1
|
Borhan A, Bagherlou A, Ghayour MB. Evaluating the anticancer effects of carnosic acid against breast cancer: An In Vitro investigation. Tissue Cell 2025; 93:102718. [PMID: 39787938 DOI: 10.1016/j.tice.2024.102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Carnosic acid (CA) has potential anti-cancer properties, but its effectiveness can be improved by combining it with Folic acid (FA). This research aimed to evaluate the impact of CA and CA-FA conjugate on breast cancer cell lines (MCF-7, MDA-MB-231, and MCA10). MATERIALS AND METHODS The viability of the cell lines was measured using the MTT assay, and the IC₅₀ was determined to compare the cytotoxicity of CA and CA-FA. The process of programmed cell death was investigated by utilizing Annexin V/PI staining, measuring caspase-3/7 activity, and real-time PCR for apoptotic gene expression. Reactive oxygen species (ROS) were also assessed to determine the extent of oxidative stress. RESULTS CA significantly decreased the viability of MCF-7 and MDA-MB-231 cells depending on the dosage, with CA-FA exhibiting enhanced cytotoxicity, particularly in MDA-MB-231 cells. The evaluation of IC₅₀ confirmed that conjugation with FA reduced the IC₅₀ of CA. Apoptosis analysis demonstrated increased apoptosis rates in MCF-7 and MDA-MB-231 cells exposed to treatment with CA and CA-FA, while MCA10 cells showed minimal effects. Caspase-3/7 activity was notably higher in CA-FA-treated cells. Gene expression analysis revealed elevated pro-apoptotic gene activity and reduced anti-apoptotic gene activity, with CA-FA having a more pronounced effect. Cells subjected to CA-FA treatment exhibited a significant increase in ROS levels. CONCLUSION These findings suggest that CA conjugation with FA enhances its cytotoxic effects and promotes apoptosis through increased apoptosis and ROS production. The research emphasizes the promise of CA-FA as a focused treatment approach for aggressive forms of breast cancer, underscoring the need for additional exploration of its practical uses in clinical settings.
Collapse
Affiliation(s)
- Aylar Borhan
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Bagherlou
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad B Ghayour
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
| |
Collapse
|
2
|
Mohammadi Barzelighi H, Bakhshi B, Daraei B, Mirzaei A. Investigating the effect of rAzurin loaded mesoporous silica nanoparticles enwrapped with chitosan-folic acid on breast tumor regression in BALB/ C mice. Int J Biol Macromol 2025; 300:139245. [PMID: 39732269 DOI: 10.1016/j.ijbiomac.2024.139245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
This study aimed to examine how mesoporous silica nanoparticles-chitosan-folic acid impacted the release of recombinant Azurin within the tumor environment. The goal was to trigger apoptosis and stimulate immune responses against both transformed and normal cells in BALB/c mice. The study found that the use of rAzu-MSNs-CS-FA, a specific formulation containing mesoporous silica nanoparticles-chitosan-folic acid, resulted in pH-responsive behavior and slower release of rAzurin compared to other groups. This formulation inhibited MCF7 cells at higher concentrations, induced apoptosis in cells, and caused DNA degradation. It also increased the uptake efficiency of rAzurin and stimulated the secretion of TNF-α, INF-γ, and IL-4 while inhibiting the secretion of IL-6. Furthermore, it regulated the expression of specific genes (upregulating tlr3 and downregulating tlr2, 4, and 9). In animal studies with BALB/c mice, the rAzu-MSNs-CS-FA formulation led to tumor regression and decreased tumor volume over 21 days. Overall, this formulation showed promising results in inducing cytotoxic effects against cancer cells, promoting apoptosis, and eliciting appropriate immune responses, suggesting its potential as a valuable therapy for breast cancer.
Collapse
Affiliation(s)
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezoo Mirzaei
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Obireddy SR, Ayyakannu A, Kasi G, Sridharan B, Lai WF, Viswanathan K. Folate-Functionalized CS/rGO/NiO Nanocomposites as a Multifunctional Drug Carrier with Anti-Microbial, Target-Specific, and Stimuli-Responsive Capacities. Int J Nanomedicine 2025; 20:1965-1981. [PMID: 39968060 PMCID: PMC11834734 DOI: 10.2147/ijn.s489418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025] Open
Abstract
Purpose This study reports the synthesis of surface-modified chitosan (CS) coated with reduced graphene oxide/nickel oxide (rGO/NiO) as a multifunctional drug carrier with anti-microbial, target-specific, and stimuli-responsive capacities. CS, rGO, and NiO nanoparticles are selected due to their pH-responsiveness, large surface area, and ROS generating-capacity, respectively. Methods The CS/rGO/NiO nanocomposites (NCs) are synthesized using a solvothermal approach. Glutaraldehyde is used to crosslink CS and rGO/NiO to enhance the stability of the NCs. Structural properties, magnetic properties, antimicrobial activity, drug release sustainability and toxicity of the NCs are evaluated. Results The NCs show good biocompatibility, excellent magnetic properties, good target specificity, and remarkable cell growth inhibitory effects. The release of doxorubicin (DOX) from the drug-loaded NCs at pH 5.0 (~98.6%) is much higher than that at pH 7.4 (~9.6%). Furthermore, the NCs inhibit the growth of A549 and MCF7 cells, causing the viability of A549 and MCF7 to drop to 12.3% and 7.1%, respectively. By using zebrafish embryos as a model, no detectable change is observed in the survival rate of the embryos after NC treatment. Conclusion The NCs exhibit multifunctional, target-specific, and pH-responsive characteristics. These properties make the NCs a promising candidate for use in drug delivery applications.
Collapse
Affiliation(s)
- Sreekanth Reddy Obireddy
- Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Zhejiang, 310014, People’s Republic of China
| | - Arumugam Ayyakannu
- Department of Botany, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Gopinath Kasi
- School of Materials and Energy, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Wing-Fu Lai
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Karthika Viswanathan
- Department Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| |
Collapse
|
4
|
Izadiyan Z, Misran M, Kalantari K, Webster TJ, Kia P, Basrowi NA, Rasouli E, Shameli K. Advancements in Liposomal Nanomedicines: Innovative Formulations, Therapeutic Applications, and Future Directions in Precision Medicine. Int J Nanomedicine 2025; 20:1213-1262. [PMID: 39911259 PMCID: PMC11794392 DOI: 10.2147/ijn.s488961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025] Open
Abstract
Liposomal nanomedicines have emerged as a pivotal approach for the treatment of various diseases, notably cancer and infectious diseases. This manuscript provides an in-depth review of recent advancements in liposomal formulations, highlighting their composition, targeted delivery strategies, and mechanisms of action. We explore the evolution of liposomal products currently in clinical trials, emphasizing their potential in addressing diverse medical challenges. The integration of immunotherapeutic agents within liposomes marks a paradigm shift, enabling the design of 'immuno-modulatory hubs' capable of orchestrating precise immune responses while facilitating theranostic applications. The recent COVID-19 pandemic has accelerated research in liposomal-based vaccines and antiviral therapies, underscoring the need for improved delivery mechanisms to overcome challenges like rapid clearance and organ toxicity. Furthermore, we discuss the potential of "smart" liposomes, which can respond to specific disease microenvironments, enhancing treatment efficacy and precision. The integration of artificial intelligence and machine learning in optimizing liposomal designs promises to revolutionize personalized medicine, paving the way for innovative strategies in disease detection and therapeutic interventions. This comprehensive review underscores the significance of ongoing research in liposomal technologies, with implications for future clinical applications and enhanced patient outcomes.
Collapse
Affiliation(s)
- Zahra Izadiyan
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Misni Misran
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Katayoon Kalantari
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thomas J Webster
- Biomedical Engineering, Hebei University of Technology, Tianjin, People’s Republic of China
- School of Engineering, Saveetha University, Chennai, India
| | - Pooneh Kia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Elisa Rasouli
- Department of Electrical and Electronics Engineering, Nanyang Technological University, Nanyang, Singapore
| | - Kamyar Shameli
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Zahed Nasab S, Akbari B, Mostafavi E, Zare I. Chitosan nanoparticles in tumor imaging and therapy. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:405-445. [DOI: 10.1016/b978-0-443-14088-4.00006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Murugan R, Selvam M, Haridevamuthu B, Ashok K, Chagaleti BK, Priya D, Rajagopal R, Alfarhan A, Kumaradoss KM, Arockiaraj J. 1,5- diaryl pyrazole-loaded chitosan nanoparticles as COX-2 inhibitors, mitigate neoplastic growth by regulating NF-κB pathway in-vivo zebrafish model. Int J Biol Macromol 2024; 283:137599. [PMID: 39542324 DOI: 10.1016/j.ijbiomac.2024.137599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have been researched for their capacity to reduce cancer incidence, primarily due to their COX-2 inhibition properties. However, concerns have arisen regarding the precision of their targeting abilities. Nanoparticle approaches are revolutionizing cancer treatment by enabling targeted drug delivery, which enhances the efficacy and reduces the toxicity of chemotherapy. Particularly, chitosan-based nanoparticles are noteworthy for their biocompatibility, biodegradability, and ability to improve drug delivery. In this study, we synthesized folic acid-conjugated, 1,5-diaryl pyrazole-loaded chitosan (FA-CS-DP) nanoparticles using the ionic gelation method. The bioavailability and anti-neoplastic effects in a 7,12-dimethylbenzanthracene (DMBA)-exposed zebrafish model was investigated. MTT assay showed dose-dependent cytotoxicity of FA-CS-DP nanoparticles against MCF-7 breast cancer. The nanoparticles showed no toxicity to zebrafish embryos up to 100 μg/mL. The nanoparticle reduced oxidative stress and enhanced apoptosis in zebrafish exposed to DMBA. The morphological examination suggests that tumor growth was prevented in the zebrafish's surface and internal regions. The gene expression analysis confirmed the decrease in the expression of anti-inflammatory genes, such as cox-2 and nf-κb, and apoptosis inhibitor genes, such as bcl-2 and mdm2. By regulating the anti-inflammatory and apoptosis inhibitor genes, FA-CS-DP nanoparticle prevents neoplastic growth in the zebrafish model.
