1
|
Cui A, Patel R, Bosco P, Akcan U, Richters E, Delgado PB, Agalliu D, Sproul AA. Generation of hiPSC-derived brain microvascular endothelial cells using a combination of directed differentiation and transcriptional reprogramming strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588012. [PMID: 38903080 PMCID: PMC11188081 DOI: 10.1101/2024.04.03.588012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The blood-brain barrier (BBB), formed by specialized brain microvascular endothelial cells (BMECs), regulates brain function in health and disease. In vitro modeling of the human BBB is limited by the lack of robust hiPSC protocols to generate BMECs. Here, we report generation, transcriptomic and functional characterization of reprogrammed BMECs (rBMECs) by combining hiPSC differentiation into BBB-primed endothelial cells and reprogramming with two BBB transcription factors FOXF2 and ZIC3. rBMECs express a subset of the BBB gene repertoire including tight junctions and transporters, exhibit stronger paracellular barrier properties, lower caveolar-mediated transcytosis, and similar p-Glycoprotein activity compared to primary HBMECs. They can acquire an inflammatory phenotype when treated with oligomeric Aβ42. rBMECs integrate with hiPSC-derived pericytes and astrocytes to form a 3D neurovascular system using the MIMETAS microfluidics platform. This novel 3D system resembles the in vivo BBB at structural and functional levels to enable investigation of pathogenic mechanisms of neurological diseases.
Collapse
|
2
|
Fernandes LDR, Lopes JR, Bonjorno AF, Prates JLB, Scarim CB, Dos Santos JL. The Application of Prodrugs as a Tool to Enhance the Properties of Nucleoside Reverse Transcriptase Inhibitors. Viruses 2023; 15:2234. [PMID: 38005911 PMCID: PMC10675571 DOI: 10.3390/v15112234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Antiretroviral Therapy (ART) is an effective treatment for human immunodeficiency virus (HIV) which has transformed the highly lethal disease, acquired immunodeficiency syndrome (AIDS), into a chronic and manageable condition. However, better methods need to be developed for enhancing patient access and adherence to therapy and for improving treatment in the long term to reduce adverse effects. From the perspective of drug discovery, one promising strategy is the development of anti-HIV prodrugs. This approach aims to enhance the efficacy and safety of treatment, promoting the development of more appropriate and convenient systems for patients. In this review, we discussed the use of the prodrug approach for HIV antiviral agents and emphasized nucleoside reverse transcriptase inhibitors. We comprehensively described various strategies that are used to enhance factors such as water solubility, bioavailability, pharmacokinetic parameters, permeability across biological membranes, chemical stability, drug delivery to specific sites/organs, and tolerability. These strategies might help researchers conduct better studies in this field. We also reported successful examples from the primary therapeutic classes while discussing the advantages and limitations. In this review, we highlighted the key trends in the application of the prodrug approach for treating HIV/AIDS.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.d.R.F.); (J.R.L.); (A.F.B.); (J.L.B.P.); (C.B.S.)
| |
Collapse
|
3
|
Seo Y, Lim H, Park H, Yu J, An J, Yoo HY, Lee T. Recent Progress of Lipid Nanoparticles-Based Lipophilic Drug Delivery: Focus on Surface Modifications. Pharmaceutics 2023; 15:772. [PMID: 36986633 PMCID: PMC10058399 DOI: 10.3390/pharmaceutics15030772] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Numerous drugs have emerged to treat various diseases, such as COVID-19, cancer, and protect human health. Approximately 40% of them are lipophilic and are used for treating diseases through various delivery routes, including skin absorption, oral administration, and injection. However, as lipophilic drugs have a low solubility in the human body, drug delivery systems (DDSs) are being actively developed to increase drug bioavailability. Liposomes, micro-sponges, and polymer-based nanoparticles have been proposed as DDS carriers for lipophilic drugs. However, their instability, cytotoxicity, and lack of targeting ability limit their commercialization. Lipid nanoparticles (LNPs) have fewer side effects, excellent biocompatibility, and high physical stability. LNPs are considered efficient vehicles of lipophilic drugs owing to their lipid-based internal structure. In addition, recent LNP studies suggest that the bioavailability of LNP can be increased through surface modifications, such as PEGylation, chitosan, and surfactant protein coating. Thus, their combinations have an abundant utilization potential in the fields of DDSs for carrying lipophilic drugs. In this review, the functions and efficiencies of various types of LNPs and surface modifications developed to optimize lipophilic drug delivery are discussed.
Collapse
Affiliation(s)
- Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jiyun Yu
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| |
Collapse
|
4
|
Wang S, Xie L, Liu Y, Yang Q, Jia W, Zhao D, Zhao X. Study on the preparation and activity of intelligent response poly(lactic-co-glycolic acid)-ss-polyethylene glycol copolymer micelles. J Biomater Appl 2022; 37:259-274. [PMID: 35533369 DOI: 10.1177/08853282221088182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amphiphilic polymer micellar carriers are the most commonly used nanocarriers for oral delivery of hydrophobic drugs because their hydrophilic shell can avoid the recognition of the reticuloendothelial system (RES), has excellent drug-carrying capacity, and protect the drug from inactivation in the gastrointestinal fluid. The polymer micelle shell can enter cancer cells by endocytosis, and autophagy in cells, degradation by lysosomal pathway, so as to release drugs, prolong the circulation time of drugs in vivo, and then achieve the effect of drug sustained release. In this study, the glutathione-responsive PLGA-ss-PEG loaded paclitaxel (PTX) micelles (PLGA-ss-PEG-PTX) were developed for anticancer therapy. With its long-term circulation and EPR (enhanced permeability and retention) effect, and the micelle had disulfide bond, which could be used as the recognition group of tumor microenvironment, so that the PLGA-ss-PEG-PTX could specifically accumulate at the tumor site, so as to produce better anti-tumor effect. The PLGA-ss-PEG-PTX was formulated by the emulsification method in this study. The drug loading was about 21.54%, the entrapment efficiency was about 94.2%, and the particle size range was about 90 nm with narrow particle size distribution. Cytotoxicity and embryonic toxicity experiments were carried out using mouse lung cancer cells (LLC) and zebrafish fertilized eggs. It was proved that the low concentration of blank micelles had little cytotoxicity, but high concentration of blank micelles had adverse effects on zebrafish embryonic development, resulting in embryonic malformation. The uptake of drugs by cancer cells was studied by a high connotation cell imaging analysis system. The experiments showed that the drug molecules encapsulated in micelles could achieve higher uptake by cells compared with free drug molecules. In addition, in the in vivo evaluation experiment of drugs, the PLGA-ss-PEG-PTX could significantly enhance the therapeutic effect of the PTX, improve its water solubility, and improve its oral bioavailability.
