in one single carrier the best of both delivery systems. In this review, we will discuss how the unique properties of MNP including self-assembly, condensation and protection of nucleic acids, improved cell association and gene transfection, and low toxicity may contribute to the successful application of siRNA- and DNA-based therapeutics into the clinic. Recent developments of MNP involving the addition of stimulus-sensitive functions to respond specifically to pathological or externally applied "triggers" (e.g., temperature, pH or enzymatic catalysis, light, or magnetic fields) will be discussed. Finally, we will overview the use of MNP as two-in-one carriers for the simultaneous delivery of different agents (small molecules, imaging agents) and nucleic acid combinations.
Collapse
Affiliation(s)
- Gemma Navarro
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
12
|
Sheng R, An F, Wang Z, Li M, Cao A. Assembly of plasmid DNA with pyrene-amines cationic amphiphiles into nanoparticles and their visible lysosome localization. RSC Adv 2015. [DOI: 10.1039/c4ra06879c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we constructed a visible model for drug/gene dual delivery.
Collapse
Affiliation(s)
- Ruilong Sheng
- Key Laboratory of Synthesis and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Feifei An
- National Centre for Nanoscience and Technology
- Beijing 100190
- China
| | - Zhao Wang
- Key Laboratory of Synthesis and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Mingrui Li
- Key Laboratory of Synthesis and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Amin Cao
- Key Laboratory of Synthesis and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
13
|
Navarro G, Essex S, Sawant RR, Biswas S, Nagesha D, Sridhar S, de ILarduya CT, Torchilin VP. Phospholipid-modified polyethylenimine-based nanopreparations for siRNA-mediated gene silencing: implications for transfection and the role of lipid components. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:411-9. [PMID: 23928214 DOI: 10.1016/j.nano.2013.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/15/2013] [Accepted: 07/22/2013] [Indexed: 01/05/2023]
Abstract
UNLABELLED The clinical application of gene silencing mediated by small interfering RNA (siRNA) has been limited by the lack of efficient and safe carriers. Phospholipid modification of low molecular weight polyethylenimine (PEI 1.8 kDa) dramatically increased its gene down-regulation capacity while keeping cytotoxicity levels low. The silencing efficacy was highly dependent on the nature of the lipid grafted to PEI and the polymer/siRNA ratio employed. Phosphoethanolamine (DOPE and DPPE) and phosphocholine (PC) conjugation did not change the physicochemical properties and siRNA binding capacity of PEI complexes but had a large impact on their transfection and ability to down-regulate Green Fluorescent Protein (GFP) expression (60%, 30% and 5% decrease of GFP expression respectively). We found that the micelle-forming structure of DOPE and DPPE-PEI dramatically changed PEI's interaction with cell membranes and played a key role in promoting PEI 1.8 kDa transfection, completely ineffective in the absence of the lipid modification. FROM THE CLINICAL EDITOR While siRNA-based gene silencing methods could have numerous clinical applications, efficient delivery remains a major challenge. This team reports that DOPE-PEI and DPPE-PEI based micelle-forming nanostructures may be able to provide an efficient vector for siRNA transfection.
Collapse
Affiliation(s)
- Gemma Navarro
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Sean Essex
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Rupa R Sawant
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology and Sciences-Pilani., Hyderabad Campus Jawahar Nagar, Shameerpet Mandal. Hyderabad-500078. AP., India
| | - Dattatri Nagesha
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University S. S. Nagar, Mysore 570 015
| | - Srinivas Sridhar
- Electronic Materials Research Institute, Northeastern University, Boston, MA, USA
| | - Conchita Tros de ILarduya
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA.