Collapse
Affiliation(s)
- Raghul Murugan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | - Madesh Selvam
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Kumar Ashok
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Bharath Kumar Chagaleti
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM, College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - D Priya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM, College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM, College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
7
|
Ge Y, Kwon MH, Kou F, Uthamapriya RA, Zhang P, Lee DJ, Yang R, Bao H, Palanisamy S, You S. Folic-acid-targeted drug delivery system implementing Angelica gigas polysaccharide: A potential strategy for colorectal cancer treatment. Int J Biol Macromol 2024; 283:137653. [PMID: 39561833 DOI: 10.1016/j.ijbiomac.2024.137653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The study focuses on the development of folate-targeted conjugates utilizing Angelica gigas polysaccharide (F2) as a drug carrier for colorectal cancer therapy. We synthesized F2-C-5-FU conjugates by linking carboxymethyl-5-fluorouracil (C-5-FU) with folic acid (FA) through ester bonding. The drug release behavior of F2-C-5-FU-FA was pH-dependent, favoring release under alkaline conditions. After 96 h in phosphate buffer (pH 7.4), the conjugate exhibited a cumulative release of 54.7%, which was higher compared to other pH environments. In vitro, F2-C-5-FU-FA showed enhanced cytotoxicity and increased cellular uptake in folate receptor-positive HCT-116 cells compared to A549 cells. The conjugate also induced G2/M cell cycle arrest and modulated the BAX/BCL-2 mRNA expression ratio through the MAPK and NF-κB signaling pathways. In vivo, F2-C-5-FU-FA increased tumor fluorescence intensity, prolonged drug circulation, and reduced organ toxicity to non-target organs. The treatment promoted cancer cell apoptosis by inhibiting the expression of apoptosis-related proteins. Overall, F2-C-5-FU-FA conjugates demonstrate potential as an effective drug delivery system for targeted colorectal cancer therapy.
Collapse
Affiliation(s)
- Yunfei Ge
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650 201, China; Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Mi-Hye Kwon
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Rajavel Arumugam Uthamapriya
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Peng Zhang
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Dong-Jin Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Ruijuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650 201, China
| | - Honghui Bao
- Hubei International Scientific and Technological cooperation base for research and development of traditional medicine and food homologus products, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China..
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| |
Collapse
|
8
|
Zhang Y, Palanisamy S, Kwon MH, Ge Y, Kou F, Uthamapriya RA, Lee D, Lee DJ, Bao H, You S, Zhang Y. A novel targeted anticancer drug delivery strategy: Cnidium officinale polysaccharide conjugated with carboxymethyl-5-fluorouracil and folic acid for ovarian cancer therapy. Int J Biol Macromol 2024; 285:138107. [PMID: 39608520 DOI: 10.1016/j.ijbiomac.2024.138107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/26/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
To mitigate adverse reactions induced by 5-fluorouracil (5-FU), Cnidium officinale fraction 2 (F2) polysaccharides served as the macromolecular carrier, facilitating its reaction with carboxymethyl-5-fluorouracil (C-5-FU) for producing F2-C-5-FU. Subsequently, this compound could react with folic acid (FA) through the ester bond, forming F2-C-5-FU-FA, as verified through NMR analysis. The in vitro anticancer efficacy of F2-C-5-FU-FA was evaluated using SKOV-3 cells that expressed folate receptor (FR) and FR-deficient A549 cells, showing greater cytotoxicity in the SKOV-3 cell line due to the FRs on the cell membrane. In vivo experiments were conducted on SKOV-3-bearing xenograft mice using an in vivo imaging system (IVIS). Animals injected with F2-C-5-FU-FA exhibited significantly stronger targeting of tumor tissue compared to those injected with F2-C-5-FU. These findings highlighted enhanced drug delivery and accumulation in targeted tumor regions facilitated by folate-targeted conjugates. Moreover, F2-C-5FU-FA showed reduced cardiac toxicity in mice and minimal spleen accumulation, indicating a negligible effect on the immune system. Overall, this study introduced a novel strategy for achieving highly efficient anticancer drug delivery into tumor cells that express FR.
Collapse
Affiliation(s)
- Yutong Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China; Sanya Research Institute, Chinese Academy of Tropical Agriculture Science, Sanya 572025, Hainan, China
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Mi-Hye Kwon
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Yunfei Ge
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650 201, China
| | - Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Rajavel Arumugam Uthamapriya
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - DongKi Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Dong-Jin Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Honghui Bao
- School of Food Science and Technology & School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei, China.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China.
| |
Collapse
|
9
|
Hameed A, Tariq M, Sadia S, Alam MR, Haider A, Wahedi HM. Aloesin-loaded chitosan/cellulose-based scaffold promotes skin tissue regeneration. Int J Biol Macromol 2024; 273:133030. [PMID: 38857730 DOI: 10.1016/j.ijbiomac.2024.133030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Skin wound healing and regeneration is very challenging across the world as simple or acute wounds can be transformed into chronic wounds or ulcers due to foreign body invasion, or diseases like diabetes or cancer. The study was designed to develop a novel bioactive scaffold, by loading aloesin to chitosan-coated cellulose scaffold, to cure full-thickness skin wounds. The physiochemical characterization of the scaffold was carried out using scanning electron microscopy (SEM) facilitated by energy-dispersive spectrophotometer (EDS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results indicated the successful coating of chitosan and aloesin on cellulose without any physical damage. The drug release kinetics confirmed the sustained release of aloesin by showing a cumulative release of up to 88 % over 24 h. The biocompatibility of the aloesin-loaded chitosan/cellulose (AlCsCFp) scaffold was evaluated by the WST-8 assay that confirmed the significantly increased adherence and proliferation of fibroblasts on the AlCsCFp scaffold. The in vivo wound healing study showed that both 0.05 % and 0.025 % AlCsCFp scaffolds have significantly higher wound closure rates (i.e. 88.2 % and 95.6 % approximately) as compared to other groups. This showed that novel composite scaffold has a wound healing ability. Furthermore, histological and gene expression analysis demonstrated that the scaffold also induced cell migration, angiogenesis, re-epithelialization, collagen deposition, and tissue granulation formation. Thus, it is concluded that the aloesin-loaded chitosan/cellulose-based scaffold has great therapeutic potential for being used in wound healing applications in the clinical setting in the future.
Collapse
Affiliation(s)
- Aasia Hameed
- Department of Biomedicine, Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Sector H-12, 44000 Islamabad, Pakistan; Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - Mehreen Tariq
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - Sobia Sadia
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - M Rizwan Alam
- Department of Biochemistry, Quaid-I-Azam University, Islamabad Capital Territory 45320, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - Hussain Mustatab Wahedi
- Department of Biomedicine, Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Sector H-12, 44000 Islamabad, Pakistan.
| |
Collapse
|
10
|
Alizade A, Reich T, Jantschke A. Cellulose from dinoflagellates as a versatile and environmentally friendly platform for the production of functionalised cellulose nanofibres. Int J Biol Macromol 2024; 272:132804. [PMID: 38825272 DOI: 10.1016/j.ijbiomac.2024.132804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Cellulose nanofibres (CNFs), also known as nano-fibrillated cellulose, have emerged as highly promising sustainable biomaterials owing to their numerous advantages, including high accessibility, long-term sustainability, low toxicity, and mechanical properties. Recently, marine organisms have been explored as novel and environmentally friendly sources of cellulose fibers (CFs) due to their easy cultivation, extraction and biocompatibility. Dinoflagellates, a group of marine phytoplankton, have gained particular attention due to their unique cellulosic morphology and lignin-free biomass. Previously, we showed that the unique amorphous nature of dinoflagellate-derived cellulose offers various benefits. This study further explores the potential of dinoflagellate-derived CFs as a sustainable and versatile CNF source. Extracted dinoflagellate cellulose is effectively converted into CNFs via one-step TEMPO oxidation without significant polymer degradation. In addition, the biological compatibility of the CNFs is improved by amine-grafting using putrescine and folic acid. The products are characterised by conductometric titration, zeta potential measurements, TGA, GPC, FTIR, SEM/TEM, XRD, and XPS. Finally, in a proof-of-principle study, the application of the functionalised CNFs in drug delivery is tested using methylene blue as a drug model. Our findings suggest that dinoflagellate-derived CNFs provide an eco-friendly platform that can be easily functionalised for various applications, including drug delivery.
Collapse
Affiliation(s)
- Amina Alizade
- Biomineralization/Crystallography, Institute of Geosciences, Johannes Gutenberg University Mainz, J.-J.-Becher-Weg 21, D-55128 Mainz, Germany.
| | - Tobias Reich
- Department of Chemistry - Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| | - Anne Jantschke
- Biomineralization/Crystallography, Institute of Geosciences, Johannes Gutenberg University Mainz, J.-J.-Becher-Weg 21, D-55128 Mainz, Germany.
| |
Collapse
|
11
|
Ganie SA, Naik RA, Dar OA, Rather LJ, Assiri MA, Li Q. Design and fabrication of functionalized curdlan-curcumin delivery system to facilitate the therapeutic effects of curcumin on breast cancer. Int J Biol Macromol 2024; 267:131388. [PMID: 38608982 DOI: 10.1016/j.ijbiomac.2024.131388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
We developed a facile method for the fabrication of a biodegradable delivery system composed of two blocks: curdlan and curcumin. This was achieved by chemical functionalization of curdlan through tosylation, amination followed by complexation with curcumin. A comprehensive evaluation of structural characterization and component stability showed that cur-cum complex exhibited better anticancer properties with enhanced thermal properties. The cur-cum complex shows pH sensitive sustained release behaviour with higher release at acidic pH and kinetic data of drug release follows the Korsmeyer-Peppas model. The cur-cum complex has ability to block the proliferation of the MCF-7 cell line as revealed by MTT assay which showed increased toxicity of cur-cum complex against these cell lines. The results obtained from western blot analysis demonstrated that the co-administration of cur and cum effectively induced apoptosis in MCF-7 cells. This effect was observed by a considerable upregulation of the Bcl-2/Bax ratio, a decline in mRNA expression of LDHA, level of lactate and LDH activity. The results clearly depict the role of functionalized curdlan as efficient carrier for curcumin delivery with prolonged, sustained release and enhanced bioavailability, thereby improving the overall anticancer activity.
Collapse
Affiliation(s)
- Showkat Ali Ganie
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China.
| | - Rayees Ahmad Naik
- Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya Sagar, Madhya Pradesh 470003, India
| | - Ovas Ahmad Dar
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, PR China.
| | - Luqman Jameel Rather
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Qing Li
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China.
| |
Collapse
|
12
|
Oryani MA, Nosrati S, Javid H, Mehri A, Hashemzadeh A, Karimi-Shahri M. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1377-1404. [PMID: 37715816 DOI: 10.1007/s00210-023-02707-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Azad Shahroud University, Shahroud, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
13
|
Siddiqui B, Ur Rehman A, Gul R, Chaudhery I, Shah KU, Ahmed N. Folate decorated chitosan-chondroitin sulfate nanoparticles loaded hydrogel for targeting macrophages against rheumatoid arthritis. Carbohydr Polym 2024; 327:121683. [PMID: 38171692 DOI: 10.1016/j.carbpol.2023.121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/14/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Inflammatory cell infiltration, particularly macrophages, plays a major contribution to the pathogenesis of Rheumatoid Arthritis (RA). Exploiting the overexpression of folate receptors (FR-β) on these recruited macrophages has gained significant attraction for ligand-targeted delivery. Leflunomide (LEF), being an immunomodulatory agent is considered the cornerstone of the therapy, however, its oral efficacy is impeded by low solubility and escalating adverse effects profile. Therefore, in the present work, we developed Folate-conjugated chitosan-chondroitin sulfate nanoparticles encapsulating LEF for selective targeting at inflammatory sites in RA. For this purpose, the folate group was first conjugated with the chitosan polymer. After which, Folate Leflunomide Nanoparticles (FA-LEF-NPs) were synthesized through the ionotropic gelation method by employing FA-CHI and CHS. The polymers CHI and CHS were also presented with innate anti-inflammatory and anti-rheumatic attributes that were helpful in provision of synergistic effects to the formulation. These nanoparticles were further fabricated into a hydrogel, employing almond oil (A.O) as a permeation enhancer. The in vivo studies justified the preferential accumulation of FA-conjugated nanoparticles at inflamed joints more than any other organ in comparison to the free LEF and LEF-NPs formulation. The FA-LEF-NPs loaded hydrogel also ascertained a minimal adverse effect profile with an improvement of inflammatory cytokines expression.