Collapse
Affiliation(s)
- Siying Wang
- 47820Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, People's Republic of China.,47820Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, People's Republic of China.,47820National Engineering Laboratory of BioResource EcoUtilization, Harbin, People's Republic of China
| | - Lanlan Xie
- 47820Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, People's Republic of China.,47820Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, People's Republic of China.,47820National Engineering Laboratory of BioResource EcoUtilization, Harbin, People's Republic of China
| | - Yanjie Liu
- 47820Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, People's Republic of China.,47820Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, People's Republic of China.,47820National Engineering Laboratory of BioResource EcoUtilization, Harbin, People's Republic of China
| | - Qilei Yang
- 47820Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, People's Republic of China.,47820Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, People's Republic of China.,47820National Engineering Laboratory of BioResource EcoUtilization, Harbin, People's Republic of China
| | - Wenqiang Jia
- 47820Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, People's Republic of China.,47820Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, People's Republic of China.,47820National Engineering Laboratory of BioResource EcoUtilization, Harbin, People's Republic of China
| | - Dongmei Zhao
- 47820Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, People's Republic of China.,47820Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, People's Republic of China.,47820National Engineering Laboratory of BioResource EcoUtilization, Harbin, People's Republic of China
| | - Xiuhua Zhao
- 47820Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, People's Republic of China.,47820Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China.,47820Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, People's Republic of China.,47820National Engineering Laboratory of BioResource EcoUtilization, Harbin, People's Republic of China
| |
Collapse
|
5
|
Kaur J, Gulati M, Kapoor B, Jha NK, Gupta PK, Gupta G, Chellappan DK, Devkota HP, Prasher P, Ansari MS, Aba Alkhayl FF, Arshad MF, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Advances in designing of polymeric micelles for biomedical application in brain related diseases. Chem Biol Interact 2022; 361:109960. [DOI: 10.1016/j.cbi.2022.109960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
|
6
|
Whitfield C, Zhang M, Winterwerber P, Wu Y, Ng DYW, Weil T. Functional DNA-Polymer Conjugates. Chem Rev 2021; 121:11030-11084. [PMID: 33739829 PMCID: PMC8461608 DOI: 10.1021/acs.chemrev.0c01074] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 02/07/2023]
Abstract
DNA nanotechnology has seen large developments over the last 30 years through the combination of solid phase synthesis and the discovery of DNA nanostructures. Solid phase synthesis has facilitated the availability of short DNA sequences and the expansion of the DNA toolbox to increase the chemical functionalities afforded on DNA, which in turn enabled the conception and synthesis of sophisticated and complex 2D and 3D nanostructures. In parallel, polymer science has developed several polymerization approaches to build di- and triblock copolymers bearing hydrophilic, hydrophobic, and amphiphilic properties. By bringing together these two emerging technologies, complementary properties of both materials have been explored; for example, the synthesis of amphiphilic DNA-polymer conjugates has enabled the production of several nanostructures, such as spherical and rod-like micelles. Through both the DNA and polymer parts, stimuli-responsiveness can be instilled. Nanostructures have consequently been developed with responsive structural changes to physical properties, such as pH and temperature, as well as short DNA through competitive complementary binding. These responsive changes have enabled the application of DNA-polymer conjugates in biomedical applications including drug delivery. This review discusses the progress of DNA-polymer conjugates, exploring the synthetic routes and state-of-the-art applications afforded through the combination of nucleic acids and synthetic polymers.
Collapse
Affiliation(s)
- Colette
J. Whitfield
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Meizhou Zhang
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - Pia Winterwerber
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuzhou Wu
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - David Y. W. Ng
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
7
|
Micellar solubilization of Lavender oil in aqueous P85/P123 systems: Investigating the associated micellar structural transitions, therapeutic properties and existence of double cloud points. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Vasa DM, Bakri Z, Donovan MD, O’Donnell LA, Wildfong PLD. Evaluation of Ribavirin-Poloxamer Microparticles for Improved Intranasal Absorption. Pharmaceutics 2021; 13:pharmaceutics13081126. [PMID: 34452087 PMCID: PMC8399989 DOI: 10.3390/pharmaceutics13081126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
Ribavirin is a water-soluble antiviral compound which, owing to its inability to cross the blood–brain barrier, has limited effectiveness in treating viruses affecting the central nervous system. Direct nose-to-brain delivery was investigated for ribavirin in combination with poloxamer 188, an excipient known to enhance the absorption of drug compounds administered intranasally. Composite solid microparticles suitable for intranasal insufflation were prepared by suspending fine crystals of ribavirin in a matrix of poloxamer 188, which were cryogenically milled and characterized to ensure that ribavirin remained stable throughout preparation. In vitro diffusion of ribavirin across a semi-permeable regenerated cellulose membrane showed comparable cumulative drug release after 180 min from both fine solid particles (<20 µm) and 1:1 ribavirin:poloxamer microparticles (d50 = 20 µm); however, the initial release from polymer microparticles was slower, owing to gel formation on the membrane surface. When solid ribavirin was directly deposited on excised olfactory mucosa, either as fine drug particles or 1:1 ribavirin:poloxamer microparticles, permeation was significantly increased from microparticles containing poloxamer 188, suggesting additional interactions between the polymer and olfactory mucosa. These data indicate that for highly water-soluble drugs such as ribavirin or drugs subject to efflux by the nasal mucosa, a formulation of poloxmer-containing microparticles can enhance permeability across the olfactory epithelium and may improve direct nose-to-brain transport.
Collapse
Affiliation(s)
- Dipy M. Vasa
- Division of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15282, USA; (D.M.V.); (L.A.O.)
| | - Zainab Bakri
- Department of Pharmaceutical Science and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 South Grand Ave., Pharmacy Building, Iowa City, IA 52242, USA; (Z.B.); (M.D.D.)
| | - Maureen D. Donovan
- Department of Pharmaceutical Science and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 South Grand Ave., Pharmacy Building, Iowa City, IA 52242, USA; (Z.B.); (M.D.D.)
| | - Lauren A. O’Donnell
- Division of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15282, USA; (D.M.V.); (L.A.O.)
| | - Peter L. D. Wildfong
- Division of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15282, USA; (D.M.V.); (L.A.O.)
- Correspondence: ; Tel.: +1-412-396-1543
| |
Collapse
|
9
|
Tailoring of P-glycoprotein for effective transportation of actives across blood-brain-barrier. J Control Release 2021; 335:398-407. [PMID: 34087246 DOI: 10.1016/j.jconrel.2021.05.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022]
Abstract
P-Glycoprotein serves as a gatekeeper in the blood-brain-barrier wherein, it shows a vital part in the elimination of xenobiotics, drugs, foreign molecules etc. and guards the central nervous system from infections and external toxic molecules by functioning as an efflux transporter. It plays an essential role in various brain-related conditions like Parkinsonism, Alzheimer's disease, depression, cancer, etc. and terminates the entry of therapeutic agents across blood-brain-barrier which remains a significant challenge serving as major hindrance in pharmacotherapy of disease. The physiological structure and topology of P-glycoprotein and its relation with blood-brain-barrier and central nervous system gives an idea for targeting nanocarriers across the barrier into brain. This review article provides an overview of current understanding of the nanoformulations-based P-gp trafficking strategies like nanocarriers, stem cell therapy, drugs, substrates, polymeric materials, chemical compounds as well as naturally occurring active constituents for improving drug transport in brain across blood-brain-barrier and contributing in effective nanotherapeutic development for treatment of CNS disorders.
Collapse
|
10
|
Azhari H, Younus M, Hook SM, Boyd BJ, Rizwan SB. Cubosomes enhance drug permeability across the blood-brain barrier in zebrafish. Int J Pharm 2021; 600:120411. [PMID: 33675926 DOI: 10.1016/j.ijpharm.2021.120411] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
The potential of cubosomes to improve delivery of incorporated cargo to the brain was explored in zebrafish. Cubosomes were formulated with one of three stabilisers, Pluronic F68, Pluronic F127 or Tween 80, with the hypothesis that coating with Tween 80 will enable brain targeting of cubosomes as has been previously shown for polymeric nanoparticles. The physiochemical properties and the ability of the cubosomes to facilitate delivery of the model drug lissamine rhodamine (RhoB) into the brain was investigated. Distribution of cubosomes in the midbrain was also investigated by ultrastructural analysis via incorporation of octanethiol-functionalized gold nanoparticles. Cubosomes were typically 165-195 nm in size with a Pn3m (Pluronics) or Im3m (Tween 80) cubic phase internal structure. Cubosomes were injected intravenously into zebrafish larvae (12-14 days post fertilization) and the concentration of RhoB in the midbrain was determined by quantifying its fluorescence intensity. Uptake of RhoB was significantly greater in larvae injected with Tween 80 stabilized cubosomes as compared to a control suspension of RhoB or cubosomes stabilized with Pluronics. Collectively, we show for the first time that cubosomes can be functionalized to deliver drug across the BBB, offering new opportunities to overcome drug delivery issues across this formidable biological barrier.
