1
|
Oh DE, Kim HB, Kim TH. Electrochemical DNA Cleavage Sensing for EcoRV Activity and Inhibition with an ERGO Electrode. BIOSENSORS 2024; 14:73. [PMID: 38391992 PMCID: PMC10886839 DOI: 10.3390/bios14020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
An electrochemically reduced graphene oxide (ERGO) electrode-based electrochemical assay was developed for rapid, sensitive, and straightforward analysis of both activity and inhibition of the endonuclease EcoRV. The procedure uses a DNA substrate designed for EcoRV, featuring a double-stranded DNA (dsDNA) region labeled with methylene blue (MB) and a single-stranded DNA (ssDNA) region immobilized on the ERGO surface. The ERGO electrode, immobilized with the DNA substrate, was subsequently exposed to a sample containing EcoRV. Upon enzymatic hydrolysis, the cleaved dsDNA fragments were detached from the ERGO surface, leading to a decrease in the MB concentration near the electrode. This diminished the electron transfer efficiency for MB reduction, resulting in a decreased reduction current. This assay demonstrates excellent specificity and high sensitivity, with a limit of detection (LOD) of 9.5 × 10-3 U mL-1. Importantly, it can also measure EcoRV activity in the presence of aurintricarboxylic acid, a known inhibitor, highlighting its potential for drug discovery and clinical diagnostic applications.
Collapse
Affiliation(s)
| | | | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea; (D.E.O.); (H.B.K.)
| |
Collapse
|
2
|
Rostøl JT, Xie W, Kuryavyi V, Maguin P, Kao K, Froom R, Patel DJ, Marraffini LA. The Card1 nuclease provides defence during type III CRISPR immunity. Nature 2021; 590:624-629. [PMID: 33461211 PMCID: PMC7906951 DOI: 10.1038/s41586-021-03206-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
In the type III CRISPR-Cas immune response of prokaryotes, infection triggers the production of cyclic oligoadenylates that bind and activate proteins that contain a CARF domain1,2. Many type III loci are associated with proteins in which the CRISPR-associated Rossman fold (CARF) domain is fused to a restriction endonuclease-like domain3,4. However, with the exception of the well-characterized Csm6 and Csx1 ribonucleases5,6, whether and how these inducible effectors provide defence is not known. Here we investigated a type III CRISPR accessory protein, which we name cyclic-oligoadenylate-activated single-stranded ribonuclease and single-stranded deoxyribonuclease 1 (Card1). Card1 forms a symmetrical dimer that has a large central cavity between its CRISPR-associated Rossmann fold and restriction endonuclease domains that binds cyclic tetra-adenylate. The binding of ligand results in a conformational change comprising the rotation of individual monomers relative to each other to form a more compact dimeric scaffold, in which a manganese cation coordinates the catalytic residues and activates the cleavage of single-stranded-but not double-stranded-nucleic acids (both DNA and RNA). In vivo, activation of Card1 induces dormancy of the infected hosts to provide immunity against phage infection and plasmids. Our results highlight the diversity of strategies used in CRISPR systems to provide immunity.
Collapse
Affiliation(s)
- Jakob T. Rostøl
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
| | - Wei Xie
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vitaly Kuryavyi
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pascal Maguin
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
| | - Kevin Kao
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
| | - Ruby Froom
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Correspondence to ,
| | - Luciano A. Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA,Correspondence to ,
| |
Collapse
|
3
|
Sugita M, Onishi I, Irisa M, Yoshida N, Hirata F. Molecular Recognition and Self-Organization in Life Phenomena Studied by a Statistical Mechanics of Molecular Liquids, the RISM/3D-RISM Theory. Molecules 2021; 26:E271. [PMID: 33430461 PMCID: PMC7826681 DOI: 10.3390/molecules26020271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022] Open
Abstract
There are two molecular processes that are essential for living bodies to maintain their life: the molecular recognition, and the self-organization or self-assembly. Binding of a substrate by an enzyme is an example of the molecular recognition, while the protein folding is a good example of the self-organization process. The two processes are further governed by the other two physicochemical processes: solvation and the structural fluctuation. In the present article, the studies concerning the two molecular processes carried out by Hirata and his coworkers, based on the statistical mechanics of molecular liquids or the RISM/3D-RISM theory, are reviewed.
Collapse
Affiliation(s)
- Masatake Sugita
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1, Ookayama Meguro-ku, Tokyo 152-8550, Japan;
| | - Itaru Onishi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan; (I.O.); (M.I.)
| | - Masayuki Irisa
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan; (I.O.); (M.I.)
| | - Norio Yoshida
- Department of Chemistry, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan;
| | - Fumio Hirata
- Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
4
|
Mandal SC, Maganti L, Mondal M, Chakrabarti J. Microscopic insight to specificity of metal ion cofactor in DNA cleavage by restriction endonuclease EcoRV. Biopolymers 2020; 111:e23396. [PMID: 32858776 DOI: 10.1002/bip.23396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 11/06/2022]
Abstract
Restriction endonucleases protect bacterial cells against bacteriophage infection by cleaving the incoming foreign DNA into fragments. In presence of Mg2+ ions, EcoRV is able to cleave the DNA but not in presence of Ca2+ , although the protein binds to DNA in presence of both metal ions. We make an attempt to understand this difference using conformational thermodynamics. We calculate the changes in conformational free energy and entropy of conformational degrees of freedom, like DNA base pair steps and dihedral angles of protein residues in Mg2+ (A)-EcoRV-DNA complex compared to Ca2+ (S)-EcoRV-DNA complex using all-atom molecular dynamics (MD) trajectories of the complexes. We find that despite conformational stability and order in both complexes, the individual degrees of freedom behave differently in the presence of two different metal ions. The base pairs in cleavage region are highly disordered in Ca2+ (S)-EcoRV-DNA compared to Mg2+ (A)-EcoRV-DNA. One of the acidic residues ASP90, coordinating to the metal ion in the vicinity of the cleavage site, is conformationally destabilized and disordered, while basic residue LYS92 gets conformational stability and order in Ca2+ (S) bound complex than in Mg2+ (A) bound complex. The enhanced fluctuations hinder placement of the metal ion in the vicinity of the scissile phosphate of DNA. Similar loss of conformational stability and order in the cleavage region is observed by the replacement of the metal ion. Considering the placement of the metal ion near scissile phosphate as requirement for cleavage action, our results suggest that the changes in conformational stability and order of the base pair steps and the protein residues lead to cofactor sensitivity of the enzyme. Our method based on fluctuations of microscopic conformational variables can be applied to understand enzyme activities in other protein-DNA systems.