Collapse
Affiliation(s)
- Bazla Siddiqui
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Rabia Gul
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Iqra Chaudhery
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Kifayat Ullah Shah
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| |
Collapse
|
14
|
Bhaskaran NA, Jitta SR, Salwa, Kumar L, Sharma P, Kulkarni OP, Hari G, Gourishetti K, Verma R, Birangal SR, Bhaskar KV. Folic acid-chitosan functionalized polymeric nanocarriers to treat colon cancer. Int J Biol Macromol 2023; 253:127142. [PMID: 37797853 DOI: 10.1016/j.ijbiomac.2023.127142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
In the present study, polymeric nanoparticles loaded with IRI and quercetin, a p-gp inhibitor, were developed to target folate receptors expressed by colon cancer cells for oral targeted delivery. This work reports the development of PNPs with an entrapment efficiency of 41.26 ± 0.56 % for IRI and 55.83 ± 4.51 for QT. PNPs were further surface modified using chitosan-folic acid conjugates for better targetability to obtain folic acid-chitosan coated nanoparticles. DLS and FeSEM revealed particles in the nanometric size range with spherical morphology, while FTIR and DSC provided details on their structure and encapsulation. In vitro drug release studies confirmed a sustained release pattern of IRI and QT, while cell line studies confirmed the superiority of C-FA-PNPs when tested on Caco2 cells. Pharmacodynamic studies in colon cancer induced rats showed similar efficacy for PNPs and C-FA-PNPs. Further examination from a bio-distribution study in healthy rats, revealed the failure of C-FA-PNPs to deliver the drugs to the colon adequately, while the PNPs improved the available concentration of IRI at the colon by almost 1.8 folds when compared to the available marketed product. Hence, the developed PNP formulation sticks out as a plausible substitute for the intravenous dosage forms of IRI which have been conventionally prevailing.
Collapse
Affiliation(s)
- Navya Ajitkumar Bhaskaran
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India; Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Gate No. 2, V.M. Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Srinivas Reddy Jitta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, India.
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad campus, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad campus, India
| | - Gangadhar Hari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Karthik Gourishetti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India; Biotherapeutics Laboratory, Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ruchi Verma
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - K Vijaya Bhaskar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| |
Collapse
|
15
|
Kumar K, Rawat SG, Manjit, Mishra M, Priya, Kumar A, Chawla R. Dual targeting pH responsive chitosan nanoparticles for enhanced active cellular internalization of gemcitabine in non-small cell lung cancer. Int J Biol Macromol 2023; 249:126057. [PMID: 37524283 DOI: 10.1016/j.ijbiomac.2023.126057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Lung cancer (LC), related with the enhanced expression of epidermal growth factor receptor (EGFR) and sialic acid binding receptors (glycan) brought about the development of EGFR and glycan receptor specific anticancer therapeutics. The current study assessed the formulation, physiochemical characterization, in vitro and in vivo effects of sialic acid (SA) and cetuximab (Cxmab) decorated chitosan nanoparticles (CSN-NPs) loaded with gemcitabine (GMC) targeted to glycan and EGFR over-expressing non-small-cell lung-cancer (NSCLC) A-549 cells. Chitosan (CSN) was conjugated with sialic acid via EDC/NHS chemistry followed by gemcitabine loaded sialic acid conjugated chitosan nanoparticles (GMC-CSN-SA-NPs) were prepared by ionic gelation method decorated with Cxmab by electrostatic interaction. In vitro cytotoxicity of NPs quantified using cell based MTT, DAPI and Annexing-V/PI apoptosis assays showed superior antiproliferative activity of targeted nanoformulations (GMC-CSN-SA-Cxmab-NPs ≫ GMC-CSN-SA-NPs, GMC-CSN-Cxmab-NPs) over non-targeted nanoformulation (GMC-CSN-NPs) against A-549 cells. In vivopharmacokinetic study showed superior bioavailability and in vivo therapeutic efficacy investigation exhibited strongest anticancer activity of glycan and EGFR targeted NPs (GMC-CSN-SA-Cxmab-NPs). GMC-CSN-SA-Cxmab-NPs demonstrated enhanced cellular internalization and better therapeutic potential, by specifically targeting glycan and EGFR on NSCLC A-549 cells and B[a]P induced lung cancer mice model, hence it might be a good substitute for non-targeted, conventional chemotherapy.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Shiv Govind Rawat
- Department of Zoology, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Manjit
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Mohini Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Priya
- Department of Pharmacy, Barkatullah University, Bhopal 462026, M.P., India
| | - Ajay Kumar
- Department of Zoology, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ruchi Chawla
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India.
| |
Collapse
|
16
|
Solanki R, Jangid AK, Jadav M, Kulhari H, Patel S. Folate Functionalized and Evodiamine-Loaded Pluronic Nanomicelles for Augmented Cervical Cancer Cell Killing. Macromol Biosci 2023; 23:e2300077. [PMID: 37163974 DOI: 10.1002/mabi.202300077] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Evodiamine (Evo) is a natural, biologically active plant alkaloid with wide range of pharmacological activities. In the present study Evo-loaded folate-conjugated Pluronic F108 nano-micelles (ENM) is synthesized to enhance the therapeutic efficacy of Evo against cervical cancer. ENM are synthesized, physicochemically characterized and in vitro anticancer activity is performed. The study demonstrates that ENM have nanoscale size (50.33 ± 3.09 nm), monodispersity of 0.122 ± 0.072, with high drug encapsulation efficiency (71.30 ± 3.76%) and controlled drug release at the tumor microenvironment. ENM showed dose-dependent and time-dependent cytotoxicity against HeLa human cervical cancer cells. The results of in vitro anticancer studies demonstrated that ENM have significant anticancer effects and greatly induce apoptosis as compared to pure Evo. The cellular uptake study suggests that increased anticancer activity of ENM is due to the improved intracellular delivery of Evo through overexpressed folate receptors. Overall, the designed ENM can be a potential targeted delivery system for hydrophobic anticancer bioactive compound like Evo.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea
| | - Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| |
Collapse
|
17
|
Soomro RA, Kumar J, Neiber RR, Sirajuddin, Alotaibi AM, Shaikh SF, Ahmed N, Nafady A. Natural oxidation of Ti 3C 2T x to construct efficient TiO 2/Ti 3C 2T x photoactive heterojunctions for advanced photoelectrochemical biosensing of folate-expressing cancer cells. Anal Chim Acta 2023; 1251:341016. [PMID: 36925274 DOI: 10.1016/j.aca.2023.341016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
The rapid-charge carrier recombination and low conductivity are critical in devising an efficient photoelectrochemical (PEC) sensor. Herein, we propose partial oxidation of few-layered MXene (Ti3C2Tx) to construct a photo-active TiO2/Ti3C2Tx platform that could be configured for PEC sensing of folate receptors (FR), particularly, FR-expressing breast cancer cells (MDA-MB-231). MXene-Ti3C2Tx dispersion was oxidized in natural-open air conditions, where continuous exposure for six (06) days allowed for homogeneous in-situ growth of TiO2 over MXenes nanosheets (MX-06). This exposure enabled partial oxidation of MXene-sheets with a balanced TiO2 to MXene content that could exhibit improved photoresponsive characteristics owing to the synergism of redox-active TiO2 and highly conductive underlying Ti3C2Tx. The photoelectrode was then adapted for biorecognition by conjugating chitosan and folic acid (FA) networks, which permitted selective detection of FR-expressed cells with significant antifouling capabilities against common proteins such as bovine serum album (BSA), hemoglobin, and immunoglobulin G. (Ig G). The detection mechanism relies on FA's strong affinity for cancer cell folate receptors, which proportionally inhibited the photoelectrodes PEC oxidation response to ascorbic acid (AA)(mediator). The proposed inhibition strategy enabled sensitive detection of FR-expressed MDA-MB-231 cells in the concentration range of 1 × 102 to 2 × 107 cells/mL with a detection limit of 1.01 cells/mL (S/N = 3).
Collapse
Affiliation(s)
- Razium A Soomro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jai Kumar
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Rana R Neiber
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green, Process, and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Sirajuddin
- ICCBS, HEJ, University of Karachi, Karachi, 75270, Pakistan
| | - Amerah M Alotaibi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shoyebmohamad F Shaikh
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nazeer Ahmed
- Sapienza University of Rome, Research Center on Nanotechnology Applied to Engineering, Rome, Italy
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
18
|
Fuster MG, Montalbán MG, Moulefera I, Víllora G, Kaplan DL. Folic Acid-Modified Ibrutinib-Loaded Silk Fibroin Nanoparticles for Cancer Cell Therapy with Over-Expressed Folate Receptor. Pharmaceutics 2023; 15:pharmaceutics15041186. [PMID: 37111671 PMCID: PMC10146313 DOI: 10.3390/pharmaceutics15041186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The anticancer drug ibrutinib (IB), also known as PCI-32765, is a compound that irreversibly inhibits Bruton's tyrosine kinase (BTK) and was initially developed as a treatment option for B-cell lineage neoplasms. Its action is not limited to B-cells, as it is expressed in all hematopoietic lineages and plays a crucial role in the tumor microenvironment. However, clinical trials with the drug have resulted in conflicting outcomes against solid tumors. In this study, folic acid-conjugated silk nanoparticles were used for the targeted delivery of IB to the cancer cell lines HeLa, BT-474, and SKBR3 by exploiting the overexpression of folate receptors on their surfaces. The results were compared with those of control healthy cells (EA.hy926). Cellular uptake studies confirmed total internalization of the nanoparticles functionalized by this procedure in the cancer cells after 24 h, compared to nanoparticles not functionalized with folic acid, suggesting that cellular uptake was mediated by folate receptors overexpressed in the cancer cells. The results indicate that the developed nanocarrier can be used for drug targeting applications by enhancing IB uptake in cancer cells with folate receptor overexpression.