Collapse
Affiliation(s)
- H Azhari
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054 Dunedin, New Zealand
| | - Mohammad Younus
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054 Dunedin, New Zealand
| | - Sarah M Hook
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054 Dunedin, New Zealand
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Shakila B Rizwan
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054 Dunedin, New Zealand.
| |
Collapse
|
11
|
Dehshahri A, Ashrafizadeh M, Ghasemipour Afshar E, Pardakhty A, Mandegary A, Mohammadinejad R, Sethi G. Topoisomerase inhibitors: Pharmacology and emerging nanoscale delivery systems. Pharmacol Res 2019; 151:104551. [PMID: 31743776 DOI: 10.1016/j.phrs.2019.104551] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Topoisomerase enzymes have shown unique roles in replication and transcription. These enzymes which were initially found in Escherichia coli have attracted considerable attention as target molecules for cancer therapy. Nowadays, there are several topoisomerase inhibitors in the market to treat or at least control the progression of cancer. However, significant toxicity, low solubility and poor pharmacokinetic properties have limited their wide application and these characteristics need to be improved. Nano-delivery systems have provided an opportunity to modify the intrinsic properties of molecules and also to transfer the toxic agent to the target tissues. These delivery systems leads to the re-introduction of existing molecules present in the market as novel therapeutic agents with different physicochemical and pharmacokinetic properties. This review focusses on a variety of nano-delivery vehicles used for the improvement of pharmacological properties of topoisomerase inhibitors and thus enabling their potential application as novel drugs in the market.
Collapse
Affiliation(s)
- Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
12
|
Katrajkar K, Darji L, Kethavath D, Thakkar S, Kshirsagar B, Misra M. Shedding light on interaction of so called inactive ingredients (excipients) with permeability-glycoprotein. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Singh A, Thakur S, Sharma T, Kaur M, Sahajpal NS, Aurora R, Jain SK. Harmonious Biomaterials for Development of In situ Approaches for Locoregional Delivery of Anti-cancer Drugs: Current Trends. Curr Med Chem 2019; 27:3463-3498. [PMID: 31223077 DOI: 10.2174/1573406415666190621095726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 11/22/2022]
Abstract
Locoregional drug delivery is a novel approach for the effective delivery of anti-cancer agents as it exposes the tumors to high concentration of drugs. In situ gelling systems have fetched paramount attention in the field of localized cancer chemotherapy due to their targeted delivery, ease of preparation, prolonged or sustained drug release and improved patient compliance. Numerous polymers have been investigated for their properties like swelling along with biodegradation, drug release and physicochemical properties for successful targeting of the drugs at the site of implantation. The polymers such as chitosan, Hyaluronic Acid (HA), poloxamer, Poly Glycolic Lactic Acid (PGLA) and Poly Lactic Acid (PLA) tend to form in situ hydrogels and have been exploited to develop localized delivery vehicles. These formulations are administered in the solution form and on exposure to physiological environment such as temperature, pH or ionic composition they undergo phase conversion into a hydrogel drug depot. The use of in situ gelling approach has provided prospects to increase overall survival and life quality of cancer patient by enhancing the bioavailability of drug to the site of tumor by minimizing the exposure to normal cells and alleviating systemic side effects. Because of its favorable safety profile and clinical benefits, United States Food and Drug Administration (U.S. FDA) has approved polymer based in situ systems for prolonged locoregional activity. This article discusses the rationale for developing in situ systems for targeted delivery of anti-cancer agents with special emphasis on types of polymers used to formulate the in situ system. In situ formulations for locoregional anti-cancer drug delivery that are marketed and are under clinical trials have also been discussed in detail in this article.
Collapse
Affiliation(s)
- Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tushit Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rohan Aurora
- The International School Bangalore, Karnataka, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
14
|
Hong W, Zhang Z, Liu L, Zhao Y, Zhang D, Liu M. Brain-targeted delivery of PEGylated nano-bacitracin A against Penicillin-sensitive and -resistant Pneumococcal meningitis: formulated with RVG 29 and Pluronic ® P85 unimers. Drug Deliv 2019; 25:1886-1897. [PMID: 30404541 PMCID: PMC6225518 DOI: 10.1080/10717544.2018.1486473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Pneumococcal meningitis (PM), caused by Streptococcus pneumonia, remains a high-burden disease in developing countries. Antibiotic therapy has been limited due to the inefficiency of drug transport across the blood-brain barrier (BBB) and the emergence of drug-resistant strains. In our preliminary study, PEGylated nano-self-assemblies of bacitracin A (PEGylated Nano-BA12K) demonstrated a strong antibacterial potency against S. pneumonia. In this study, the potential application of this micelle for the treatment of both Penicillin-sensitive and -resistant PM was studied. To address BBB-targeting and -crossing issues, PEGylated Nano-BA12K was formulated with a specific brain-targeting peptide (rabies virus glycopeptide-29, RVG29) and a P-glycoprotein inhibitor (Pluronic® P85 unimers) to construct a mixed micellar system (RVG29-Nano-BAP85). RVG29-Nano-BAP85 demonstrated a strong antibacterial potency against 13 clinical isolates of S. pneumonia, even higher than that of Penicillin G, a conventional anti-PM agent. RVG29-Nano-BAP85 had more cellular uptake in brain capillary endothelial cells (BCECs) and higher BBB-crossing efficiency than single formulated Nano-BAs as shown in an in vitro BBB model. The enhanced BBB-permeability was attributed to the synergetic effect of RVG29 and P85 unimers through receptor-mediated transcytosis, exhaustion of ATP, and reduction in membrane microviscosity. In vivo results further demonstrated that RVG29-Nano-BAP85 was able to accumulate in brain parenchyma as confirmed by in vivo optical imaging. In addition, RVG29-Nano-BAP85 exhibited high therapeutic efficiencies in both Penicillin-sensitive and -resistant PM mouse models with negligible systemic toxicity. Collectively, RVG29-Nano-BAP85 could effectively overcome BBB barriers and suppressed the growth of both drug-sensitive and -resistant S. pneumonia in the brain tissues, which demonstrated its potential for the treatment of PM.