Collapse
Affiliation(s)
- Sasthi Charan Mandal
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Lakshmi Maganti
- Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Manas Mondal
- Shenzhen Bay Laboratory, Institute of Systems and Physical Biology, Shenzhen, China
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India.,Thematic Unit of Excellence on Computational Materials Science, and Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
5
|
Onishi I, Tsuji H, Irisa M. A tool written in Scala for preparation and analysis in MD simulation and 3D-RISM calculation of biomolecules. Biophys Physicobiol 2019; 16:485-489. [PMID: 31984200 PMCID: PMC6975905 DOI: 10.2142/biophysico.16.0_485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/01/2019] [Indexed: 12/01/2022] Open
Abstract
Researchers studying biomolecules require easy-to-use, customizable tools allowing them to effectively use other molecular science packages written for molecular dynamics (MD), quantum chemistry, statistical mechanics, and molecular graphics. This paper presents a Scala tool for the computational science of biomolecules (STCSB) developed in Scala, which allows users to prepare and run MD simulations, as well as perform three-dimensional reference interaction site model (3D-RISM) calculations of biomolecules. Features of the STCSB include the following: (1) a cross-platform application running on a Java virtual machine; (2) handling hierarchical XML-based data formats such as the protein data bank markup language (PDBML); (3) prepared application programming interfaces (APIs) with both character user interface (CUI) and graphical user interface (GUI) options; (4) prepared APIs for molecular graphics; and (5) a scalable source code based on the Model-View-Controller (MVC) architectural pattern.
Collapse
Affiliation(s)
- Itaru Onishi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Hiroto Tsuji
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Masayuki Irisa
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
6
|
Cuypers MG, Robertson RM, Knipling L, Waddell MB, Moon K, Hinton DM, White SW. The phage T4 MotA transcription factor contains a novel DNA binding motif that specifically recognizes modified DNA. Nucleic Acids Res 2019; 46:5308-5318. [PMID: 29718457 PMCID: PMC6007404 DOI: 10.1093/nar/gky292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 04/12/2018] [Indexed: 11/12/2022] Open
Abstract
During infection, bacteriophage T4 produces the MotA transcription factor that redirects the host RNA polymerase to the expression of T4 middle genes. The C-terminal 'double-wing' domain of MotA binds specifically to the MotA box motif of middle T4 promoters. We report the crystal structure of this complex, which reveals a new mode of protein-DNA interaction. The domain binds DNA mostly via interactions with the DNA backbone, but the binding is enhanced in the specific cognate structure by additional interactions with the MotA box motif in both the major and minor grooves. The linker connecting the two MotA domains plays a key role in stabilizing the complex via minor groove interactions. The structure is consistent with our previous model derived from chemical cleavage experiments using the entire transcription complex. α- and β-d-glucosyl-5-hydroxymethyl-deoxycytosine replace cytosine in T4 DNA, and docking simulations indicate that a cavity in the cognate structure can accommodate the modified cytosine. Binding studies confirm that the modification significantly enhances the binding affinity of MotA for the DNA. Consequently, our work reveals how a DNA modification can extend the uniqueness of small DNA motifs to facilitate the specificity of protein-DNA interactions.
Collapse
Affiliation(s)
- Maxime G Cuypers
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rosanna M Robertson
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Brett Waddell
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kyung Moon
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
7
|
Pikin SA, Pikina ES. On DNA Motions under Action of Enzymes of Different Types. II. CRYSTALLOGR REP+ 2019. [DOI: 10.1134/s106377451901019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Wu SJ, Schuergers N, Lin KH, Gillen AJ, Corminboeuf C, Boghossian AA. Restriction Enzyme Analysis of Double-Stranded DNA on Pristine Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37386-37395. [PMID: 30277379 DOI: 10.1021/acsami.8b12287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoprobes such as single-walled carbon nanotubes (SWCNTs) are capable of label-free detection that benefits from intrinsic and photostable near-infrared fluorescence. Despite the growing number of SWCNT-based applications, uncertainty surrounding the nature of double-stranded DNA (dsDNA) immobilization on pristine SWCNTs has limited their use as optical sensors for probing DNA-protein interactions. To address this limitation, we study enzyme activity on unmodified dsDNA strands immobilized on pristine SWCNTs. Restriction enzyme activity on various dsDNA sequences was used to verify the retention of the dsDNA's native conformation on the nanotube surface and to quantitatively compare the degree of dsDNA accessibility. We report a 2.8-fold enhancement in initial enzyme activity in the presence of surfactants. Förster resonance electron transfer (FRET) analysis attributes this enhancement to increased dsDNA displacement from the SWCNT surface. Furthermore, the accessibility of native dsDNA was found to vary with DNA configuration and the spacing between the restriction site and the nanotube surface, with a minimum spacing of four base pairs (bp) from the anchoring site needed to preserve enzyme activity. Molecular dynamics (MD) simulations verify that the anchored dsDNA remains within the vicinity of the SWCNT, revealing an unprecedented bimodal displacement of the bp nearest to SWCNT surface. Together, these findings illustrate the successful immobilization of native dsDNA on pristine SWCNTs, offering a new near-infrared platform for exploring vital DNA processes.