Collapse
Affiliation(s)
- Marta G Fuster
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia (UMU), Campus de Espinardo, 30100 Murcia, Spain
| | - Mercedes G Montalbán
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia (UMU), Campus de Espinardo, 30100 Murcia, Spain
| | - Imane Moulefera
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia (UMU), Campus de Espinardo, 30100 Murcia, Spain
| | - Gloria Víllora
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia (UMU), Campus de Espinardo, 30100 Murcia, Spain
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
19
|
Toderascu LI, Sima LE, Orobeti S, Florian PE, Icriverzi M, Maraloiu VA, Comanescu C, Iacob N, Kuncser V, Antohe I, Popescu-Pelin G, Stanciu G, Ionita P, Mihailescu CN, Socol G. Synthesis and Anti-Melanoma Activity of L-Cysteine-Coated Iron Oxide Nanoparticles Loaded with Doxorubicin. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:621. [PMID: 36838989 PMCID: PMC9966685 DOI: 10.3390/nano13040621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In this study, we report on the synthesis of L-Cysteine (L-Cys)-coated magnetic iron oxide nanoparticles (NPs) loaded with doxorubicin (Dox). The Fe3O4-L-Cys-Dox NPs were extensively characterized for their compositional and morpho-structural features using EDS, SAED, XRD, FTIR and TEM. XPS, Mӧssbauer spectroscopy and SQUID measurements were also performed to determine the electronic and magnetic properties of the Fe3O4-L-Cys-Dox nanoparticles. Moreover, by means of a FO-SPR sensor, we evidenced and confirmed the binding of Dox to L-Cys. Biological tests on mouse (B16F10) and human (A375) metastatic melanoma cells evidenced the internalization of magnetic nanoparticles delivering Dox. Half maximum inhibitory concentration IC50 values of Fe3O4-L-Cys-Dox were determined for both cell lines: 4.26 µg/mL for A375 and 2.74 µg/mL for B16F10, as compared to 60.74 and 98.75 µg/mL, respectively, for unloaded controls. Incubation of cells with Fe3O4-L-Cys-Dox modulated MAPK signaling pathway activity 3 h post-treatment and produced cell cycle arrest and increased apoptosis by 48 h. We show that within the first 2 h of incubation in physiological (pH = 7.4) media, ~10-15 µM Dox/h was released from a 200 µg/mL Fe3O4-L-Cys-Dox solution, as compared to double upon incubation in citrate solution (pH = 3), which resembles acidic environment conditions. Our results highlight the potential of Fe3O4-L-Cys-Dox NPs as efficient drug delivery vehicles in melanoma therapy.
Collapse
Affiliation(s)
- Luiza Izabela Toderascu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
- Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Livia Elena Sima
- Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Stefana Orobeti
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
- Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | | | - Madalina Icriverzi
- Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | | | - Cezar Comanescu
- National Institute of Materials Physics, 077125 Magurele, Ilfov, Romania
- Faculty of Physics, University of Bucharest, 077125 Magurele, Ilfov, Romania
| | - Nicusor Iacob
- National Institute of Materials Physics, 077125 Magurele, Ilfov, Romania
| | - Victor Kuncser
- National Institute of Materials Physics, 077125 Magurele, Ilfov, Romania
| | - Iulia Antohe
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
| | - Gianina Popescu-Pelin
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
| | - George Stanciu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
| | - Petre Ionita
- Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Cristian N. Mihailescu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
| | - Gabriel Socol
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
| |
Collapse
|
20
|
Rajendra PKM, Nidamanuri BSS, Swaroop AK, Krishnamurali JS, Balan AP, Selvaraj J, Raman R, Shivakumar HN, Reddy MV, Jawahar N. Fabrication and in vitro evaluation of silk fibroin-folic acid decorated paclitaxel and hydroxyurea nanostructured lipid carriers for targeting ovarian cancer cells: A double sword approach. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
21
|
Parsaei M, Akhbari K. Synthesis and Application of MOF-808 Decorated with Folic Acid-Conjugated Chitosan as a Strong Nanocarrier for the Targeted Drug Delivery of Quercetin. Inorg Chem 2022; 61:19354-19368. [DOI: 10.1021/acs.inorgchem.2c03138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College of Science, University of Tehran, Tehran14155-6455, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran14155-6455, Iran
| |
Collapse
|
22
|
Zhang C, Zhao X, Li D, Ji F, Dong A, Chen X, Zhang J, Wang X, Zhao Y, Chen X. Advances in 5-aminoketovaleric acid(5-ALA) nanoparticle delivery system based on cancer photodynamic therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Indrakumar J, Sankar S, Madhyastha H, Muthukaliannan GK. Progressive Application of Marine Biomaterials in Targeted Cancer Nanotherapeutics. Curr Pharm Des 2022; 28:3337-3350. [PMID: 35466870 DOI: 10.2174/1381612828666220422091611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 01/28/2023]
Abstract
The marine microenvironment harbors many unique species of organisms that produce a plethora of compounds that help mankind cure a wide range of diseases. The diversity of products from the ocean bed serves as potentially healing materials and inert vehicles carrying the drug of interest to the target site. Several composites still lay undiscovered under the blue canopy, which can provide treatment for untreated diseases that keep haunting the earth periodically. Cancer is one such disease that has been of interest to several eminent scientists worldwide due to the heterogenic complexity involved in the disease's pathophysiology. Due to extensive globalization and environmental changes, cancer has become a lifestyle disease continuously increasing exponentially in the current decade. This ailment requires a definite remedy that treats by causing minimal damage to the body's normal cells. The application of nanotechnology in medicine has opened up new avenues of research in targeted therapeutics due to their highly malleable characteristics. Marine waters contain an immense ionic environment that succors the production of distinct nanomaterials with exceptional character, yielding highly flexible molecules to modify, thus facilitating the engineering of targeted biomolecules. This review provides a short insight into an array of marine biomolecules that can be probed into cancer nanotherapeutics sparing healthy cells.
Collapse
Affiliation(s)
- Janani Indrakumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Srivarshini Sankar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Medical Sciences, Division of Cardio-Vascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | |
Collapse
|
24
|
Preparation and characterization of magnetic PEG-PEI-PLA-PEI-PEG/FeO4-PCL/DNA micelles for gene delivery into MCF-7 cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Yao CJ, Yang SJ, Huang CH, Chang YT, Wang CH, Shieh MJ, Young TH. Retention Time Extended by Nanoparticles Improves the Eradication of Highly Antibiotic-Resistant Helicobacter pylori. Pharmaceutics 2022; 14:pharmaceutics14102117. [PMID: 36297552 PMCID: PMC9608011 DOI: 10.3390/pharmaceutics14102117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Helicobacter pylori infection usually causes gastrointestinal complications, including gastrointestinal bleeding or perforation, and serious infections may lead to gastric cancer. Amoxicillin is used to treat numerous bacterial infections but is easily decomposed in the gastric acid environment via the hydrolyzation of the β-lactam ring. In this study, we develop chitosan-based nanoparticles loaded with amoxicillin (CAANs) as an H. pylori eradication platform. The CAANs were biocompatible and could retain the antibiotic activity of amoxicillin against H. pylori growth. The mucoadhesive property of chitosan and alginate enabled the CAANs to adhere to the mucus layers and penetrate through these to release amoxicillin in the space between the layers and the gastric epithelium. The use of this nanoparticle could prolong the retention time and preserve the antibiotic activity of amoxicillin in the stomach and help enhance the eradication rate of H. pylori and reduce treatment time. These CAANs, therefore, show potential for the effective treatment of highly antibiotic-resistant H. pylori infection using amoxicillin.
Collapse
Affiliation(s)
- Cheng-Jung Yao
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, No. 111, Section 3, Xinglong Road, Taipei 116, Taiwan
| | - Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Yuan-Ting Chang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Chung-Hao Wang
- Gene’e Tech Co., Ltd., 2nd Floor, No. 661, Bannan Road, Zhonghe District, New Taipei City 235, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
- Correspondence: (M.-J.S.); (T.-H.Y.); Tel.: +886-2-23123456 (ext. 81444) (M.-J.S.)
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Correspondence: (M.-J.S.); (T.-H.Y.); Tel.: +886-2-23123456 (ext. 81444) (M.-J.S.)
| |
Collapse
|
26
|
Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M. Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment. Int J Nanomedicine 2022; 17:3933-3966. [PMID: 36105620 PMCID: PMC9465052 DOI: 10.2147/ijn.s375229] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
As per the WHO, colorectal cancer (CRC) caused around 935,173 deaths worldwide in 2020 in both sexes and at all ages. The available anticancer therapies including chemotherapy, radiotherapy and anticancer drugs are all associated with limited therapeutic efficacy, adverse effects and low chances. This has urged to emerge several novel therapeutic agents as potential therapies for CRC including synthetic and natural materials. Orally administrable and targeted drug delivery systems are attractive strategies for CRC therapy as they minimize the side effects, enhance the efficacy of anticancer drugs. Nevertheless, oral drug delivery till today faces several challenges like poor drug solubility, stability, and permeability. Various oral nano-based approaches and targeted drug delivery systems have been developed recently, as a result of the ability of nanoparticles to control the release of the encapsulant, drug targeting and reduce the number of dosages administered. The unique physicochemical properties of chitosan polymer assist to overcome oral drug delivery barriers and target the colon tumour cells. Chitosan-based nanocarriers offered additional improvements by enhancing the stability, targeting and bioavailability of several anti-colorectal cancer agents. Modified chitosan derivatives also facilitated CRC targeting through strengthening the protection of encapsulant against acidic and enzyme degradation of gastrointestinal track (GIT). This review aims to provide an overview of CRC pathology, therapy and the barriers against oral drug delivery. It also emphasizes the role of nanotechnology in oral drug targeted delivery system and the growing interest towards chitosan and its derivatives. The present review summarizes the relevant works to date that have studied the potential applications of chitosan-based nanocarrier towards CRC treatment.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Salma Seyam
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Batoul Alallam
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, 13200, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| |
Collapse
|
27
|
Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022; 14:pharmaceutics14091773. [PMID: 36145522 PMCID: PMC9505808 DOI: 10.3390/pharmaceutics14091773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, cancer represents a major public health issue, a substantial economic issue, and a burden for society. Limited by numerous disadvantages, conventional chemotherapy is being replaced by new strategies targeting tumor cells. In this context, therapies based on biopolymer prodrug systems represent a promising alternative for improving the pharmacokinetic and pharmacologic properties of drugs and reducing their toxicity. The polymer-directed enzyme prodrug therapy is based on tumor cell targeting and release of the drug using polymer–drug and polymer–enzyme conjugates. In addition, current trends are oriented towards natural sources. They are biocompatible, biodegradable, and represent a valuable and renewable source. Therefore, numerous antitumor molecules have been conjugated with natural polymers. The present manuscript highlights the latest research focused on polymer–drug conjugates containing natural polymers such as chitosan, hyaluronic acid, dextran, pullulan, silk fibroin, heparin, and polysaccharides from Auricularia auricula.