Collapse
Affiliation(s)
- Wei Hong
- a Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University , Shenyang , P.R. China
| | - Zehui Zhang
- a Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University , Shenyang , P.R. China
| | - Lipeng Liu
- a Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University , Shenyang , P.R. China
| | - Yining Zhao
- a Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University , Shenyang , P.R. China
| | - Dexian Zhang
- a Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University , Shenyang , P.R. China
| | - Mingchun Liu
- a Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University , Shenyang , P.R. China
| |
Collapse
|
15
|
Jiang S, Li M, Hu Y, Zhang Z, Lv H. Multifunctional self-assembled micelles of galactosamine-hyaluronic acid-vitamin E succinate for targeting delivery of norcantharidin to hepatic carcinoma. Carbohydr Polym 2018; 197:194-203. [DOI: 10.1016/j.carbpol.2018.05.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/07/2023]
|
16
|
Park J, Choi E, Shin S, Lim S, Kim D, Baek S, Lee KP, Lee JJ, Lee BH, Kim B, Jeong K, Baik JH, Kim YK, Kim S. Nootropic nanocomplex with enhanced blood-brain barrier permeability for treatment of traumatic brain injury-associated neurodegeneration. J Control Release 2018; 284:152-159. [DOI: 10.1016/j.jconrel.2018.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 01/14/2023]
|
17
|
Lim RG, Quan C, Reyes-Ortiz AM, Lutz SE, Kedaigle AJ, Gipson TA, Wu J, Vatine GD, Stocksdale J, Casale MS, Svendsen CN, Fraenkel E, Housman DE, Agalliu D, Thompson LM. Huntington's Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits. Cell Rep 2018; 19:1365-1377. [PMID: 28514657 PMCID: PMC5646270 DOI: 10.1016/j.celrep.2017.04.021] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 03/08/2017] [Accepted: 04/06/2017] [Indexed: 12/16/2022] Open
Abstract
Brain microvascular endothelial cells (BMECs) are an essential component of the blood-brain barrier (BBB) that shields the brain against toxins and immune cells. While BBB dysfunction exists in neurological disorders, including Huntington’s disease (HD), it is not known if BMECs themselves are functionally compromised to promote BBB dysfunction. Further, the underlying mechanisms of BBB dysfunction remain elusive given limitations with mouse models and post-mortem tissue to identify primary deficits. We undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived BMECs (iBMEC) from HD patients or unaffected controls. We demonstrate that HD iBMECs have intrinsic abnormalities in angiogenesis and barrier properties, as well as in signaling pathways governing these processes. Thus, our findings provide an iPSC-derived BBB model for a neurodegenerative disease and demonstrate autonomous neurovascular deficits that may underlie HD pathology with implications for therapeutics and drug delivery.
Collapse
Affiliation(s)
- Ryan G Lim
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; UCI MIND, University of California, Irvine, Irvine, CA 92697, USA
| | - Chris Quan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Andrea M Reyes-Ortiz
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Sarah E Lutz
- Departments of Neurology, Pathology, and Cell Biology and Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - Amanda J Kedaigle
- Computational and Systems Biology Graduate Program, MIT, Cambridge, MA 02139, USA
| | - Theresa A Gipson
- Center for Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Gad D Vatine
- Department of Biomedical Sciences, The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Malcolm S Casale
- Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Clive N Svendsen
- Department of Biomedical Sciences, The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - David E Housman
- Center for Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Dritan Agalliu
- Departments of Neurology, Pathology, and Cell Biology and Pharmacology, Columbia University Medical Center, New York, NY 10032, USA; Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032, USA.
| | - Leslie M Thompson
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; UCI MIND, University of California, Irvine, Irvine, CA 92697, USA; Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
18
|
pH-sensitive micelles for the intracellular co-delivery of curcumin and Pluronic L61 unimers for synergistic reversal effect of multidrug resistance. Sci Rep 2017; 7:42465. [PMID: 28195164 PMCID: PMC5307950 DOI: 10.1038/srep42465] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022] Open
Abstract
Pluronic L61 unimers, which are biomacromolecular modulators, and curcumin, a small-molecule modulator, were co-formulated into pH-sensitive micelles to reveal the full synergistic potential of combination drug treatments to reverse multidrug resistance (MDR). Compared to monotherapy, combined therapy significantly improved the cytotoxicity, cellular uptake and apoptotic effects of doxorubicin (DOX) against MCF-7/ADR cells. In mechanistic studies, both L61 and curcumin enhanced the cytotoxic effect by acting on mitochondrial signalling pathways. The compounds selectively accumulated in the mitochondria and disabled the mitochondria by dissipating the mitochondrial membrane potential, decreasing the ATP levels, and releasing cytochrome c, which initiated a cascade of caspase-9 and caspase-3 reactions. Furthermore, both curcumin and L61 down-regulated the expression and function of P-gp in response to drug efflux from the MCF-7/ADR cells. In the MCF-7/ADR tumour-bearing mouse model, intravenous administration of the combined therapy directly targeted the tumour, as revealed by the accumulation of DiR in the tumour site, which led to a significant inhibition of tumour growth without measurable side effects. In conclusion, co-formulation consisting of L61 and curcumin in pH-sensitive micelles induced significant synergistic effects on the reversal of MDR. Therefore, the intracellular co-delivery of various MDR modulators has great potential to reverse MDR in tumours.
Collapse
|
19
|
Jaskula–Sztul R, Chen G, Dammalapati A, Harrison A, Tang W, Gong S, Chen H. AB3-Loaded and Tumor-Targeted Unimolecular Micelles for Medullary Thyroid Cancer Treatment. J Mater Chem B 2017; 5:151-159. [PMID: 28025618 PMCID: PMC5180596 DOI: 10.1039/c6tb02530g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Medullary thyroid cancer (MTC) is often resistant to standard therapies, emphasizing the need for the development of other treatments. A new histone deacetylase inhibitor, AB3, can effectively inhibit MTC cell proliferation in vitro. However, its poor aqueous solubility and stability, fast clearance, and lack of tumor targeting ability limit its in vivo application. Therefore, multifunctional unimolecular micelles were developed for targeted delivery of AB3 for MTC therapy. The unimolecular micelles exhibited a spherical core-shell structure, uniform size distribution, and excellent stability. AB3 was encapsulated into the hydrophobic core of the unimolecular micelles, thus significantly enhancing its aqueous solubility and stability. KE108, a somatostatin analog possessing high affinity to all five subtypes of SSTR, was used as an MTC-targeting ligand. In vitro cellular uptake analyses demonstrated that the KE108 exhibited superior targeting ability in MTC cells compared to octreotide, the first clinically used somatostatin analog. Moreover, the AB3-loaded and KE108-conjugated unimolecular micelles exhibited the best efficacy in suppressing MTC cell growth and tumor marker expression in vitro. Furthermore, AB3-loaded, KE108-conjugated micelles demonstrated the best anticancer efficacy in vivo without any apparent systemic toxicity, thereby offering a promising approach for targeted MTC therapy.
Collapse
Affiliation(s)
- Renata Jaskula–Sztul
- Department of Surgery, School of Medicine University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53715, USA
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Ajitha Dammalapati
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - April Harrison
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53715, USA
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Herbert Chen
- Department of Surgery, School of Medicine University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
20
|
Pluronic Nanotechnology for Overcoming Drug Resistance. BIOACTIVITY OF ENGINEERED NANOPARTICLES 2017. [DOI: 10.1007/978-981-10-5864-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Singh A, Kim W, Kim Y, Jeong K, Kang CS, Kim Y, Koh J, Mahajan SD, Prasad PN, Kim S. Multifunctional Photonics Nanoparticles for Crossing the Blood-Brain Barrier and Effecting Optically Trackable Brain Theranostics. ADVANCED FUNCTIONAL MATERIALS 2016; 26:7057-7066. [PMID: 29081729 PMCID: PMC5658140 DOI: 10.1002/adfm.201602808] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Theranostic photonic nanoparticles (TPNs) that cross the blood-brain barrier (BBB) and efficiently deliver a therapeutic agent to treat brain diseases, simultaneously providing optical tracking of drug delivery and release, are introduced. These TPNs are constructed by physical encapsulation of visible and/or near-infrared photonic molecules, in an ultrasmall micellar structure (<15 nm). Phytochemical curcumin is employed as a therapeutic as well as visible-emitting photonic component. In vitro BBB model studies and animal imaging, as well as ex vivo examination, reveal that these TPNs are capable of transmigration across the BBB and subsequent accumulation near the orthotopic xenograft of glioblastoma multiforme (GBM) that is the most common and aggressive brain tumor whose vasculature retains permeability-resistant properties. The intracranial delivery and release of curcumin can be visualized by imaging fluorescence produced by energy transfer from curcumin as the donor to the near-infrared emitting dye, coloaded in TPN, where curcumin induced apoptosis of glioma cells. At an extremely low dose of TPN, a significant therapeutic outcome against GBM is demonstrated noninvasively by bioluminescence monitoring of time-lapse proliferation of luciferase-expressing U-87 MG human GBM in the brain. This approach of TPN can be generally applied to a broad range of brain diseases.