Collapse
Affiliation(s)
- Shang-Jung Wu
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Nils Schuergers
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Kun-Han Lin
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Alice J Gillen
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Clémence Corminboeuf
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Ardemis A Boghossian
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| |
Collapse
|
9
|
Onishi I, Sunaba S, Yoshida N, Hirata F, Irisa M. Role of Mg 2+ Ions in DNA Hydrolysis by EcoRV, Studied by the 3D-Reference Interaction Site Model and Molecular Dynamics. J Phys Chem B 2018; 122:9061-9075. [PMID: 30117741 DOI: 10.1021/acs.jpcb.7b12555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of Mg2+ ions during precursor formation in DNA hydrolysis by the homodimeric restriction enzyme EcoRV was elucidated based on the 3D-reference interaction site model (RISM) theory and the molecular dynamics (MD) simulation. From an analysis of the spatial distribution of Mg2+ in an active site using 3D-RISM, we identified a new position for Mg2+ in the X-ray EcoRV-DNA complex structure ( 1rvb ). We refer to the position as site IV†. Site IV† is almost at the same position as that of a Ca2+ ion in the superimposed X-ray crystallographic active-site structure of the PvuII-DNA complex ( 1f0o ). 3D-RISM was also used to locate the position of water molecules, including the water nucleophile at the active site. MD simulations were carried out with the initial structure having two Mg2+ ions at site IV† and at site I*, experimentally identified by Horton et al., to find a stable complex structure in which the DNA fragment was rearranged to orient the scissile bond direction toward the water nucleophile. The equilibrium active-site structure of the EcoRV-DNA complex obtained from the MD simulation was similar to the superimposed X-ray crystallographic structure of the BamHI-DNA complex ( 2bam ). In the active-site structure, two metal ions have almost the same position (≤1.0 Å) as that of 2bam , and the scissile phosphate is twisted to orient the scissile bond toward the water nucleophile, as is the case in 2bam . We propose the equilibrium active-site structure obtained in this study as a precursor for the hydrolysis reaction of EcoRV.
Collapse
Affiliation(s)
- Itaru Onishi
- Department of Bioscience and Bioinformatics , Kyushu Institute of Technology , Iizuka 820-8502 , Japan
| | - Shunya Sunaba
- Department of Bioscience and Bioinformatics , Kyushu Institute of Technology , Iizuka 820-8502 , Japan
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science , Kyushu University , Fukuoka 819-0395 , Japan
| | - Fumio Hirata
- Toyota Physical & Chemical Research Institute , Aichi 480-1192 , Japan.,Institute for Molecular Science , Okazaki 444-8585 , Japan
| | - Masayuki Irisa
- Department of Bioscience and Bioinformatics , Kyushu Institute of Technology , Iizuka 820-8502 , Japan
| |
Collapse
|
10
|
Sinha K, Sangani SS, Kehr AD, Rule GS, Jen-Jacobson L. Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein-DNA Complex. Biochemistry 2016; 55:6115-6132. [PMID: 27786446 PMCID: PMC5402698 DOI: 10.1021/acs.biochem.6b00919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Metal
ion cofactors can alter the energetics and specificity of
sequence specific protein–DNA interactions, but it is unknown
if the underlying effects on structure and dynamics are local or dispersed
throughout the protein–DNA complex. This work uses EcoRV endonuclease
as a model, and catalytically inactive lanthanide ions, which replace
the Mg2+ cofactor. Nuclear magnetic resonance (NMR) titrations
indicate that four Lu3+ or two La3+ cations
bind, and two new crystal structures confirm that Lu3+ binding
is confined to the active sites. NMR spectra show that the metal-free
EcoRV complex with cognate (GATATC) DNA is structurally distinct from
the nonspecific complex, and that metal ion binding sites are not
assembled in the nonspecific complex. NMR chemical shift perturbations
were determined for 1H–15N amide resonances,
for 1H–13C Ile-δ-CH3 resonances, and for stereospecifically assigned Leu-δ-CH3 and Val-γ-CH3 resonances. Many chemical
shifts throughout the cognate complex are unperturbed, so metal binding
does not induce major conformational changes. However, some large
perturbations of amide and side chain methyl resonances occur as far
as 34 Å from the metal ions. Concerted changes in specific residues
imply that local effects of metal binding are propagated via a β-sheet
and an α-helix. Both amide and methyl resonance perturbations
indicate changes in the interface between subunits of the EcoRV homodimer.
Bound metal ions also affect amide hydrogen exchange rates for distant
residues, including a distant subdomain that contacts DNA phosphates
and promotes DNA bending, showing that metal ions in the active sites,
which relieve electrostatic repulsion between protein and DNA, cause
changes in slow dynamics throughout the complex.
Collapse
Affiliation(s)
- Kaustubh Sinha
- Department of Biological Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States.,Department of Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Sahil S Sangani
- Department of Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Andrew D Kehr
- Department of Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Linda Jen-Jacobson
- Department of Biological Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers. Sci Rep 2016; 6:33257. [PMID: 27641327 PMCID: PMC5027553 DOI: 10.1038/srep33257] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/24/2016] [Indexed: 01/24/2023] Open
Abstract
Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble.
Collapse
|
12
|
Govindaraju A, Cortez JD, Reveal B, Christensen SM. Endonuclease domain of non-LTR retrotransposons: loss-of-function mutants and modeling of the R2Bm endonuclease. Nucleic Acids Res 2016; 44:3276-87. [PMID: 26961309 PMCID: PMC4838377 DOI: 10.1093/nar/gkw134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/07/2023] Open
Abstract
Non-LTR retrotransposons are an important class of mobile elements that insert into host DNA by target-primed reverse transcription (TPRT). Non-LTR retrotransposons must bind to their mRNA, recognize and cleave their target DNA, and perform TPRT at the site of DNA cleavage. As DNA binding and cleavage are such central parts of the integration reaction, a better understanding of the endonuclease encoded by non-LTR retrotransposons is needed. This paper explores the R2 endonuclease domain from Bombyx mori using in vitro studies and in silico modeling. Mutations in conserved sequences located across the putative PD-(D/E)XK endonuclease domain reduced DNA cleavage, DNA binding and TPRT. A mutation at the beginning of the first α-helix of the modeled endonuclease obliterated DNA cleavage and greatly reduced DNA binding. It also reduced TPRT when tested on pre-cleaved DNA substrates. The catalytic K was located to a non-canonical position within the second α-helix. A mutation located after the fourth β-strand reduced DNA binding and cleavage. The motifs that showed impaired activity form an extensive basic region. The R2 biochemical and structural data are compared and contrasted with that of two other well characterized PD-(D/E)XK endonucleases, restriction endonucleases and archaeal Holliday junction resolvases.