Collapse
|
28
|
Zeng Y, Yu T, Zhang S, Song G, Meng T, Yuan H, Hu F. Combination of tumor vessel normalization and immune checkpoint blockade for breast cancer treatment via multifunctional nanocomplexes. Biomater Sci 2022; 10:4140-4155. [PMID: 35726757 DOI: 10.1039/d2bm00600f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor vessel normalization can alleviate hypoxia, reduce the intratumoral infiltration of immunosuppressive cells and increase the intratumoral infiltration of immune effector cells (CD8+ T cells), further reversing the immunosuppressive microenvironment. Here, nanocomplexes (lipo/St@FA-COSA/BMS-202) which can accurately deliver drugs to tumor tissues and release different drugs at different sites with different rates were prepared to combine tumor vessel normalization with immune checkpoint blockade. The results of drug release in vitro showed that in a pH 6.5 release medium, lipo/St@FA-COSA/BMS-202 rapidly released the vascular normalizing drug (sunitinib, St) and slowly released the PD-1/PD-L1-blocking drug (BMS-202). The results of in vivo experiments showed that the rapidly released St normalized tumor vessels and formed an immunosupportive microenvironment which improved the anti-tumor efficacy of BMS-202. In conclusion, the drug delivery strategy significantly inhibited tumor growth and had excellent anti-tumor efficacy, which can provide a potential approach for effective tumor treatment.
Collapse
Affiliation(s)
- Yingping Zeng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Tong Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Shufen Zhang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Guangtao Song
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Fathima E, Nallamuthu I, Anand T, Naika M, Khanum F. Enhanced cellular uptake, transport and oral bioavailability of optimized folic acid-loaded chitosan nanoparticles. Int J Biol Macromol 2022; 208:596-610. [PMID: 35292282 DOI: 10.1016/j.ijbiomac.2022.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/04/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Folic acid is a synthetic form of folate widely used for food fortification. However, its bioavailability is limited due to its inherent instability at several conditions. Therefore, a suitable encapsulation system is highly required. In the present study, the fabrication condition for folic acid-loaded chitosan nanoparticle (FA-Chi-NP) was optimized and then subjected to characterization. The optimized formulation had the particle size, zeta potential, and encapsulation efficiency of 180 nm, +52 mV, and 90%, respectively. In vitro release profile showed a controlled release of folic acid from the nanoparticles. Treatment of Caco-2 cells with the formulation showed no adverse effects based on MTT and LDH assays, and also, the cellular uptake was significantly higher after 2 h compared to free folic acid. Further, the oral administration of rats with FA-Chi-NPs (1 mg/kg BW) increased the plasma level of both folic acid (3.2-fold) and its metabolites such as tetrahydrofolate (2.3-fold) and 5-methyltetrahydrofolate (1.6-fold) significantly compared to free folic acid. In a bio-distribution study, duodenum and jejunum were found to be the primary sites for absorption. These findings suggest that chitosan may be a promising carrier for the delivery of folic acid and, therefore, could be exploited for various food applications.
Collapse
Affiliation(s)
- Eram Fathima
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| | - Ilaiyaraja Nallamuthu
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| | - T Anand
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India.
| | - Mahadeva Naika
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| | - Farhath Khanum
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| |
Collapse
|
30
|
Ullah S, Azad AK, Nawaz A, Shah KU, Iqbal M, Albadrani GM, Al-Joufi FA, Sayed AA, Abdel-Daim MM. 5-Fluorouracil-Loaded Folic-Acid-Fabricated Chitosan Nanoparticles for Site-Targeted Drug Delivery Cargo. Polymers (Basel) 2022; 14:polym14102010. [PMID: 35631891 PMCID: PMC9145180 DOI: 10.3390/polym14102010] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Nanoparticles play a vital role in cancer treatment to deliver or direct the drug to the malignant cell, avoiding the attacking of normal cells. The aim of the study is to formulate folic-acid-modified chitosan nanoparticles for colon cancer. Chitosan was successfully conjugated with folic acid to produce a folic acid–chitosan conjugate. The folate-modified chitosan was loaded with 5-FU using the ionic gelation method. The prepared nanoparticles were characterized for size, zeta potential, surface morphology, drug contents, entrapment efficiency, loading efficiency, and in vitro release study. The cytotoxicity study of the formulated nanoparticles was also investigated. The conjugation of folic acid with chitosan was confirmed by FTIR and NMR spectroscopy. The obtained nanoparticles were monodispersed nanoparticles with a suitable average size and a positive surface charge. The size and zeta potential and PDI of the CS-5FU-NPs were 208 ± 15, 26 ± 2, and +20 ± 2, respectively, and those of the FA-CS-5FU-NPs were 235 ± 12 and +20 ± 2, respectively, which are in the acceptable ranges. The drug contents’ % yield and the %EE of folate-decorated NPs were 53 ± 1.8% and 59 ± 2%, respectively. The in vitro release of the FA-CS-5FU-NPs and CS-5FU-NPs was in the range of 10.08 ± 0.45 to 96.57 ± 0.09% and 6 ± 0.31 to 91.44 ± 0.21, respectively. The cytotoxicity of the nanoparticles was enhanced in the presence of folic acid. The presence of folic acid in nanoparticles shows much higher cytotoxicity as compared to simple chitosan nanoparticles. The folate-modified nanoparticles provide a potential way to enhance the targeting of tumor cells.
Collapse
Affiliation(s)
- Shafi Ullah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (A.N.); (K.U.S.); (M.I.)
| | - Abul Kalam Azad
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
- Correspondence: or (A.K.A.); (M.M.A.-D.)
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (A.N.); (K.U.S.); (M.I.)
| | - Kifayat Ullah Shah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (A.N.); (K.U.S.); (M.I.)
| | - Muhammad Iqbal
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (A.N.); (K.U.S.); (M.I.)
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (A.K.A.); (M.M.A.-D.)
| |
Collapse
|
31
|
Ezzat AA, Tammam SN, Hanafi RS, Rashad O, Osama A, Abdelnaby E, Magdeldin S, Mansour S. Different Serum, Different Protein Corona! The Impact of the Serum Source on Cellular Targeting of Folic Acid-Modified Chitosan-Based Nanoparticles. Mol Pharm 2022; 19:1635-1646. [PMID: 35380849 DOI: 10.1021/acs.molpharmaceut.2c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nanoparticle (NP) protein corona represents an interface between biological components and NPs, dictating their cellular interaction and biological fate. To assess the success of cellular targeting, NPs modified with targeting ligands are incubated with target cells in serum-free culture medium or in the presence of fetal bovine serum (FBS). In the former, the role of the corona is overlooked, and in the latter, the effects of a corona that does not represent the one forming in humans nor the respective disease state are considered. Via proteomic analysis, we demonstrate how the difference in the composition of FBS, sera from healthy human volunteers, and breast cancer patients (BrCr Pt) results in the formation of completely different protein coronas around the same NP. Successful in vitro targeting of breast cancer cells was only observed when NPs were incubated with target cells in the presence of BrCr Pt sera only. In such cases, the success of targeting was not attributed to the targeting ligand itself, but to the adsorption of specific serum proteins that facilitate NP uptake by cancer cells in the presence of BrCr Pt sera. This work therefore demonstrates how the serum source affects the reliability of in vitro experiments assessing NP-cell interactions and the consequent success or failure of active targeting and may in fact indicate an additional reason for the limited clinical success of drug targeting by NPs in cancer.
Collapse
Affiliation(s)
- Aya A Ezzat
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Rasha S Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Omar Rashad
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt
| | - Eman Abdelnaby
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt.,Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt.,Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Al Obour, Egypt
| |
Collapse
|
32
|
Kefayat A, Hosseini M, Ghahremani F, Jolfaie NA, Rafienia M. Biodegradable and biocompatible subcutaneous implants consisted of pH-sensitive mebendazole-loaded/folic acid-targeted chitosan nanoparticles for murine triple-negative breast cancer treatment. J Nanobiotechnology 2022; 20:169. [PMID: 35361226 PMCID: PMC8973744 DOI: 10.1186/s12951-022-01380-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mebendazole (MBZ) is a well-known anti-parasite drug with significant anti-cancer properties. However, MBZ exhibits low solubility, limited absorption efficacy, extensive first-pass effect, and low bioavailability. Therefore, multiple oral administration of high dose MBZ is required daily for achieving the therapeutic serum level which can cause severe side effects and patients' non-compliance. METHOD In the present study, MBZ-loaded/folic acid-targeted chitosan nanoparticles (CS-FA-MBZ) were synthesized, characterized, and used to form cylindrical subcutaneous implants for 4T1 triple-negative breast tumor (TNBC) treatment in BALB/c mice. The therapeutic efficacy of the CS-FA-MBZ implants was investigated after subcutaneous implantation in comparison with Control, MBZ (40 mg/kg, oral administration, twice a week for 2 weeks), and CS-FA implants, according to 4T1 tumors' growth progression, metastasis, and tumor-bearing mice survival time. Also, their biocompatibility was evaluated by blood biochemical analyzes and histopathological investigation of vital organs. RESULTS The CS-FA-MBZ implants were completely degraded 15 days after implantation and caused about 73.3%, 49.2%, 57.4% decrease in the mean tumors' volume in comparison with the Control (1050.5 ± 120.7 mm3), MBZ (552.4 ± 76.1 mm3), and CS-FA (658.3 ± 88.1 mm3) groups, respectively. Average liver metastatic colonies' number per microscope field at the CS-FA-MBZ group (2.3 ± 0.7) was significantly (P < 0.05) lower than the Control (9.6 ± 1.7), MBZ (5.0 ± 1.5), and CS-FA (5.2 ± 1) groups. In addition, the CS-FA-MBZ treated mice exhibited about 52.1%, 27.3%, and 17% more survival days after the cancer cells injection in comparison with the Control, MBZ, and CS-FA groups, respectively. Moreover, the CS-FA-MBZ implants were completely biocompatible based on histopathology and blood biochemical analyzes. CONCLUSION Taking together, CS-FA-MBZ implants were completely biodegradable and biocompatible with high therapeutic efficacy in a murine TNBC model.