Collapse
Affiliation(s)
- Ajay Singh
- Center for Theragnosis and Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul 136-791, South Korea. Institute for Lasers Photonics and Biophotonics, Department of Chemistry State University of New York, Buffalo, NY 14260, USA
| | - Woong Kim
- Center for Theragnosis and Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul 136-791, South Korea
| | - Youngsun Kim
- Center for Theragnosis and Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul 136-791, South Korea
| | - Keunsoo Jeong
- Center for Theragnosis and Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul 136-791, South Korea
| | - Chi Soo Kang
- Center for Theragnosis and Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul 136-791, South Korea
| | - YoungSoo Kim
- Center for Theragnosis and Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul 136-791, South Korea
| | - Joonseok Koh
- Department of Organic and Nano System Engineering Konkuk University Seoul 143-701, South Korea
| | - Supriya D Mahajan
- Department of Medicine Division of Allergy, Immunology, and Rheumatology State University of New York Clinical Translational Research Center Buffalo, NY 14203, USA
| | - Paras N Prasad
- Institute for Lasers Photonics and Biophotonics Department of Chemistry State University of New York Buffalo, NY 14260, USA
| | - Sehoon Kim
- Center for Theragnosis and Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul 136-791, South Korea
| |
Collapse
|
22
|
Zhang L, Lu J, Qiu L. Synergistic effects of A-B-C-type amphiphilic copolymer on reversal of drug resistance in MCF-7/ADR breast carcinoma. Int J Nanomedicine 2016; 11:5205-5220. [PMID: 27785023 PMCID: PMC5066852 DOI: 10.2147/ijn.s115956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
P-glycoprotein (P-gp) overexpression has become the most common cause of occurrence of multidrug resistance in clinical settings. We aimed to construct a micellar polymer carrier to sensitize drug-resistant tumors to doxorubicin (DOX). This A-B-C-type amphiphilic copolymer was prepared by the sequential linkage of β-cyclodextrin, hydrophobic poly(d,l-lactide), and hydrophilic poly(ethylene glycol). Upon incubation of the DOX-loaded micelles with DOX-resistant human breast carcinoma MCF-7/ADR cells, significantly enhanced cytotoxicity and apoptosis were achieved. A series of studies on the action mechanism showed that the polymer components such as β-cyclodextrin, hydrophobic poly(d,l-lactide) segment, and poly(ethylene glycol) coordinatively contributed to the improved intracellular ATP depletion and ATPase activity, increased intracellular uptake of P-gp substrates via competitive binding to P-gp, and decreased P-gp expression in MCF-7/ADR cells. More interestingly, a similar phenomenon was observed in the zebrafish xenograft model, resulting in ~64% inhibition of MCF-7/ADR tumor growth. These results implied that the polymeric micelles displayed great potentials as P-gp modulators to reverse DOX resistance in MCF-7/ADR breast carcinoma.
Collapse
Affiliation(s)
- Lu Zhang
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou
- Drug Clinical Trial Office, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jiafei Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Liyan Qiu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou
| |
Collapse
|
23
|
Chen G, Jaskula-Sztul R, Harrison A, Dammalapati A, Xu W, Cheng Y, Chen H, Gong S. KE108-conjugated unimolecular micelles loaded with a novel HDAC inhibitor thailandepsin-A for targeted neuroendocrine cancer therapy. Biomaterials 2016; 97:22-33. [PMID: 27156249 DOI: 10.1016/j.biomaterials.2016.04.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/06/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022]
Abstract
Neuroendocrine (NE) cancers can cause significant patient morbidity. Besides surgery, there are no curative treatments for NE cancers and their metastases, emphasizing the need for the development of other forms of therapy. In this study, multifunctional unimolecular micelles were developed for targeted NE cancer therapy. The unimolecular micelles were formed by multi-arm star amphiphilic block copolymer poly(amidoamine)-poly(valerolactone)-poly(ethylene glycol) conjugated with KE108 peptide and Cy5 dye (abbreviated as PAMAM-PVL-PEG-KE108/Cy5). The unimolecular micelles with a spherical core-shell structure exhibited a uniform size distribution and excellent stability. The hydrophobic drug thailandepsin-A (TDP-A), a recently discovered HDAC inhibitor, was physically encapsulated into the hydrophobic core of the micelles. KE108 peptide, a somatostatin analog possessing high affinity for all five subtypes of somatostatin receptors (SSTR 1-5), commonly overexpressed in NE cancer cells, was used for the first time as an NE cancer targeting ligand. KE108 exhibited superior targeting abilities compared to other common somatostatin analogs, such as octreotide, in NE cancer cell lines. The in vitro assays demonstrated that the TDP-A-loaded, KE108-targeted micelles exhibited the best capabilities in suppressing NE cancer cell growth. Moreover, the in vivo near-infrared fluorescence imaging on NE-tumor-bearing nude mice showed that KE108-conjugated micelles exhibited the greatest tumor accumulation due to their passive targeting and active targeting capabilities. Finally, TDP-A-loaded and KE108-conjugated micelles possessed the best anticancer efficacy without detectable systemic toxicity. Thus, these novel TDP-A-loaded and KE108-conjugated unimolecular micelles offer a promising approach for targeted NE cancer therapy.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - April Harrison
- Department of Surgery, University of Wisconsin-Madison, WI 53705, USA
| | | | - Wenjin Xu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yiqiang Cheng
- University of Texas Health Sciences Center San Anto-Division, San Antonio, TX 76107, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
24
|
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016; 116:2602-63. [PMID: 26854975 PMCID: PMC5509216 DOI: 10.1021/acs.chemrev.5b00346] [Citation(s) in RCA: 1600] [Impact Index Per Article: 200.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 2015; 220:600-7. [PMID: 26210440 PMCID: PMC4688192 DOI: 10.1016/j.jconrel.2015.07.019] [Citation(s) in RCA: 383] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 12/15/2022]
Abstract
Nanoparticles can preferentially accumulate at sites of action and hold great promise to improve the therapeutic index of many drugs. While conventional methods of nanocarrier-mediated drug delivery have focused on primarily synthetic approaches, engineering strategies that combine synthetic nanoparticles with natural biomaterials have recently gained much attention. In particular, cell membrane-camouflaged nanoparticles are a new class of biomimetic nanoparticles that combine the unique functionalities of cellular membranes and engineering versatility of synthetic nanomaterials for effective delivery of therapeutic agents. Herein, we report on the recent progress on cell membrane-coated nanoparticles for drug delivery. In particular, we highlight three areas: (i) prolonging systemic circulation via cell membrane coating, (ii) cell-specific targeting via cell membrane coating, and (iii) applications of cell membrane coating for drug delivery. The cell membrane-camouflaged nanoparticle platform has emerged as a novel delivery strategy with the potential to improve the therapeutic efficacy for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Brian T Luk
- Department of NanoEngineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
26
|
Zhang S, Arshad M, Ullah A. Drug encapsulation and release behavior of telechelic nanoparticles. NANOTECHNOLOGY 2015; 26:415703. [PMID: 26404557 DOI: 10.1088/0957-4484/26/41/415703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The encapsulation and release of hydrophobic drug, carbamazepine (CBZ) was investigated using three previously synthesized amphiphilic Lipid-b-poly(ethylene glycol) (Lipid-PEG) conjugates. Their micellization, drug encapsulation, and release behavior was investigated by dynamic light scattering (DLS), transmission electron microscope (TEM), and fluorescence spectroscopy. The highest capacity of drug entrapment was observed for the CPE-PEG-a telechelic with the shorter PEG block and the size of the nanoparticles decreased evidently after the drug was loaded, while a slight decrease in size was also observed for the CPE-PEG-b telechelic with longer PEG block and the three-armed CPE-GE conjugate. TEM images showed that all three types of the drug-loaded micelles had spherical or near-spherical morphology. In the study of the in vitro drug release, slower drug-release patterns were observed for CPE-PEG-a and CPE-GE micelles. Almost all the drug entrapped inside the three types of micelles could be released within 50 h.