Collapse
Affiliation(s)
- Aruna Govindaraju
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019-0498, USA
| | - Jeremy D. Cortez
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019-0498, USA
| | - Brad Reveal
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019-0498, USA
| | - Shawn M. Christensen
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019-0498, USA
| |
Collapse
|
13
|
Howard MJ, Klemm BP, Fierke CA. Mechanistic Studies Reveal Similar Catalytic Strategies for Phosphodiester Bond Hydrolysis by Protein-only and RNA-dependent Ribonuclease P. J Biol Chem 2015; 290:13454-64. [PMID: 25817998 DOI: 10.1074/jbc.m115.644831] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 11/06/2022] Open
Abstract
Ribonuclease P (RNase P) is an endonuclease that catalyzes the essential removal of the 5' end of tRNA precursors. Until recently, all identified RNase P enzymes were a ribonucleoprotein with a conserved catalytic RNA component. However, the discovery of protein-only RNase P (PRORP) shifted this paradigm, affording a unique opportunity to compare mechanistic strategies used by naturally evolved protein and RNA-based enzymes that catalyze the same reaction. Here we investigate the enzymatic mechanism of pre-tRNA hydrolysis catalyzed by the NYN (Nedd4-BP1, YacP nuclease) metallonuclease of Arabidopsis thaliana, PRORP1. Multiple and single turnover kinetic data support a mechanism where a step at or before chemistry is rate-limiting and provide a kinetic framework to interpret the results of metal alteration, mutations, and pH dependence. Catalytic activity has a cooperative dependence on the magnesium concentration (nH = 2) under kcat/Km conditions, suggesting that PRORP1 catalysis is optimal with at least two active site metal ions, consistent with the crystal structure. Metal rescue of Asp-to-Ala mutations identified two aspartates important for enhancing metal ion affinity. The single turnover pH dependence of pre-tRNA cleavage revealed a single ionization (pKa ∼ 8.7) important for catalysis, consistent with deprotonation of a metal-bound water nucleophile. The pH and metal dependence mirrors that observed for the RNA-based RNase P, suggesting similar catalytic mechanisms. Thus, despite different macromolecular composition, the RNA and protein-based RNase P act as dynamic scaffolds for the binding and positioning of magnesium ions to catalyze phosphodiester bond hydrolysis.
Collapse
Affiliation(s)
| | | | - Carol A Fierke
- From the Departments of Biological Chemistry and Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
14
|
Okamura TA, Furuya R, Onitsuka K. Synthesis and structures of soluble magnesium and zinc carboxylates containing intramolecular NH⋯O hydrogen bonds in nonpolar solvents. Dalton Trans 2015; 44:7512-23. [DOI: 10.1039/c5dt00053j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnesium and zinc carboxylates containing intramolecular NH⋯O hydrogen bonds showed a fast trans–cis isomerization in nonpolar solvents and were converted into anionic tris(carboxylate)s by the addition of an equimolar ligand.
Collapse
Affiliation(s)
- Taka-aki Okamura
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka, Osaka 560-0043
- Japan
| | - Ryosuke Furuya
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka, Osaka 560-0043
- Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka, Osaka 560-0043
- Japan
| |
Collapse
|
15
|
Zhang J, Pan X, Bell CE. Crystal structure of λ exonuclease in complex with DNA and Ca(2+). Biochemistry 2014; 53:7415-25. [PMID: 25370446 DOI: 10.1021/bi501155q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteriophage λ exonuclease (λexo) is a ring-shaped homotrimer that resects double-stranded DNA ends in the 5'-3' direction to generate a long 3'-overhang that is a substrate for recombination. λexo is a member of the type II restriction endonuclease-like superfamily of proteins that use a Mg(2+)-dependent mechanism for nucleotide cleavage. A previous structure of λexo in complex with DNA and Mg(2+) was determined using a nuclease defective K131A variant to trap a stable complex. This structure revealed the detailed coordination of the two active site Mg(2+) ions but did not show the interactions involving the side chain of the conserved active site Lys-131 residue. Here, we have determined the crystal structure of wild-type (WT) λexo in complex with the same DNA substrate, but in the presence of Ca(2+) instead of Mg(2+). Surprisingly, there is only one Ca(2+) bound in the active site, near the position of Mg(A) in the structure with Mg(2+). The scissile phosphate is displaced by 2.2 Å relative to its position in the structure with Mg(2+), and the network of interactions involving the attacking water molecule is broken. Thus, the structure does not represent a catalytic configuration. However, the crystal structure does show clear electron density for the side chain of Lys-131, which is held in place by interactions with Gln-157 and Glu-129. By combining the K131A-Mg(2+) and WT-Ca(2+) structures, we constructed a composite model to show the likely interactions of Lys-131 during catalysis. The implications with regard to the catalytic mechanism are discussed.
Collapse
Affiliation(s)
- Jinjin Zhang
- Ohio State Biochemistry Program, ‡Department of Molecular and Cellular Biochemistry, and §Department of Chemistry and Biochemistry, The Ohio State University , 1645 Neil Avenue, Columbus, Ohio 43210, United States
| | | | | |
Collapse
|
16
|
van der Vaart A. Coupled binding-bending-folding: The complex conformational dynamics of protein-DNA binding studied by atomistic molecular dynamics simulations. Biochim Biophys Acta Gen Subj 2014; 1850:1091-1098. [PMID: 25161164 DOI: 10.1016/j.bbagen.2014.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Protein-DNA binding often involves dramatic conformational changes such as protein folding and DNA bending. While thermodynamic aspects of this behavior are understood, and its biological function is often known, the mechanism by which the conformational changes occur is generally unclear. By providing detailed structural and energetic data, molecular dynamics simulations have been helpful in elucidating and rationalizing protein-DNA binding. SCOPE OF REVIEW This review will summarize recent atomistic molecular dynamics simulations of the conformational dynamics of DNA and protein-DNA binding. A brief overview of recent developments in DNA force fields is given as well. MAJOR CONCLUSIONS Simulations have been crucial in rationalizing the intrinsic flexibility of DNA, and have been instrumental in identifying the sequence of binding events, the triggers for the conformational motion, and the mechanism of binding for a number of important DNA-binding proteins. GENERAL SIGNIFICANCE Molecular dynamics simulations are an important tool for understanding the complex binding behavior of DNA-binding proteins. With recent advances in force fields and rapid increases in simulation time scales, simulations will become even more important for future studies. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205, Tampa, FL 33620, USA.
| |
Collapse
|
17
|
Harteis S, Schneider S. Making the bend: DNA tertiary structure and protein-DNA interactions. Int J Mol Sci 2014; 15:12335-63. [PMID: 25026169 PMCID: PMC4139847 DOI: 10.3390/ijms150712335] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022] Open
Abstract
DNA structure functions as an overlapping code to the DNA sequence. Rapid progress in understanding the role of DNA structure in gene regulation, DNA damage recognition and genome stability has been made. The three dimensional structure of both proteins and DNA plays a crucial role for their specific interaction, and proteins can recognise the chemical signature of DNA sequence ("base readout") as well as the intrinsic DNA structure ("shape recognition"). These recognition mechanisms do not exist in isolation but, depending on the individual interaction partners, are combined to various extents. Driving force for the interaction between protein and DNA remain the unique thermodynamics of each individual DNA-protein pair. In this review we focus on the structures and conformations adopted by DNA, both influenced by and influencing the specific interaction with the corresponding protein binding partner, as well as their underlying thermodynamics.