| |
Collapse
|
14
|
Vida N, Svobodová H, Rárová L, Drašar P, Saman D, Cvačka J, Wimmer Z. Polyamine conjugates of stigmasterol. Steroids 2012; 77:1212-8. [PMID: 22850319 DOI: 10.1016/j.steroids.2012.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/19/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
Three new polyamine conjugates with stigmasterol [(3β,22E)-stigmasta-5,22-dien-3-ol] were synthesized and subjected to basic antimicrobial and cytotoxic tests. The conjugate derived from spermine, (3β,22E)-stigmasta-5,22-dien-3-yl 4(12-amino-4,9-diaza-dodecylamino)-4-oxobutanoate (5c), displayed considerable antimicrobial activity on Staphylococcus aureus at low concentration (50 μg mL(-1)). The cytotoxic activity was tested on cells of human T-lymfoblastic leukemia (IC(50)=35.8 ± 10.3 μM (5c) and IC(50)=35.9 ± 5.7 μM (5b)) and normal human fibroblasts (IC(50)=38.0 ± 2.8 μM (5c) and IC(50)=45.5 ± 1.9 μM (5b)). Conjugate 5a displayed no activity in both tests.
Collapse
Affiliation(s)
- Norbert Vida
- Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Chemistry of Natural Compounds, Technická 5, 16628 Prague 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
15
|
Yonenaga N, Kenjo E, Asai T, Tsuruta A, Shimizu K, Dewa T, Nango M, Oku N. RGD-based active targeting of novel polycation liposomes bearing siRNA for cancer treatment. J Control Release 2011; 160:177-81. [PMID: 22019557 DOI: 10.1016/j.jconrel.2011.10.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 12/13/2022]
Abstract
For the purpose of systemic delivery of siRNA, we previously developed polycation liposomes (PCLs) containing dicetylphosphate-tetraethylenepentamine (DCP-TEPA) as an effective siRNA carrier. In the present study, to endow these PCLs (TEPA-PCL) actively target cancer cells and angiogenic vessels, we decorated the PCLs with cyclic RGD, by using cyclic RGD-grafted distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG), and investigated the usefulness of this type of carrier (RGD-PEG-PCL) for active targeting. Firstly, the gene-silencing efficacy of siRNA for luciferase (siLuc2) formulated in RGD-PEG-PCL (RGD-PEG-PCL/siLuc2) was examined in vitro by using B16F10-luc2 murine melanoma cells stably expressing the luciferase 2 gene, where the siRNA was grafted with cholesterol at the 3'-end of the sense strand (siRNA-C) for the stable association of the siRNA with the PCL. RGD-PEG-PCL/siLuc2 showed high knockdown efficiency compared with siLuc2 formulated in PEGylated TEPA-PCL without cyclic RGD (PEG-PCL). Next, the gene-silencing efficacy of RGD-PEG-PCL/siLuc2 was examined in vivo by use of B16F10-luc2 lung metastatic model mice. The intravenous injection of RGD-PEG-PCL/siLuc2 showed high knockdown efficiency against metastatic B16F10-luc2 tumors in the lungs of the mice, as assessed with an in vivo imaging system. These data strongly suggest that systemic and active targeting siRNA delivery using RGD-PEG-PCL is useful for cancer RNAi therapy.
Collapse
Affiliation(s)
- Norihito Yonenaga
- Department of Medical Biochemistry and Global COE Program, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Koide H, Asai T, Furuya K, Tsuzuku T, Kato H, Dewa T, Nango M, Maeda N, Oku N. Inhibition of Akt (ser473) phosphorylation and rapamycin-resistant cell growth by knockdown of mammalian target of rapamycin with small interfering RNA in vascular endothelial growth factor receptor-1-targeting vector. Biol Pharm Bull 2011; 34:602-8. [PMID: 21532145 DOI: 10.1248/bpb.34.602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we developed dicetyl phosphate-tetraethylenepentamine-based polycation liposomes (TEPA-PCL) for use in small interfering RNA (siRNA) therapy. In the present study, mammalian target of rapamycin (mTOR) expression in cancer cells was silenced with mTOR-siRNA (simTOR) formulated in TEPA-PCL modified with Ala-Pro-Arg-Pro-Gly (APRPG), a peptide having affinity for vascular endothelial growth factor receptor-1 (VEGFR-1). We investigated the effects of inhibition of mTOR, focusing on the differences between cells treated with simTOR and those with rapamycin in terms of Akt (ser473) phosphorylation and antiproliferative effects. Rapamycin treatment is known to induce Akt (ser473) phosphorylation which attenuates the antiproliferative effects of rapamycin. As a result, knockdown of mTOR did not alter or only slightly reduced Akt (ser473) phosphorylation in phosphatase and tensin homolog deleted from chromosome 10 (PTEN)-null (LNCaP and MDA-MB-468 cells) and PTEN-positive (DU 145 and MDA-MB-231) cells, although rapamycin induced Akt (ser473) phosphorylation of these cells. Rapamycin suppressed the growth of PTEN-null cells, in which the rapamycin-sensitive mTOR complex 1 (mTORC1) is excessively activated. On the other hand, rapamycin did not suppress the growth of PTEN-positive cells possibly through a negative feedback mechanism via the rapamycin-insensitive mTOR complex 2 (mTORC2) signaling pathway. In contrast, simTOR significantly suppressed the growth of cancer cells regardless of the presence of PTEN, possibly through inhibition of both mTORC1 and mTORC2. These results indicate that mTOR knockdown using APRPG-TEPA-PCL/simTOR is likely to be an effective strategy for cancer siRNA therapy.