Collapse
Affiliation(s)
- Shimiao Zhang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | | | | |
Collapse
|
27
|
Mishra K, Joy A. Dual functionalized telechelic block copolymers with reproducible block sizes prepared by microwave assisted RAFT polymerization. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
|
29
|
Kundu P, Maiti S. Cetyl gellan copolymer micelles and hydrogels: In vitro and pharmacodynamic assessment for drug delivery. Int J Biol Macromol 2015; 72:1027-33. [DOI: 10.1016/j.ijbiomac.2014.09.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/08/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
|
30
|
The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials 2014; 35:9144-54. [DOI: 10.1016/j.biomaterials.2014.07.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/20/2014] [Indexed: 12/16/2022]
|
31
|
Core–shell nano-biomaterials for controlled oral delivery and pharmacodynamic activity of glibenclamide. Int J Biol Macromol 2014; 70:20-5. [DOI: 10.1016/j.ijbiomac.2014.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/05/2014] [Accepted: 06/13/2014] [Indexed: 11/24/2022]
|
32
|
Gellan co-polysaccharide micellar solution of budesonide for allergic anti-rhinitis: An in vitro appraisal. Int J Biol Macromol 2014; 68:241-6. [DOI: 10.1016/j.ijbiomac.2014.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 11/22/2022]
|
33
|
Gaikwad VL, Bhatia MS. Polymers influencing transportability profile of drug. Saudi Pharm J 2014; 21:327-35. [PMID: 24227951 DOI: 10.1016/j.jsps.2012.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/26/2012] [Indexed: 11/28/2022] Open
Abstract
Drug release from various polymers is generally governed by the type of polymer/s incorporated in the formulation and mechanism of drug release from polymer/s. A single polymer may show one or more mechanisms of drug release out of which one mechanism is majorly followed for drug release. Some of the common mechanisms of drug release from polymers were, diffusion, swelling, matrix release, leaching of drug, etc. Mechanism or rate of drug release from a polymer or a combination of polymers can be predicted by using different computational methods or models. These models were capable of predicting drug release from its dosage form in advance without actual formulation and testing of drug release from dosage form. Quantitative structure-property relationship (QSPR) is an important tool used in the prediction of various physicochemical properties of actives as well as inactives. Since last several decades QSPR has been applied in new drug development for reducing the total number of drugs to be synthesized, as it involves a selection of the most desirable compound of interest. This technique was also applied in predicting in vivo performance of drug/s for various parameters. QSPR serves as a predictive tool to correlate structural descriptors of molecules with biological as well as physicochemical properties. Several researchers have contributed at different extents in this area to modify various properties of pharmaceuticals. The present review is focused on a study of different polymers that influence the transportability profiles of drugs along with the application of QSPR either to study different properties of polymers that regulate drug release or in predicting drug transportability from different polymer systems used in formulations.
Collapse
Affiliation(s)
- Vinod L Gaikwad
- Department of Pharmaceutics, P.E. Society's Modern College of Pharmacy, Nigdi, Pune-411044, Maharashtra State, India
| | | |
Collapse
|
34
|
Yi X, Kabanov AV. Brain delivery of proteins via their fatty acid and block copolymer modifications. J Drug Target 2014; 21:940-55. [PMID: 24160902 DOI: 10.3109/1061186x.2013.847098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is well known that hydrophobic small molecules penetrate cell membranes better than hydrophilic molecules. Amphiphilic molecules that dissolve both in lipid and aqueous phases are best suited for membrane transport. Transport of biomacromolecules across physiological barriers, e.g. the blood-brain barrier, is greatly complicated by the unique structure and function of such barriers. Two decades ago we adopted a simple philosophy that to increase protein delivery to the brain one needs to modify this protein with hydrophobic moieties. With this general idea we began modifying proteins (antibodies, enzymes, hormones, etc.) with either hydrophobic fatty acid residues or amphiphilic block copolymer moieties, such as poy(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (pluronics or poloxamers) and more recently, poly(2-oxasolines). This simple approach has resulted in impressive successes in CNS drug delivery. We present a retrospective overview of these works initiated in the Soviet Union in 1980s, and then continued in the United States and other countries. Notably some of the early findings were later corroborated by brain pharmacokinetic data. Industrial development of several drug candidates employing these strategies has followed. Overall modification by hydrophobic fatty acids residues or amphiphilic block copolymers represents a promising and relatively safe strategy to deliver proteins to the brain.
Collapse
Affiliation(s)
- Xiang Yi
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA and
| | | |
Collapse
|
35
|
Werle M, Takeuchi H, Bernkop-Schnürch A. New-generation efflux pump inhibitors. Expert Rev Clin Pharmacol 2014; 1:429-40. [DOI: 10.1586/17512433.1.3.429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Sosnik A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing "Generally Recognized As Safe" (GRAS) nanopharmaceuticals: A review. Adv Drug Deliv Rev 2013; 65:1828-51. [PMID: 24055628 DOI: 10.1016/j.addr.2013.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/17/2022]
Abstract
Pumps of the ATP-binding cassette superfamily (ABCs) regulate the access of drugs to the intracellular space. In this context, the overexpression of ABCs is a well-known mechanism of multidrug resistance (MDR) in cancer and infectious diseases (e.g., viral hepatitis and the human immunodeficiency virus) and is associated with therapeutic failure. Since their discovery, ABCs have emerged as attractive therapeutic targets and the search of compounds that inhibit their genetic expression and/or their functional activity has gained growing interest. Different generations of pharmacological ABC inhibitors have been explored over the last four decades to address resistance in cancer, though clinical results have been somehow disappointing. "Generally Recognized As Safe" (GRAS) is a U.S. Food and Drug Administration designation for substances that are accepted as safe for addition in food. Far from being "inert", some amphiphilic excipients used in the production of pharmaceutical products have been shown to inhibit the activity of ABCs in MDR tumors, emerging as a clinically translatable approach to overcome resistance. The present article initially overviews the classification, structure and function of the different ABCs, with emphasis on those pumps related to drug resistance. Then, the different attempts to capitalize on the activity of GRAS nanopharmaceuticals as ABC inhibitors are discussed.