Collapse
Affiliation(s)
- Sabrina Harteis
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | - Sabine Schneider
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
18
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
19
|
Ferrandino R, Sidorova N, Rau D. Using single-turnover kinetics with osmotic stress to characterize the EcoRV cleavage reaction. Biochemistry 2014; 53:235-46. [PMID: 24328115 DOI: 10.1021/bi401089y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type II restriction endonucleases require metal ions to specifically cleave DNA at canonical sites. Despite the wealth of structural and biochemical information, the number of Mg(2+) ions used for cleavage by EcoRV, in particular, at physiological divalent ion concentrations has not been established. In this work, we employ a single-turnover technique that uses osmotic stress to probe reaction kinetics between an initial specific EcoRV-DNA complex formed in the absence of Mg(2+) and the final cleavage step. With osmotic stress, complex dissociation before cleavage is minimized and the reaction rates are slowed to a convenient time scale of minutes to hours. We find that cleavage occurs by a two-step mechanism that can be characterized by two rate constants. The dependence of these rate constants on Mg(2+) concentration and osmotic pressure gives the number of Mg(2+) ions and water molecules coupled to each kinetic step of the EcoRV cleavage reaction. Each kinetic step is coupled to the binding 1.5-2.5 Mg(2+) ions, the uptake of ∼30 water molecules, and the cleavage of a DNA single strand. We suggest that each kinetic step reflects an independent, rate-limiting conformational change of each monomer of the dimeric enzyme that allows Mg(2+) ion binding. This modified single-turnover protocol has general applicability for metalloenzymes.
Collapse
Affiliation(s)
- Rocco Ferrandino
- The Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
20
|
Sapienza PJ, Niu T, Kurpiewski MR, Grigorescu A, Jen-Jacobson L. Thermodynamic and structural basis for relaxation of specificity in protein-DNA recognition. J Mol Biol 2014; 426:84-104. [PMID: 24041571 PMCID: PMC3928799 DOI: 10.1016/j.jmb.2013.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 11/26/2022]
Abstract
As a novel approach to the structural and functional properties that give rise to extremely stringent sequence specificity in protein-DNA interactions, we have exploited "promiscuous" mutants of EcoRI endonuclease to study the detailed mechanism by which changes in a protein can relax specificity. The A138T promiscuous mutant protein binds more tightly to the cognate GAATTC site than does wild-type EcoRI yet displays relaxed specificity deriving from tighter binding and faster cleavage at EcoRI* sites (one incorrect base pair). AAATTC EcoRI* sites are cleaved by A138T up to 170-fold faster than by wild-type enzyme if the site is abutted by a 5'-purine-pyrimidine (5'-RY) motif. When wild-type protein binds to an EcoRI* site, it forms structurally adapted complexes with thermodynamic parameters of binding that differ markedly from those of specific complexes. By contrast, we show that A138T complexes with 5'-RY-flanked AAATTC sites are virtually indistinguishable from wild-type-specific complexes with respect to the heat capacity change upon binding (∆C°P), the change in excluded macromolecular volume upon association, and contacts to the phosphate backbone. While the preference for the 5'-RY motif implicates contacts to flanking bases as important for relaxed specificity, local effects are not sufficient to explain the large differences in ∆C°P and excluded volume, as these parameters report on global features of the complex. Our findings therefore support the view that specificity does not derive from the additive effects of individual interactions but rather from a set of cooperative events that are uniquely associated with specific recognition.
Collapse
Affiliation(s)
- Paul J Sapienza
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tianyi Niu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael R Kurpiewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Arabela Grigorescu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Linda Jen-Jacobson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
21
|
Okamura TA, Nakagawa J. Contribution of Intramolecular NH···O Hydrogen Bonds to Magnesium–Carboxylate Bonds. Inorg Chem 2013; 52:10812-24. [DOI: 10.1021/ic400671v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taka-aki Okamura
- Department
of Macromolecular
Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Junko Nakagawa
- Department
of Macromolecular
Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
22
|
Cao W. Endonuclease V: an unusual enzyme for repair of DNA deamination. Cell Mol Life Sci 2013; 70:3145-56. [PMID: 23263163 PMCID: PMC11114013 DOI: 10.1007/s00018-012-1222-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 11/25/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Endonuclease V (endo V) was first discovered as the fifth endonuclease in Escherichia coli in 1977 and later rediscovered as a deoxyinosine 3' endonuclease. Decades of biochemical and genetic investigations have accumulated rich information on its role as a DNA repair enzyme for the removal of deaminated bases. Structural and biochemical analyses have offered invaluable insights on its recognition capacity, catalytic mechanism, and multitude of enzymatic activities. The roles of endo V in genome maintenance have been validated in both prokaryotic and eukaryotic organisms. The ubiquitous nature of endo V in the three domains of life: Bacteria, Archaea, and Eukaryotes, indicates its existence in the early evolutionary stage of cellular life. The application of endo V in mutation detection and DNA manipulation underscores its value beyond cellular DNA repair. This review is intended to provide a comprehensive account of the historic aspects, biochemical, structural biological, genetic and biotechnological studies of this unusual DNA repair enzyme.