Collapse
Affiliation(s)
- Amirhosein Kefayat
- Cancer Prevention Research Center, Department of Oncology, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.,Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Hosseini
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), 1591634311, Tehran, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, School of Paramedicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafise Arbab Jolfaie
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
33
|
Folic acid conjugated chitosan encapsulated palladium nanoclusters for NIR triggered photothermal breast cancer treatment. Carbohydr Polym 2022; 280:119021. [PMID: 35027124 DOI: 10.1016/j.carbpol.2021.119021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
This study developed folic acid (FA) conjugated chitosan (CS) encapsulated rutin (R) synthesized palladium nanoclusters (Pd NCs) for NIR triggered and folate receptor (FR) targeted triple-negative breast cancer (MDA-MB 231 cells) treatment. R-Pd NCs exhibited flower-shaped particles with an average size of <100 nm. FA-CS encapsulation concealed the flower shape of R-Pd NCs with a positive charge. The XRD spectrum confirmed the cubic crystalline structure of Pd. The FA conjugation on CS improved the cellular uptake of R-Pd NCs in MDA-MB 231 cells was confirmed by TEM. FA-CS-R-Pd NCs (+NIR) treatment was considerably inhibited the MDA-MB 231 cells proliferation evidenced by cell viability, fluorescent staining, and flow cytometry analysis. Further, in vitro hemolysis assay and in Ovo model confirmed the non-toxic nature of FA-CS-R-Pd-NCs with or without NIR radiation. Hence, this study concluded that FA-CS-R-Pd NCs can be applied for the treatment of drug-resistant breast cancer.
Collapse
|
34
|
Li J, Zhang Y, Yu M, Wang A, Qiu Y, Fan W, Hovgaard L, Yang M, Li Y, Wang R, Li X, Gan Y. The upregulated intestinal folate transporters direct the uptake of ligand-modified nanoparticles for enhanced oral insulin delivery. Acta Pharm Sin B 2022; 12:1460-1472. [PMID: 35530154 PMCID: PMC9072239 DOI: 10.1016/j.apsb.2021.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
Transporters are traditionally considered to transport small molecules rather than large-sized nanoparticles due to their small pores. In this study, we demonstrate that the upregulated intestinal transporter (PCFT), which reaches a maximum of 12.3-fold expression in the intestinal epithelial cells of diabetic rats, mediates the uptake of the folic acid-grafted nanoparticles (FNP). Specifically, the upregulated PCFT could exert its function to mediate the endocytosis of FNP and efficiently stimulate the traverse of FNP across enterocytes by the lysosome-evading pathway, Golgi-targeting pathway and basolateral exocytosis, featuring a high oral insulin bioavailability of 14.4% in the diabetic rats. Conversely, in cells with relatively low PCFT expression, the positive surface charge contributes to the cellular uptake of FNP, and FNP are mainly degraded in the lysosomes. Overall, we emphasize that the upregulated intestinal transporters could direct the uptake of ligand-modified nanoparticles by mediating the endocytosis and intracellular trafficking of ligand-modified nanoparticles via the transporter-mediated pathway. This study may also theoretically provide insightful guidelines for the rational design of transporter-targeted nanoparticles to achieve efficient drug delivery in diverse diseases.
Collapse
Affiliation(s)
- Jingyi Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaqi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aohua Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Qiu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lars Hovgaard
- Oral Formulation Development, Novo Nordisk A/S, Maalov 2760, Denmark
| | - Mingshi Yang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Corresponding authors. Tel.: +86 021 51322181, fax: +86 021 51322193 (Rui Wang); Tel.: +01 972 883 4480, fax: +01 972 883 4440 (Xiuying Li); Tel.: +86 021 20231975, fax: +86 021 20231000 1425 (Yong Gan).
| | - Xiuying Li
- University of Texas at Dallas, Richardson, TX 75080, USA
- Corresponding authors. Tel.: +86 021 51322181, fax: +86 021 51322193 (Rui Wang); Tel.: +01 972 883 4480, fax: +01 972 883 4440 (Xiuying Li); Tel.: +86 021 20231975, fax: +86 021 20231000 1425 (Yong Gan).
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
- Corresponding authors. Tel.: +86 021 51322181, fax: +86 021 51322193 (Rui Wang); Tel.: +01 972 883 4480, fax: +01 972 883 4440 (Xiuying Li); Tel.: +86 021 20231975, fax: +86 021 20231000 1425 (Yong Gan).
| |
Collapse
|
35
|
Li Y, Su Y, Pan H, Deng W, Wang J, Liu D, Pan W. Nanodiamond-based multifunctional platform for oral chemo-photothermal combinational therapy of orthotopic colon cancer. Pharmacol Res 2022; 176:106080. [PMID: 35032663 DOI: 10.1016/j.phrs.2022.106080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Combination therapy system has become a promising strategy for achieving favorable antitumor efficacy. Herein, a novel oral drug delivery system with colon localization and tumor targeting functions was designed for orthotopic colon cancer chemotherapy and photothermal combinational therapy. The polydopamine coated nanodiamond (PND) was used as the photothermal carrier, through the coupling of sulfhydryl-polyethylene glycol-folate (SH-PEG-FA) on the surface of PND to achieve systematic colon tumor targeting, curcumin (CUR) was loaded as the model drug, and then coated with chitosan (CS) to achieve the long gastrointestinal tract retention and colon localization functions to obtain PND-PEG-FA/CUR@CS nanoparticles. It has high photothermal conversion efficiency and good photothermal stability and exhibited near-infrared (NIR) laser-responsive drug release behavior. Folate (FA) modification effectively promotes the intracellular uptake of nanoparticles by CT26 cells, and the combination of chemotherapy and photothermal therapy (CT/PTT) can enhance cytotoxicity. Compared with free CUR group, nanoparticles prolonged the gastrointestinal tract retention time, accumulated more in colon tumor tissues, and exhibited good photothermal effect in vivo. More importantly, the CT/PTT group exhibited satisfactory tumor growth inhibition effects with good biocompatibility in vivo. In summary, this oral drug delivery system is an efficient platform for chemotherapy and photothermal combinational therapy of orthotopic colon cancer.
Collapse
Affiliation(s)
- Yunjian Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yupei Su
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hao Pan
- College of Pharmacy, Liaoning University, Shenyang 110036, PR China
| | - Wenbin Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jiahui Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Dandan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China; School of Biomedical & Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, PR China.
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
36
|
Construction of a Multifunctional Nano-Scale Metal-Organic Framework-Based Drug Delivery System for Targeted Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13111945. [PMID: 34834359 PMCID: PMC8619429 DOI: 10.3390/pharmaceutics13111945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
The antitumor activity of triptolide (TP) has received widespread attention, although its toxicity severely limits its clinical application. Therefore, the design of a targeted drug delivery system (TDDS) has important application prospects in tumor treatment. Metal–organic frameworks (MOFs), with high drug-carrying capacity and good biocompatibility, have aroused widespread interest for drug delivery systems. Herein, folic acid (FA) and 5-carboxylic acid fluorescein (5-FAM) were used to modify Fe-MIL-101 to construct a functionalized nano-platform (5-FAM/FA/TP@Fe-MIL-101) for the targeted delivery of the anti-tumor drug triptolide and realize in vivo fluorescence imaging. Compared with Fe-MIL-101, functionalized nanoparticles not only showed better targeted therapy efficiency, but also reduced the systemic toxicity of triptolide. In addition, the modification of 5-FAM facilitated fluorescence imaging of the tumor site and realized the construction of an integrated nano-platform for fluorescence imaging and treatment. Both in vitro and in vivo studies of functionalized nanoparticles have demonstrated excellent fluorescence imaging and synergistic targeting anticancer activity with negligible systemic toxicity. The development of functional nano-platform provides new ideas for the design of MOF-based multifunctional nano-drug delivery system, which can be used for precise treatment of tumor.
Collapse
|
37
|
Zivarpour P, Hallajzadeh J, Asemi Z, Sadoughi F, Sharifi M. Chitosan as possible inhibitory agents and delivery systems in leukemia. Cancer Cell Int 2021; 21:544. [PMID: 34663339 PMCID: PMC8524827 DOI: 10.1186/s12935-021-02243-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
Leukemia is a lethal cancer in which white blood cells undergo proliferation and immature white blood cells are seen in the bloodstream. Without diagnosis and management in early stages, this type of cancer can be fatal. Changes in protooncogenic genes and microRNA genes are the most important factors involved in development of leukemia. At present, leukemia risk factors are not accurately identified, but some studies have pointed out factors that predispose to leukemia. Studies show that in the absence of genetic risk factors, leukemia can be prevented by reducing the exposure to risk factors of leukemia, including smoking, exposure to benzene compounds and high-dose radioactive or ionizing radiation. One of the most important treatments for leukemia is chemotherapy which has devastating side effects. Chemotherapy and medications used during treatment do not have a specific effect and destroy healthy cells besides leukemia cells. Despite the suppressing effect of chemotherapy against leukemia, patients undergoing chemotherapy have poor quality of life. So today, researchers are focusing on finding more safe and effective natural compounds and treatments for cancer, especially leukemia. Chitosan is a valuable natural compound that is biocompatible and non-toxic to healthy cells. Anticancer, antibacterial, antifungal and antioxidant effects are examples of chitosan biopolymer properties. The US Food and Drug Administration has approved the use of this compound in medical treatments and the pharmaceutical industry. In this article, we take a look at the latest advances in the use of chitosan in the treatment and improvement of leukemia.
Collapse
Affiliation(s)
- Parinaz Zivarpour
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
38
|
Arif M, Sharaf M, Samreen, Dong Q, Wang L, Chi Z, Liu CG. Bacteria-targeting chitosan/carbon dots nanocomposite with membrane disruptive properties improve eradication rate of Helicobacter pylori. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2423-2447. [PMID: 34644235 DOI: 10.1080/09205063.2021.1972559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We designed a bacteria-targeting and membrane disrupting nanocomposite for successful antibiotic treatment of Helicobacter pylori (H. pylori) infections in the present study. The antibacterial nanocomposite was prepared from thiolated-ureido-chitosan (Cys-U-CS) and anionic poly (malic acid) (PMLA) via electrostatic interaction decorated with dual functional ammonium citrate carbon quantum dots (CDs). Cys-U-CS serves as a targeting building block for attaching antibacterial nanocomposite onto bacterial cell surface through Urel-mediated protein channel. Simultaneously, membrane disrupting CDs generate ROS and lyse the bacterial outer membrane, allowing antibiotics to enter the intracellular cytoplasm. As a result, Cys-U-CS/PMLA@CDs nanocomposite (UCPM-NPs) loaded with the antibiotic amoxicillin (AMX) not only effectively target and kill bacteria in vitro via Urel-mediated adhesion but also efficiently retain in the stomach where H. pylori reside, serving as an effective drug carrier for abrupt on-site release of AMX into the bacterial cytoplasm. Furthermore, since thiolated-chitosan has a mucoadhesive property, UCPM-NPs may adhere to the stomach mucus layer and pass through it swiftly. According to our results, bacterial targeting is crucial for guaranteeing successful antibiotic treatment. The bacteria targeting UCPM-NPs with membrane disruptive ability may establish a promising drug delivery system for the effective targeted delivery of antibiotics to treat H. pylori infections.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Mohamed Sharaf
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China.,Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Samreen
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Quanjiang Dong
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Lili Wang
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Zhe Chi
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Chen-Guang Liu
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| |
Collapse
|
39
|
Motiei M, Aboutalebi F, Forouzanfar M, Dormiani K, Nasr-Esfahani MH, Mirahmadi-Zare SZ. Smart co-delivery of miR-34a and cytotoxic peptides (LTX-315 and melittin) by chitosan based polyelectrolyte nanocarriers for specific cancer cell death induction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112258. [PMID: 34474818 DOI: 10.1016/j.msec.2021.112258] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022]
Abstract
A novel polyelectrolyte nanocarrier was synthesized via layer-by-layer self-assembly of polycationic and polyanionic chains. The nanocarrier is composed of polyglutamate grafted chitosan core, dextran sulfate as a complexing agent, and polyethyleneimine shell decorated with folic acid. This polyelectrolyte complex has unique physicochemical properties so that the core is considered as an efficient carrier for LTX-315 and melittin peptides, and the shell is suitable for delivery of miR-34a. The spherical nanocarriers with an average size of 123 ± 5 nm and a zeta potential of -36 ± 1 mV demonstrated controlled-release of gene and peptides ensured a synergistic effect in establishing multiple cell death pathways on chemoresistance human breast adenocarcinoma cell line, MDA-MB-231. In vitro cell viability assays also revealed no cytotoxicity for the nanocarriers, and an IC50 of 15 μg/mL and 150 μg/mL for melittin and LTX-315, respectively, after 48 h, whereas co-delivery of melittin with miR-34a increased smart death induction by 54%.