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department of Medical Biochemistry and Global COE Program, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Asai T, Matsushita S, Kenjo E, Tsuzuku T, Yonenaga N, Koide H, Hatanaka K, Dewa T, Nango M, Maeda N, Kikuchi H, Oku N. Dicetyl Phosphate-Tetraethylenepentamine-Based Liposomes for Systemic siRNA Delivery. Bioconjug Chem 2011; 22:429-35. [DOI: 10.1021/bc1004697] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomohiro Asai
- Department of Medical Biochemistry and Global COE, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Saori Matsushita
- Department of Medical Biochemistry and Global COE, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Eriya Kenjo
- Department of Medical Biochemistry and Global COE, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takuma Tsuzuku
- Department of Medical Biochemistry and Global COE, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Norihito Yonenaga
- Department of Medical Biochemistry and Global COE, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Koide
- Department of Medical Biochemistry and Global COE, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kentaro Hatanaka
- Department of Medical Biochemistry and Global COE, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takehisa Dewa
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Mamoru Nango
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Noriyuki Maeda
- Nippon Fine Chemical Co. Ltd., 5-1-1 Umei, Takasago, Hyogo 676-0074, Japan
| | - Hiroshi Kikuchi
- DDS Research, Formulation Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, 300-2635, Japan
| | - Naoto Oku
- Department of Medical Biochemistry and Global COE, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
18
|
Jones SP, Gabrielson NP, Wong CH, Chow HF, Pack DW, Posocco P, Fermeglia M, Pricl S, Smith DK. Hydrophobically modified dendrons: developing structure-activity relationships for DNA binding and gene transfection. Mol Pharm 2011; 8:416-29. [PMID: 21291280 DOI: 10.1021/mp100260c] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper develops a structure-activity relationship understanding of the way in which surfactant-like dendrons with hydrophilic spermine surface groups and a variety of lipophilic units at their focal points can self-assemble and subsequently bind to DNA with high affinity. The choice of functional group at the focal point of the dendron and the high tunability of the molecular structure have a very significant impact on DNA binding. Mesoscale modeling of the mode of dendron self-assembly provides a direct insight into how the mode of self-assembly exerts its effect on the DNA binding process. In particular, the hydrophobic unit controls the number of dendrons in the self-assembled micellar structures, and hence their diameters and surface charge density. The DNA binding affinity correlates with the surface charge density of the dendron aggregates. Furthermore, these structure-activity effects can also be extended to cellular gene delivery, as surface charge density plays a role in controlling the extent of endosomal escape. It is reported that higher generation dendrons, although binding DNA less strongly than the self-assembling lower generation dendrons, are more effective for transfection. The impact of the lipophilic group at the focal point is less significant for the DNA binding ability of these larger dendrons, which is predominantly controlled by the spermine surface groups, but it does modify the levels of gene transfection. Significant synergistic effects on gene delivery were observed when employing combinations of the dendrons and polyethyleneimine (PEI, 25 kDa), with transfection becoming possible at low loading levels where the two components would not transfect individually, giving practically useful levels of gene delivery.
Collapse
Affiliation(s)
- Simon P Jones
- Department of Chemistry, University of York, Heslington, York YO105DD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|