Collapse
Affiliation(s)
- Weiguo Cao
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Room 049 Life Science Building, 190 Collings Street, Clemson, SC, 29634, USA.
| |
Collapse
|
23
|
Čech P, Kukal J, Černý J, Schneider B, Svozil D. Automatic workflow for the classification of local DNA conformations. BMC Bioinformatics 2013; 14:205. [PMID: 23800225 PMCID: PMC3694522 DOI: 10.1186/1471-2105-14-205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/28/2013] [Indexed: 12/03/2022] Open
Abstract
Background A growing number of crystal and NMR structures reveals a considerable structural polymorphism of DNA architecture going well beyond the usual image of a double helical molecule. DNA is highly variable with dinucleotide steps exhibiting a substantial flexibility in a sequence-dependent manner. An analysis of the conformational space of the DNA backbone and the enhancement of our understanding of the conformational dependencies in DNA are therefore important for full comprehension of DNA structural polymorphism. Results A detailed classification of local DNA conformations based on the technique of Fourier averaging was published in our previous work. However, this procedure requires a considerable amount of manual work. To overcome this limitation we developed an automatic classification method consisting of the combination of supervised and unsupervised approaches. A proposed workflow is composed of k-NN method followed by a non-hierarchical single-pass clustering algorithm. We applied this workflow to analyze 816 X-ray and 664 NMR DNA structures released till February 2013. We identified and annotated six new conformers, and we assigned four of these conformers to two structurally important DNA families: guanine quadruplexes and Holliday (four-way) junctions. We also compared populations of the assigned conformers in the dataset of X-ray and NMR structures. Conclusions In the present work we developed a machine learning workflow for the automatic classification of dinucleotide conformations. Dinucleotides with unassigned conformations can be either classified into one of already known 24 classes or they can be flagged as unclassifiable. The proposed machine learning workflow permits identification of new classes among so far unclassifiable data, and we identified and annotated six new conformations in the X-ray structures released since our previous analysis. The results illustrate the utility of machine learning approaches in the classification of local DNA conformations.
Collapse
Affiliation(s)
- Petr Čech
- Laboratory of Informatics and Chemistry, ICT Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | | | | | | | | |
Collapse
|
24
|
Wako H, Endo S. Normal mode analysis based on an elastic network model for biomolecules in the Protein Data Bank, which uses dihedral angles as independent variables. Comput Biol Chem 2013; 44:22-30. [PMID: 23537565 DOI: 10.1016/j.compbiolchem.2013.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/11/2022]
Abstract
We have developed a computer program, named PDBETA, that performs normal mode analysis (NMA) based on an elastic network model that uses dihedral angles as independent variables. Taking advantage of the relatively small number of degrees of freedom required to describe a molecular structure in dihedral angle space and a simple potential-energy function independent of atom types, we aimed to develop a program applicable to a full-atom system of any molecule in the Protein Data Bank (PDB). The algorithm for NMA used in PDBETA is the same as the computer program FEDER/2, developed previously. Therefore, the main challenge in developing PDBETA was to find a method that can automatically convert PDB data into molecular structure information in dihedral angle space. Here, we illustrate the performance of PDBETA with a protein-DNA complex, a protein-tRNA complex, and some non-protein small molecules, and show that the atomic fluctuations calculated by PDBETA reproduce the temperature factor data of these molecules in the PDB. A comparison was also made with elastic-network-model based NMA in a Cartesian-coordinate system.
Collapse
Affiliation(s)
- Hiroshi Wako
- School of Social Sciences, Waseda University, Shinjuku, Tokyo 169-8050, Japan.
| | | |
Collapse
|
25
|
Frustration in protein-DNA binding influences conformational switching and target search kinetics. Proc Natl Acad Sci U S A 2011; 108:17957-62. [PMID: 22003125 DOI: 10.1073/pnas.1109594108] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rapid recognition of DNA target sites involves facilitated diffusion through which alternative sites are searched on genomic DNA. A key mechanism facilitating the localization of the target by a DNA-binding protein (DBP) is one-dimensional diffusion (sliding) in which electrostatic forces attract the protein to the DNA. As the protein reaches its target DNA site, it switches from purely electrostatic binding to a specific set of interactions with the DNA bases that also involves hydrogen bonding and van der Waals forces. High overlap between the DBP patches used for nonspecific and specific interactions with DNA may enable an immediate transition between the two binding modes following target site localization. By contrast, an imperfect overlap may result in greater frustration between the two potentially competing binding modes and consequently slower switching between them. A structural analysis of 125 DBPs indicates frustration between the two binding modes that results in a large difference between the orientations of the protein to the DNA when it slides compared to when it specifically interacts with DNA. Coarse-grained molecular dynamics simulations of in silico designed peptides comprising the full range of frustrations between the two interfaces show slower transition from nonspecific to specific DNA binding as the overlap between the patches involved in the two binding modes decreases. The complex search kinetics may regulate the search by eliminating trapping of the protein in semispecific sites while sliding.
Collapse
|
26
|
Yang W, Chen WY, Wang H, Ho JWS, Huang JD, Woo PCY, Lau SKP, Yuen KY, Zhang Q, Zhou W, Bartlam M, Watt RM, Rao Z. Structural and functional insight into the mechanism of an alkaline exonuclease from Laribacter hongkongensis. Nucleic Acids Res 2011; 39:9803-19. [PMID: 21893587 PMCID: PMC3239189 DOI: 10.1093/nar/gkr660] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alkaline exonuclease and single-strand DNA (ssDNA) annealing proteins (SSAPs) are key components of DNA recombination and repair systems within many prokaryotes, bacteriophages and virus-like genetic elements. The recently sequenced β-proteobacterium Laribacter hongkongensis (strain HLHK9) encodes putative homologs of alkaline exonuclease (LHK-Exo) and SSAP (LHK-Bet) proteins on its 3.17 Mb genome. Here, we report the biophysical, biochemical and structural characterization of recombinant LHK-Exo protein. LHK-Exo digests linear double-stranded DNA molecules from their 5'-termini in a highly processive manner. Exonuclease activities are optimum at pH 8.2 and essentially require Mg(2+) or Mn(2+) ions. 5'-phosphorylated DNA substrates are preferred over dephosphorylated ones. The crystal structure of LHK-Exo was resolved to 1.9 Å, revealing a 'doughnut-shaped' toroidal trimeric arrangement with a central tapered channel, analogous to that of λ-exonuclease (Exo) from bacteriophage-λ. Active sites containing two bound Mg(2+) ions on each of the three monomers were located in clefts exposed to this central channel. Crystal structures of LHK-Exo in complex with dAMP and ssDNA were determined to elucidate the structural basis for substrate recognition and binding. Through structure-guided mutational analysis, we discuss the roles played by various active site residues. A conserved two metal ion catalytic mechanism is proposed for this class of alkaline exonucleases.