Collapse
Affiliation(s)
- Marjan Motiei
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran; Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Fatemeh Aboutalebi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Mahboobeh Forouzanfar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran.
| | - Seyede Zohreh Mirahmadi-Zare
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran.
| |
Collapse
|
40
|
Yan J, Wang C, Jiang X, Wei Y, Wang Q, Cui K, Xu X, Wang F, Zhang L. Application of phototherapeutic-based nanoparticles in colorectal cancer. Int J Biol Sci 2021; 17:1361-1381. [PMID: 33867852 PMCID: PMC8040477 DOI: 10.7150/ijbs.58773] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the second leading cause of cancer death, which accounts for approximately 10% of all new cancer cases worldwide. Surgery is the main method for treatment of early-stage CRC. However, it is not effective for most metastatic tumors, and new treatment and diagnosis strategies need to be developed. Photosensitizers (PSs) play an important role in the treatment of CRC. Phototherapy also has a broad prospect in the treatment of CRC because of its low invasiveness and low toxicity. However, most PSs are associated with limitations including poor solubility, poor selectivity and high toxicity. The application of nanomaterials in PSs has added many advantages, including increased solubility, bioavailability, targeting, stability and low toxicity. In this review, based on phototherapy, we discuss the characteristics and development progress of PSs, the targeting of PSs at organ, cell and molecular levels, and the current methods of optimizing PSs, especially the application of nanoparticles as carriers in CRC. We introduce the photosensitizer (PS) targeting process in photodynamic therapy (PDT), the damage mechanism of PDT, and the application of classic PS in CRC. The action process and damage mechanism of photothermal therapy (PTT) and the types of ablation agents. In addition, we present the imaging examination and the application of PDT / PTT in tumor, including (fluorescence imaging, photoacoustic imaging, nuclear magnetic resonance imaging, nuclear imaging) to provide the basis for the early diagnosis of CRC. Notably, single phototherapy has several limitations in vivo, especially for deep tumors. Here, we discuss the advantages of the combination therapy of PDT and PTT compared with the single therapy. At the same time, this review summarizes the clinical application of PS in CRC. Although a variety of nanomaterials are in the research and development stage, few of them are actually on the market, they will show great advantages in the treatment of CRC in the near future.
Collapse
Affiliation(s)
- Jiaxin Yan
- Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,School of Pharmacy, Henan University, Kaifeng Kaifeng 475004, China
| | - Chunli Wang
- Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiaomei Jiang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yiqu Wei
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Qun Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Kunli Cui
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiao Xu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Feng Wang
- Guangming Substation of Shenzhen Ecological Environment Monitoring Station, Shenzhen 518107, P. R. China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
41
|
Nasab SH, Amani A, Ebrahimi HA, Hamidi AA. Design and preparation of a new multi-targeted drug delivery system using multifunctional nanoparticles for co-delivery of siRNA and paclitaxel. J Pharm Anal 2021; 11:163-173. [PMID: 34012692 PMCID: PMC8116215 DOI: 10.1016/j.jpha.2020.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 02/04/2023] Open
Abstract
Drug resistance is a great challenge in cancer therapy using chemotherapeutic agents. Administration of these drugs with siRNA is an efficacious strategy in this battle. Here, the present study tried to incorporate siRNA and paclitaxel (PTX) simultaneously into a novel nanocarrier. The selectivity of carrier to target cancer tissues was optimized through conjugation of folic acid (FA) and glucose (Glu) onto its surface. The structure of nanocarrier was formed from ternary magnetic copolymers based on FeCo-polyethyleneimine (FeCo-PEI) nanoparticles and polylactic acid-polyethylene glycol (PLA-PEG) gene delivery system. Biocompatibility of FeCo-PEI-PLA-PEG-FA(NPsA), FeCo-PEI-PLA-PEG-Glu (NPsB) and FeCo-PEI-PLA-PEG-FA/Glu (NPsAB) nanoparticles and also influence of PTX-loaded nanoparticles on in vitro cytotoxicity were examined using MTT assay. Besides, siRNA-FAM internalization was investigated by fluorescence microscopy. The results showed the blank nanoparticles were significantly less cytotoxic at various concentrations. Meanwhile, siRNA-FAM/PTX encapsulated nanoparticles exhibited significant anticancer activity against MCF-7 and BT-474 cell lines. NPsAB/siRNA/PTX nanoparticles showed greater effects on MCF-7 and BT-474 cells viability than NPsA/siRNA/PTX and NPsB/siRNA/PTX. Also, they induced significantly higher anticancer effects on cancer cells compared with NPsA/siRNA/PTX and NPsB/siRNA/PTX due to their multi-targeted properties using FA and Glu. We concluded that NPsAB nanoparticles have a great potential for co-delivery of both drugs and genes for use in gene therapy and chemotherapy.
Collapse
Affiliation(s)
- Sara Hosayni Nasab
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ali Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asghar Hamidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Joshi N, Hajizadeh F, Ansari Dezfouli E, Zekiy AO, Nabi Afjadi M, Mousavi SM, Hojjat-Farsangi M, Karpisheh V, Mahmoodpoor A, Hassannia H, Dolati S, Mohammadi H, Yousefi M, Jadidi-Niaragh F. Silencing STAT3 enhances sensitivity of cancer cells to doxorubicin and inhibits tumor progression. Life Sci 2021; 275:119369. [PMID: 33745894 DOI: 10.1016/j.lfs.2021.119369] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/21/2021] [Accepted: 03/07/2021] [Indexed: 12/15/2022]
Abstract
AIMS Despite extensive efforts to find new treatments, chemotherapy is still one of the first and foremost choices for cancer treatment. The main problems of using these drugs are the resistance of cancer cells and reducing their sensitivity to chemotherapy as well as the side effects of their systemic administration. Because STAT3 plays a very important role in the survival and susceptibility of cancer cells to apoptosis, we hypothesized that suppression of STAT3 expression could induce greater susceptibility to DOX-induced cancer cell death. MATERIALS AND METHODS We used pegylated chitosan lactate nanoparticles (NPs) functionalized by TAT peptide and folate to deliver STAT3 siRNA and DOX to cancer cells simultaneously, both in vitro and in vivo. KEY FINDINGS The results showed that NPs could effectively deliver siRNA and DOX to cancer cells, which was associated with suppression of STAT3 expression and increased induction of DOX-mediated cell death. Concomitant delivery of DOX and STAT3 siRNA also suppressed tumor growth in 4T1 and CT26 cancer models, which was associated with induction of anti-tumor immune responses. SIGNIFICANCE These findings suggest that the use of NPs can be an effective strategy for the targeted delivery of STAT3-specific siRNA/DOX to cancer cells.
Collapse
Affiliation(s)
- Navneet Joshi
- Department of Biosciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India.
| | - Farnaz Hajizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ansari Dezfouli
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
| | | | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, School of Medicine, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
43
|
Narayan R, Gadag S, Cheruku SP, Raichur AM, Day CM, Garg S, Manandhar S, Pai KSR, Suresh A, Mehta CH, Nayak Y, Kumar N, Nayak UY. Chitosan-glucuronic acid conjugate coated mesoporous silica nanoparticles: A smart pH-responsive and receptor-targeted system for colorectal cancer therapy. Carbohydr Polym 2021; 261:117893. [PMID: 33766378 DOI: 10.1016/j.carbpol.2021.117893] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 12/16/2022]
Abstract
Glycosylated pH-sensitive mesoporous silica nanoparticles (MSNs) of capecitabine (CAP) were developed for targeting colorectal cancer. The MSNs possessed an average pore diameter of 8.12 ± 0.43 nm, pore volume of 0.73 ± 0.21 cm3/g, and particle size of 245.24 ± 5.75 nm. A high loading of 180.51 ± 5.23 mg/g attributed to the larger pore volume was observed. The surface of the drug-loaded MSNs were capped with chitosan-glucuronic acid (CHS-GCA) conjugate to combine two strategies viz. pH-sensitive, and lectin receptor mediated uptake. In vitro studies demonstrated a pH-sensitive and controlled release of CAP which was further enhanced in the presence of rat caecal content. Higher uptake of the (CAP-MSN)CHS-GCA was observed in HCT 116 cell lines. The glycosylated nanoparticles revealed reduction in the tumors, aberrant crypt foci, dysplasia and inflammation, and alleviation in the toxic features. This illustrated that the nanoparticles showed promising antitumor efficacy with reduced toxicity and may be used as a effective carrier against cancer.
Collapse
Affiliation(s)
- Reema Narayan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Candace Minhthu Day
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karkala Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akhil Suresh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
44
|
Kaczorowska A, Malinga-Drozd M, Kałas W, Kopaczyńska M, Wołowiec S, Borowska K. Biotin-Containing Third Generation Glucoheptoamidated Polyamidoamine Dendrimer for 5-Aminolevulinic Acid Delivery System. Int J Mol Sci 2021; 22:1982. [PMID: 33671436 PMCID: PMC7922973 DOI: 10.3390/ijms22041982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/10/2023] Open
Abstract
Polyamidoamine PAMAM dendrimer generation 3 (G3) was modified by attachment of biotin via amide bond and glucoheptoamidated by addition of α-D-glucoheptono-1,4-lacton to obtain a series of conjugates with a variable number of biotin residues. The composition of conjugates was determined by detailed 1-D and 2-D NMR spectroscopy to reveal the number of biotin residues, which were 1, 2, 4, 6, or 8, while the number of glucoheptoamide residues substituted most of the remaining primary amine groups of PAMAM G3. The conjugates were then used as host molecules to encapsulate the 5-aminolevulinic acid. The solubility of 5-aminolevulinic acid increased twice in the presence of the 5-mM guest in water. The interaction between host and guest was accompanied by deprotonation of the carboxylic group of 5-aminolevulinic acid and proton transfer into internal ternary nitrogen atoms of the guest as evidenced by a characteristic chemical shift of resonances in the 1H NMR spectrum of associates. The guest molecules were most likely encapsulated inside inner shell voids of the host. The number of guest molecules depended on the number of biotin residues of the host, which was 15 for non-biotin-containing glucoheptoamidated G3 down to 6 for glucoheptoamidated G3 with 8 biotin residues on the host surface. The encapsulates were not cytotoxic against Caco-2 cells up to 200-µM concentration in the dark. All encapsulates were able to deliver 5-aminolevulinic acid to cells but aqueous encapsulates were more active in this regard. Simultaneously, the reactive oxygen species were detected by staining with H2DCFDA in Caco-2 cells incubated with encapsulates. The amount of PpIX was sufficient for induction of reactive oxygen species upon 30-s illumination with a 655-nm laser beam.