Collapse
Affiliation(s)
- Alejandro Sosnik
- The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; National Science Research Council (CONICET), Argentina; Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
37
|
Reversing multidrug resistance by intracellular delivery of Pluronic® P85 unimers. Biomaterials 2013; 34:9602-14. [PMID: 24021757 DOI: 10.1016/j.biomaterials.2013.08.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/10/2013] [Indexed: 12/27/2022]
Abstract
Pluronics have been demonstrated as excellent multidrug resistance (MDR) reversal agent in the form of unimers rather than micelles. However, the effective intracellular delivery of Pluronic(®) unimers to MDR cancer cells still remains a big challenge. To address this issue, a mixed micellar system based mainly on the pH-sensitive copolymer of poly (L-histidine)-poly (D,L-lactide)-polyethyleneglycol-poly (D,L-lactide)-poly (L-histidine) (PHis-PLA-PEG-PLA-PHis) and Pluronic(®) F127, some of which was conjugated with folate, was constructed to intracellularly deliver the unimers of Pluronic(®) P85 to MDR cells. The folate-mediated endosomal pH-sensitive mixed micelles (pHendoSM-P85/f) were prepared by a thin-film hydration method, by which Pluronic(®) P85 unimers and doxorubicin (DOX) were incoporated into the mixed micelles. The incorporation of Pluronic(®) P85 unimers was investigated by the surface tension test. The results indicated that the Pluronic(®) P85 unimers probably first inserted into the binary mixed micelles and then formed a triple-component mixed micelles with Pluronic(®) F127 and PHis-PLA-PEG-PLA-PHis as the loading content increased. Further analyzed with flow cytometry, confocal laser scanning microscopy (CLSM) and MTT assay, the micelles with inserted Pluronic(®) P85 unimers demonstrated much more cellular uptake and higher cytotoxicity against MDR cells than the triple-component mixed micelles and plain Pluronic(®) micelles. The enhanced MDR reversal effect was attributed to the successful intracellular delivery of Pluronic(®) P85 unimers to the MDR cells, which was confirmed by the subcellular colocalization of Pluronic(®) P85 unimers with mitochondria, the decreased ATP energy and mitochondrial membrane potential (MP) in the MCF-7/ADR cells. The pHendoSM-P85/f/DOX also demonstrated more dramatic antitumor efficiency and remarkable reduction of ATP energy in the MDR cells in tumors than the control formulations. The intracellular delivery of Pluronic(®) P85 unimers to the MDR cells based on the targeted and endosomal pH triggerd release mixed micelles has been demonstrated as a promising approach to reverse MDR.
Collapse
|
38
|
Al-Ghananeem AM, Smith M, Coronel ML, Tran H. Advances in brain targeting and drug delivery of anti-HIV therapeutic agents. Expert Opin Drug Deliv 2013; 10:973-85. [PMID: 23510097 DOI: 10.1517/17425247.2013.781999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Human immunodeficiency virus (HIV) is a neurotropic virus that enters the central nervous system (CNS) early in the course of infection. Although antiretroviral drugs are able to eliminate the majority of the HIV virus in the bloodstream, however, no specific treatment currently exist for CNS infections related to HIV. This is mainly attributed to the poor penetrability of antiretroviral therapy across the blood-brain barrier (BBB), and the protective nature of the BBB. Therefore, in order to increase the efficacy of anti-HIV drugs, novel drug delivery methodologies that can exhibit activity in the CNS are most needed and warranted. AREAS COVERED In this review article, the authors discussed the challenges with delivering drugs to the brain especially under HIV infection pathophysiology status. Also, they discussed the approaches currently being investigated to enhance brain targeting of anti-HIV drugs. A literature search was performed to cover advances in major approaches used to enhance drug delivery to the brain. EXPERT OPINION If drugs could reach the CNS in sufficient quantity by the methodologies discussed, mainly through intranasal administration and the utilization of nanotechnology, this could generate interest in previously abandoned therapeutic agents and enable an entirely novel approach to CNS drug delivery.
Collapse
Affiliation(s)
- Abeer M Al-Ghananeem
- Sullivan University, College of Pharmacy, Department of Pharmaceutical Sciences, 2100 Gardiner Lane West Campus, Louisville, KY 40205, USA.
| | | | | | | |
Collapse
|
39
|
Wang Y, Zhang Z, Sha X, Han L, Fang X. Reversal of paclitaxel-chemoresistance by mixed Pluronic P105/L101 micelles in human ovarian cancer SKOV-3/PTX cells. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Oral delivery of anticancer drugs III: formulation using drug delivery systems. Drug Discov Today 2013; 18:99-104. [DOI: 10.1016/j.drudis.2012.08.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 07/17/2012] [Accepted: 08/22/2012] [Indexed: 11/18/2022]
|
41
|
Luk BT, Fang RH, Zhang L. Lipid- and polymer-based nanostructures for cancer theranostics. Am J Cancer Res 2012; 2:1117-26. [PMID: 23382770 PMCID: PMC3563151 DOI: 10.7150/thno.4381] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/15/2012] [Indexed: 12/22/2022] Open
Abstract
The relatively new field of nanotheranostics combines the advantages of in vivo diagnosis with the ability to administer treatment through a single nano-sized carrier, offering new opportunities for cancer diagnosis and therapy. Nanotheranostics has facilitated the development of nanomedicine through direct visualization of drug blood circulation and biodistribution. From a clinical perspective, nanotheranostics allows therapies to be administered and monitored in real time, thus decreasing the potential of under- or over-dosing and allowing for more personalized treatment regimens. Herein, we review recent development of nanotheranostics using lipid- and polymer-based formulations, with a particular focus on their applications in cancer research. Recent advances in nanotechnology aimed to combine therapeutic molecules with imaging agents for magnetic resonance imaging, radionuclide imaging, or fluorescence imaging are discussed.
Collapse
|
42
|
Budkina OA, Demina TV, Dorodnykh TY, Melik-Nubarov NS, Grozdova ID. Cytotoxicity of nonionic amphiphilic copolymers. POLYMER SCIENCE SERIES A 2012. [DOI: 10.1134/s0965545x12080020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Doğan A, Yalvaç ME, Şahin F, Kabanov AV, Palotás A, Rizvanov AA. Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers. Int J Nanomedicine 2012; 7:4849-60. [PMID: 23028214 PMCID: PMC3441230 DOI: 10.2147/ijn.s31949] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stem cell usage provides novel avenues of tissue regeneration and therapeutics across disciplines. Apart from ethical considerations, the selection and amplification of donor stem cells remain a challenge. Various biopolymers with a wide range of properties have been used extensively to deliver biomolecules such as drugs, growth factors and nucleic acids, as well as to provide biomimetic surface for cellular adhesion. Using human tooth germ stem cells with high proliferation and transformation capacity, we have investigated a range of biopolymers to assess their potential for tissue engineering. Tolerability, toxicity, and their ability to direct differentiation were evaluated. The majority of pluronics, consisting of both hydrophilic and hydrophobic poly(ethylene oxide) chains, either exerted cytotoxicity or had no significant effect on human tooth germ stem cells; whereas F68 increased the multi-potency of stem cells, and efficiently transformed them into osteogenic, chondrogenic, and adipogenic tissues. The data suggest that differentiation and maturation of stem cells can be promoted by selecting the appropriate mechanical and chemical properties of polymers. It has been shown for the first time that F68, with its unique molecular characteristics, has a great potential to increase the differentiation of cells, which may lead to the development of new tissue engineering strategies in regenerative medicine.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and BioEngineering, College of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
44
|
Silk constructs for delivery of musculoskeletal therapeutics. Adv Drug Deliv Rev 2012; 64:1111-22. [PMID: 22522139 DOI: 10.1016/j.addr.2012.03.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 12/13/2022]
Abstract
Silk fibroin (SF) is a biopolymer with distinguishing features from many other bio- as well as synthetic polymers. From a biomechanical and drug delivery perspective, SF combines remarkable versatility for scaffolding (solid implants, hydrogels, threads, solutions), with advanced mechanical properties and good stabilization and controlled delivery of entrapped protein and small molecule drugs, respectively. It is this combination of mechanical and pharmaceutical features which renders SF so exciting for biomedical applications. This pattern along with the versatility of this biopolymer has been translated into progress for musculoskeletal applications. We review the use and potential of silk fibroin for systemic and localized delivery of therapeutics in diseases affecting the musculoskeletal system. We also present future directions for this biopolymer as well as the necessary research and development steps for their achievement.