Collapse
Affiliation(s)
- Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The energetic contribution of induced electrostatic asymmetry to DNA bending by a site-specific protein. J Mol Biol 2010; 406:285-312. [PMID: 21167173 DOI: 10.1016/j.jmb.2010.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/30/2010] [Accepted: 12/04/2010] [Indexed: 11/21/2022]
Abstract
DNA bending can be promoted by reducing the net negative electrostatic potential around phosphates on one face of the DNA, such that electrostatic repulsion among phosphates on the opposite face drives bending toward the less negative surface. To provide the first assessment of energetic contribution to DNA bending when electrostatic asymmetry is induced by a site-specific DNA binding protein, we manipulated the electrostatics in the EcoRV endonuclease-DNA complex by mutation of cationic side chains that contact DNA phosphates and/or by replacement of a selected phosphate in each strand with uncharged methylphosphonate. Reducing the net negative charge at two symmetrically located phosphates on the concave DNA face contributes -2.3 kcal mol(-1) to -0.9 kcal mol(-1) (depending on position) to complex formation. In contrast, reducing negative charge on the opposing convex face produces a penalty of +1.3 kcal mol(-1). Förster resonance energy transfer experiments show that the extent of axial DNA bending (about 50°) is little affected in modified complexes, implying that modification affects the energetic cost but not the extent of DNA bending. Kinetic studies show that the favorable effects of induced electrostatic asymmetry on equilibrium binding derive primarily from a reduced rate of complex dissociation, suggesting stabilization of the specific complex between protein and markedly bent DNA. A smaller increase in the association rate may suggest that the DNA in the initial encounter complex is mildly bent. The data imply that protein-induced electrostatic asymmetry makes a significant contribution to DNA bending but is not itself sufficient to drive full bending in the specific EcoRV-DNA complex.
Collapse
|
28
|
Firczuk M, Wojciechowski M, Czapinska H, Bochtler M. DNA intercalation without flipping in the specific ThaI-DNA complex. Nucleic Acids Res 2010; 39:744-54. [PMID: 20861000 PMCID: PMC3025569 DOI: 10.1093/nar/gkq834] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The PD-(D/E)XK type II restriction endonuclease ThaI cuts the target sequence CG/CG with blunt ends. Here, we report the 1.3 Å resolution structure of the enzyme in complex with substrate DNA and a sodium or calcium ion taking the place of a catalytic magnesium ion. The structure identifies Glu54, Asp82 and Lys93 as the active site residues. This agrees with earlier bioinformatic predictions and implies that the PD and (D/E)XK motifs in the sequence are incidental. DNA recognition is very unusual: the two Met47 residues of the ThaI dimer intercalate symmetrically into the CG steps of the target sequence. They approach the DNA from the minor groove side and penetrate the base stack entirely. The DNA accommodates the intercalating residues without nucleotide flipping by a doubling of the CG step rise to twice its usual value, which is accompanied by drastic unwinding. Displacement of the Met47 side chains from the base pair midlines toward the downstream CG steps leads to large and compensating tilts of the first and second CG steps. DNA intercalation by ThaI is unlike intercalation by HincII, HinP1I or proteins that bend or repair DNA.
Collapse
|
29
|
Zahran M, Daidone I, Smith JC, Imhof P. Mechanism of DNA Recognition by the Restriction Enzyme EcoRV. J Mol Biol 2010; 401:415-32. [DOI: 10.1016/j.jmb.2010.06.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 06/11/2010] [Accepted: 06/13/2010] [Indexed: 11/29/2022]
|
30
|
Soh S, Byrska M, Kandere-Grzybowska K, Grzybowski BA. Reaction-diffusion systems in intracellular molecular transport and control. Angew Chem Int Ed Engl 2010; 49:4170-98. [PMID: 20518023 PMCID: PMC3697936 DOI: 10.1002/anie.200905513] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical reactions make cells work only if the participating chemicals are delivered to desired locations in a timely and precise fashion. Most research to date has focused on active-transport mechanisms, although passive diffusion is often equally rapid and energetically less costly. Capitalizing on these advantages, cells have developed sophisticated reaction-diffusion (RD) systems that control a wide range of cellular functions-from chemotaxis and cell division, through signaling cascades and oscillations, to cell motility. These apparently diverse systems share many common features and are "wired" according to "generic" motifs such as nonlinear kinetics, autocatalysis, and feedback loops. Understanding the operation of these complex (bio)chemical systems requires the analysis of pertinent transport-kinetic equations or, at least on a qualitative level, of the characteristic times of the constituent subprocesses. Therefore, in reviewing the manifestations of cellular RD, we also describe basic theory of reaction-diffusion phenomena.
Collapse
Affiliation(s)
- Siowling Soh
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Marta Byrska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Kristiana Kandere-Grzybowska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Bartosz A. Grzybowski
- Department of Chemistry, Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, Homepage: http://www.dysa.northwestern.edu
| |
Collapse
|
31
|
Soh S, Byrska M, Kandere-Grzybowska K, Grzybowski B. Reaktions-Diffusions-Systeme für intrazellulären Transport und Kontrolle. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905513] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Marcaida MJ, Muñoz IG, Blanco FJ, Prieto J, Montoya G. Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 2010; 67:727-48. [PMID: 19915993 PMCID: PMC11115532 DOI: 10.1007/s00018-009-0188-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.