Collapse
Affiliation(s)
- Aleksandra Kaczorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland; (A.K.); (M.K.)
| | | | - Wojciech Kałas
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12 Str., 53-114 Wrocław, Poland;
| | - Marta Kopaczyńska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland; (A.K.); (M.K.)
| | - Stanisław Wołowiec
- Medical College, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland;
| | - Katarzyna Borowska
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 11 Radziwiłowska Str., 20–080 Lublin, Poland;
| |
Collapse
|
45
|
Tsyupka DV, Mordovina EA, Sindeeva OA, Sapelkin AV, Sukhorukov GB, Goryacheva IY. High-fluorescent product of folic acid photodegradation: Optical properties and cell effect. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Fahimirad S, Abtahi H, Satei P, Ghaznavi-Rad E, Moslehi M, Ganji A. Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr Polym 2021; 259:117640. [PMID: 33673981 DOI: 10.1016/j.carbpol.2021.117640] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 01/09/2021] [Indexed: 12/20/2022]
Abstract
In this study, the electrospun poly(ε-caprolactone) (PCL)/Chitosan (CS)/curcumin (CUR) nanofiber was fabricated successfully with curcumin loaded chitosan nano-encapsulated particles (CURCSNPs). The morphology of the produced CURCSNPs, PCL, PCL/CS, PCL/CS/CUR, and PCL/CS/CUR electrosprayed with CURCSNPs were analyzed by scanning electron microscopy (SEM). The physicochemical properties and biological characteristics of fabricated nanofibers such as antibacterial, antioxidant, cell viability, and in vivo wound healing efficiency and histological assay were tested. The electrospraying of CURCSNPs on surface PCL/CS/CUR nanofiber resulted in the enhanced antibacterial, antioxidant, cell proliferation efficiencies and higher swelling and water vapor transition rates. In vivo examination and Histological analysis showed PCL/CS/CUR electrosprayed with CURCSNPs led to significant improvement of complete well-organized wound healing process in MRSA infected wounds. These results suggest that the application of PCL/CS/CUR electrosprayed with CURCSNPs as a wound dressing significantly facilitates wound healing with notable antibacterial, antioxidant, and cell proliferation properties.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Parastu Satei
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Ehsanollah Ghaznavi-Rad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran; Department of Medical Laboratory Sciences, Arak School of Paramedicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohsen Moslehi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Ganji
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran; Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
47
|
Guo J, Liu J, Qie H, Zhao F, Niu CH. Efficient synthesis strategy of folate-modified carboxymethyl chitosan/CaCO 3 hybrid nanospheres and their drug-carrying and sustained release properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:799-812. [PMID: 33428541 DOI: 10.1080/09205063.2020.1870258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Folate-modified carboxymethyl chitosan (FCMC) was made by folate acid as targeted group and attaching folate to carboxymethyl chitosan, and then, targeted FCMC/CaCO3 hybrid nanosphere were formed by self-assembly of calcium carbonate in FCMC solution. The physicochemical properties of the nanospheres were investigated by Fourier transform infrared spectroscopy, X-ray diffraction analysis, Brunauer-Emmett-Teller measurement and thermogravimetric analysis (TGA). The results showed that the FCMC/CaCO3 hybrid nanospheres were composed of calcite, vaterite and polysaccharides, and the content of organic compounds was 12.17%. Also, the structure performance of the hybrid nanospheres was analyzed. Besides, the effects of the hybrid nanospheres on the encapsulation efficiency, the drug loading content and the release behavior were also analyzed with the metformin (MET) as a model drug. Scanning electron microscope, Zeta potential analysis and UV-Vis were used to characterize the hybrid nanospheres. Under the conditions of FCMC/Ca2+ molar ratio of 4: 1 and reaction for 24 h, the achieved results showed that the spherical aggregates with regular morphology were obtained and the average particle size of the nanospheres was 207 nm. The specific surface area of the hybrid nanosphere is 27.06 m2·g-1 and the average pore diameter of the sample is 3.84 nm, indicating the presence of mesoporous structure in the sample. This mesoporous structure can supply potential space for adsorption of anticancer drugs. Additionally, the surface charge of the nanoparticles was positive and the entrapment efficiency was 83.32%. The hybrid nanospheres have a capability of effective pH-sensitivity controlled drug release. All the drug loaded hybrid nanospheres successfully sustained the release of MET at pH 7.4, only about 44.58% of the drug released in 6 days. While under acidic condition (pH 5.0) drug release was significantly accelerated, being over 98.85% of the drug released. The hybrid nanospheres demonstrated an excellent smart drug delivery behavior.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Chemical Engineering and Technology, North University of China Taiyuan, Shanxi, China.,Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Juhui Liu
- School of Chemical Engineering and Technology, North University of China Taiyuan, Shanxi, China
| | - Haoran Qie
- School of Chemical Engineering and Technology, North University of China Taiyuan, Shanxi, China
| | - Feng Zhao
- School of Chemical Engineering and Technology, North University of China Taiyuan, Shanxi, China
| | - Catherine Hui Niu
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
48
|
Javed Z, Javed Iqbal M, Rasheed A, Sadia H, Raza S, Irshad A, Koch W, Kukula-Koch W, Głowniak-Lipa A, Cho WC, Sharifi-Rad J. Regulation of Hedgehog Signaling by miRNAs and Nanoformulations: A Possible Therapeutic Solution for Colorectal Cancer. Front Oncol 2021; 10:607607. [PMID: 33489917 PMCID: PMC7817854 DOI: 10.3389/fonc.2020.607607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Hedgehog (Hh) signaling aberrations trigger differentiation and proliferation in colorectal cancer (CRC). However, the current approaches which inhibit this vital cellular pathway provoke some side effects. Therefore, it is necessary to look for new therapeutic options. MicroRNAs are small molecules that modulate expression of the target genes and can be utilized as a potential therapeutic option for CRC. On the other hand, nanoformulations have been implemented in the treatment of plethora of diseases. Owing to their excessive bioavailability, limited cytotoxicity and high specificity, nanoparticles may be considered as an alternative drug delivery platform for the Hh signaling mediated CRC. This article reviews the Hh signaling and its involvement in CRC with focus on miRNAs, nanoformulations as potential diagnostic/prognostic and therapeutics for CRC.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Amna Rasheed
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | | | - Anna Głowniak-Lipa
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, Poland
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
49
|
Xie H, Feng S, Farag MA, Sun P, Shao P. Synergistic cytotoxicity of erianin, a bisbenzyl in the dietetic Chinese herb Dendrobium against breast cancer cells. Food Chem Toxicol 2021; 149:111960. [PMID: 33385512 DOI: 10.1016/j.fct.2020.111960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Erianin (ER), a dietary compound extracted from Dendrobium, a traditional Chinese medicinal edible herb, is well recognized for its potential anti-cancer activity. Nevertheless, its limitations, regarding its complex isolation procedure, low yield and low water solubility, limit large scale application. Combinatorial therapeutic regimen that combines several drugs to target different pathways in a characteristically synergistic manner at lower doses of drugs proved effective in several diseases treatment. Besides, new knowledge aimed at improving drug delivery into the intracellular environment is essential. In this study, ER was assessed for its cytotoxic effect in combination with doxorubicin hydrochloride (DOX·HCl) against breast cancer cells. Drug synergy was calculated by using combination index (CI) index and we discovered that they had positive effects. To ensure uniform delivery of both drugs to cells for a desired synergistic action, a dual drug loaded liposomes was developed using thin-film dispersion, and coated by a layer of folate-chitosan. Cytotoxicity and cell proliferation based assays revealed the increase of cell inhibition rate by more than 30% compared with free drugs. Fluorescence imaging revealed that liposomes can aid faster drugs accumulate in cancer cells. The study presented a novel strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Hualing Xie
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Simin Feng
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | | | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China.
| |
Collapse
|
50
|
Yang SJ, Huang CH, Wang CH, Shieh MJ, Chen KC. The Synergistic Effect of Hyperthermia and Chemotherapy in Magnetite Nanomedicine-Based Lung Cancer Treatment. Int J Nanomedicine 2020; 15:10331-10347. [PMID: 33376324 PMCID: PMC7755349 DOI: 10.2147/ijn.s281029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer patient death in the world. There are many treatment options for lung cancer, including surgery, radiation therapy, chemotherapy, targeted therapy, and combined therapy. Despite significant progress has been made in the diagnosis and treatment of lung cancer during the past few decades, the prognosis is still unsatisfactory. Purpose To resolve the problem of chemotherapy failure, we developed a magnetite-based nanomedicine for chemotherapy acting synergistically with loco-regional hyperthermia. Methods The targeting carrier consisted of a complex of superparamagnetic iron oxide (SPIO) and poly(sodium styrene sulfonate) (PSS) at the core and a layer-by-layer shell with cisplatin (CDDP), together with methotrexate – human serum albumin conjugate (MTX−HSA conjugate) for lung cancer-specific targeting, referred to hereafter as SPIO@PSS/CDDP/HSA−MTX nanoparticles (NPs). Results SPIO@PSS/CDDP/HSA−MTX NPs had good biocompatibility and stability in physiological solutions. Furthermore, SPIO@PSS/CDDP/HSA−MTX NPs exhibited a higher temperature increase rate than SPIO nanoparticles under irradiation by a radiofrequency (RF) generator. Therefore, SPIO@PSS/CDDP/HSA−MTX NPs could be used as a hyperthermia inducer under RF exposure after nanoparticles preferentially targeted and then accumulated at tumor sites. In addition, SPIO@PSS/CDDP/HSA−MTX NPs were developed to be used during combined chemotherapy and hyperthermia therapy, exhibiting a synergistic anticancer effect better than the effect of monotherapy. Conclusion Both in vitro and in vivo results suggest that the designed SPIO@PSS/CDDP/HSA−MTX NPs are a powerful candidate nanoplatform for future antitumor treatment strategies.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | | | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|