Collapse
|
45
|
Physicochemical characterizations of amphiphilic block copolymers with different MWs and micelles for development of anticancer drug nanocarriers. Macromol Res 2012. [DOI: 10.1007/s13233-012-0133-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Delivery of P-glycoprotein substrates using chemosensitizers and nanotechnology for selective and efficient therapeutic outcomes. J Control Release 2012; 161:50-61. [DOI: 10.1016/j.jconrel.2012.04.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 12/13/2022]
|
47
|
Zhang S, Mark KS. α1-Acid glycoprotein induced effects in rat brain microvessel endothelial cells. Microvasc Res 2012; 84:161-8. [PMID: 22633841 DOI: 10.1016/j.mvr.2012.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/13/2012] [Accepted: 05/10/2012] [Indexed: 01/01/2023]
Abstract
α1-Acid glycoprotein (AGP) is a positive acute phase protein which is elevated 1-10 times during inflammation. Whereas AGP has been reported to have immunomodulatory properties, other biological functions of this protein such as its effects on the blood-brain barrier (BBB) endothelium are unknown. Tight junction (TJ) proteins (ZO-1 and occludin) are crucial in maintaining BBB integrity and brain homeostasis. As inflammatory cytokines have been shown to alter BBB integrity and TJ protein expression, we hypothesized that AGP changes BBB function by stimulating inflammatory cytokines and/or directly modulating TJ protein expression. We used primary rat brain microvessel endothelial cells (RBMECs) as an in vitro BBB model to study the direct effects of AGP on the brain microvasculature. No change in cytokine levels was detected in supernatant from AGP-treated RBMECs, despite increased mRNA expression by the cells. Paracellular permeability was decreased up to 20%, across RBMEC monolayers following treatment with AGP, suggesting its role in enhancing BBB integrity. RBMECs showed a biphasic response of increased occludin protein expression following AGP treatment while ZO-1 expression changed in a dose- and time-dependent manner. These changes in TJ proteins suggest that AGP induced changes in occludin related to enhanced barrier properties while the change in ZO-1 may play a secondary role in BBB integrity and/or as an intracellular signaling molecule. AGP significantly changed transcription factor activator protein 1 (AP-1) DNA-binding activity which provides evidence of the potential cell signaling pathways that contribute to the effect of AGP in RBMECs. Together, this supports our hypothesis that AGP has a direct effect in brain microvasculature and may play an important role in altering BBB integrity in inflammatory-related diseases.
Collapse
Affiliation(s)
- Shuangling Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, TX 79106, USA.
| | | |
Collapse
|
48
|
Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 2012; 64:640-65. [PMID: 22154620 DOI: 10.1016/j.addr.2011.11.010] [Citation(s) in RCA: 628] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a highly regulated and efficient barrier that provides a sanctuary to the brain. It is designed to regulate brain homeostasis and to permit selective transport of molecules that are essential for brain function. Unfortunately, drug transport to the brain is hampered by this almost impermeable, highly selective and well coordinated barrier. With progress in molecular biology, the BBB is better understood, particularly under different pathological conditions. This review will discuss the barrier issue from a biological and pathological perspective to provide a better insight to the challenges and opportunities associated with the BBB. Modern methods which can take advantage of these opportunities will be reviewed. Applications of nanotechnology in drug transport, receptor-mediated targeting and transport, and finally cell-mediated drug transport will also be covered in the review. The challenge of delivering an effective therapy to the brain is formidable; solutions will likely involve concerted multidisciplinary approaches that take into account BBB biology as well as the unique features associated with the pathological condition to be treated.
Collapse
Affiliation(s)
- Yan Chen
- School of Pharmacy, CHIRI, WABRI, Curtin University, Perth, Western Australia, Australia.
| | | |
Collapse
|
49
|
Wang Y, Hao J, Li Y, Zhang Z, Sha X, Han L, Fang X. Poly(caprolactone)-modified Pluronic P105 micelles for reversal of paclitaxcel-resistance in SKOV-3 tumors. Biomaterials 2012; 33:4741-51. [PMID: 22445254 DOI: 10.1016/j.biomaterials.2012.03.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
Three poly(caprolactone)-modified Pluronic P105 polymers (P105/PCLs) were synthesized using commercially available ε-caprolactone monomers and Pluronic P105 copolymers. The chemical structures, compositions and molecular weights of the P105/PCLs were confirmed by FT-IR, (1)H NMR and GPC measurements. Three paclitaxel (PTX)-loaded P105/PCL polymeric micelles were then prepared, and they showed average diameters in the range of 30-150 nm, drug-loading coefficients of 0.15%-5.43%, and encapsulation ratios of 2.1%-76.53%. The in vitro cytotoxicity assay demonstrated that three PTX-loaded P105/PCL micelles were able to sensitize the resistant SKOV-3/PTX tumor cells. The PTX-loaded P105/PCL(50) micelle was then selected for an in vivo antitumor efficacy study. The tumor volumes in nude mice bearing s.c. resistant SKOV-3/PTX carcinoma treated with this micellar PTX were significantly less than the control group treated with Taxol. It was demonstrated that three PCL-modified P105 monomers and micelles inhibited P-gP efflux activity in the resistant SKOV-3/PTX cells via at least three intracellular events: 1) inhibition of ATPase of P-gP, 2) decrease of membrane microviscosity and 3) a loss of mitochondrial membrane potential and subsequent decrease of ATP levels at the concentration of monomers (0.001%) and/or micelles (0.01-1.0%). Considering other favorable characteristics, such as sustained PTX release in vitro, long-circulating time in vivo and increased PTX concentration in the tissues of ovaries and uterus in mice, the PCL-modified Pluronic P105 polymeric micelle system could have important clinical implications for delivery of paclitaxel and treatment of the resistant ovarian tumors.
Collapse
Affiliation(s)
- Yongzhong Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res 2010; 27:1759-71. [PMID: 20593303 DOI: 10.1007/s11095-010-0141-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 03/29/2010] [Indexed: 12/16/2022]
Abstract
Central nervous system (CNS) diseases represent the largest and fastest-growing area of unmet medical need. Nanotechnology plays a unique instrumental role in the revolutionary development of brain-specific drug delivery, imaging, and diagnosis. With the aid of nanoparticles of high specificity and multifunctionality, such as dendrimers and quantum dots, therapeutics, imaging agents, and diagnostic molecules can be delivered to the brain across the blood-brain barrier (BBB), enabling considerable progress in the understanding, diagnosis, and treatment of CNS diseases. Nanoparticles used in the CNS for drug delivery, imaging, and diagnosis are reviewed, as well as their administration routes, toxicity, and routes to cross the BBB. Future directions and major challenges are outlined.
Collapse
|