Collapse
Affiliation(s)
- Maria J. Marcaida
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Inés G. Muñoz
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Francisco J. Blanco
- Ikerbasque Professor Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
33
|
Dupureur CM. One is enough: insights into the two-metal ion nuclease mechanism from global analysis and computational studies. Metallomics 2010; 2:609-20. [PMID: 21072352 DOI: 10.1039/c0mt00013b] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cynthia M Dupureur
- Department of Chemistry & Biochemistry and The Center for Nanoscience, University of Missouri-St. Louis, One University Blvd., St. Louis, MO 63121, USA.
| |
Collapse
|
34
|
Imhof P, Fischer S, Smith JC. Catalytic Mechanism of DNA Backbone Cleavage by the Restriction Enzyme EcoRV: A Quantum Mechanical/Molecular Mechanical Analysis. Biochemistry 2009; 48:9061-75. [DOI: 10.1021/bi900585m] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Petra Imhof
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| | - Stefan Fischer
- Computational Biochemistry, IWR, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| | - Jeremy C. Smith
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
- Oak Ridge National Laboratory, P.O. Box 2008 MS 6309, Oak Ridge, Tennessee 37831-6309
| |
Collapse
|
35
|
Pingoud V, Wende W, Friedhoff P, Reuter M, Alves J, Jeltsch A, Mones L, Fuxreiter M, Pingoud A. On the divalent metal ion dependence of DNA cleavage by restriction endonucleases of the EcoRI family. J Mol Biol 2009; 393:140-60. [PMID: 19682999 DOI: 10.1016/j.jmb.2009.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 11/18/2022]
Abstract
Restriction endonucleases of the PD...D/EXK family need Mg(2+) for DNA cleavage. Whereas Mg(2+) (or Mn(2+)) promotes catalysis, Ca(2+) (without Mg(2+)) only supports DNA binding. The role of Mg(2+) in DNA cleavage by restriction endonucleases has elicited many hypotheses, differing mainly in the number of Mg(2+) involved in catalysis. To address this problem, we measured the Mg(2+) and Mn(2+) concentration dependence of DNA cleavage by BamHI, BglII, Cfr10I, EcoRI, EcoRII (catalytic domain), MboI, NgoMIV, PspGI, and SsoII, which were reported in co-crystal structure analyses to bind one (BglII and EcoRI) or two (BamHI and NgoMIV) Me(2+) per active site. DNA cleavage experiments were carried out at various Mg(2+) and Mn(2+) concentrations at constant ionic strength. All enzymes show a qualitatively similar Mg(2+) and Mn(2+) concentration dependence. In general, the Mg(2+) concentration optimum (between approximately 1 and 10 mM) is higher than the Mn(2+) concentration optimum (between approximately 0.1 and 1 mM). At still higher Mg(2+) or Mn(2+) concentrations, the activities of all enzymes tested are reduced but can be reactivated by Ca(2+). Based on these results, we propose that one Mg(2+) or Mn(2+) is critical for restriction enzyme activation, and binding of a second Me(2+) plays a role in modulating the activity. Steady-state kinetics carried out with EcoRI and BamHI suggest that binding of a second Mg(2+) or Mn(2+) mainly leads to an increase in K(m), such that the inhibitory effect of excess Mg(2+) or Mn(2+) can be overcome by increasing the substrate concentration. Our conclusions are supported by molecular dynamics simulations and are consistent with the structural observations of both one and two Me(2+) binding to these enzymes.
Collapse
Affiliation(s)
- Vera Pingoud
- Institut für Biochemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kinetic analysis of product release and metal ions in a metallonuclease. Arch Biochem Biophys 2009; 483:1-9. [PMID: 19161971 DOI: 10.1016/j.abb.2009.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
Abstract
Most nucleases rely on divalent cations as cofactors to catalyze the hydrolysis of nucleic acid phosphodiester bonds. Here both equilibrium and kinetic experiments are used to test recently proposed models regarding the metal ion dependence of product release and the degree of cooperativity between metal ions bound in the active sites of the homodimeric PvuII endonuclease. Equilibrium fluorescence anisotropy studies indicate that product binding is dramatically weakened in the presence of metal ions. Pre-steady state kinetics indicate that product release is at least partially rate limiting. Steady state and pre-steady state data fit best to models in which metals remain bound to the enzyme after the release of product. Finally, analysis of cooperative and independent binding models for metal ions indicates that single turnover kinetic data are consistent with little to no positive cooperativity between the two metal ions binding each active site.
Collapse
|
37
|
Pikin SA. On the distinction of the mechanisms of DNA cleavage by restriction enzymes—The I-, II-, and III-type molecular motors. CRYSTALLOGR REP+ 2008. [DOI: 10.1134/s1063774508050222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Moure CM, Gimble FS, Quiocho FA. Crystal structures of I-SceI complexed to nicked DNA substrates: snapshots of intermediates along the DNA cleavage reaction pathway. Nucleic Acids Res 2008; 36:3287-96. [PMID: 18424798 PMCID: PMC2425494 DOI: 10.1093/nar/gkn178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
I-SceI is a homing endonuclease that specifically cleaves an 18-bp double-stranded DNA. I-SceI exhibits a strong preference for cleaving the bottom strand DNA. The published structure of I-SceI bound to an uncleaved DNA substrate provided a mechanism for bottom strand cleavage but not for top strand cleavage. To more fully elucidate the I-SceI catalytic mechanism, we determined the X-ray structures of I-SceI in complex with DNA substrates that are nicked in either the top or bottom strands. The structures resemble intermediates along the DNA cleavage reaction. In a structure containing a nick in the top strand, the spatial arrangement of metal ions is similar to that observed in the structure that contains uncleaved DNA, suggesting that cleavage of the bottom strand occurs by a common mechanism regardless of whether this strand is cleaved first or second. In the structure containing a nick in the bottom strand, a new metal binding site is present in the active site that cleaves the top strand. This new metal and a candidate nucleophilic water molecule are correctly positioned to cleave the top strand following bottom strand cleavage, providing a plausible mechanism for top strand cleavage.
Collapse
Affiliation(s)
- Carmen M Moure
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
39
|
Mantha AK, Oezguen N, Bhakat KK, Izumi T, Braun W, Mitra S. Unusual role of a cysteine residue in substrate binding and activity of human AP-endonuclease 1. J Mol Biol 2008; 379:28-37. [PMID: 18436236 DOI: 10.1016/j.jmb.2008.03.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/10/2008] [Accepted: 03/25/2008] [Indexed: 11/15/2022]
Abstract
The mammalian AP-endonuclease (APE1) repairs apurinic/apyrimidinic (AP) sites and strand breaks with 3' blocks in the genome that are formed both endogenously and as intermediates during base excision repair. APE1 has an unrelated activity as a redox activator (and named Ref-1) for several trans-acting factors. In order to identify whether any of the seven cysteine residues in human APE1 affects its enzymatic function, we substituted these singly or multiply with serine. The repair activity is not affected in any of the mutants except those with C99S mutation. The Ser99-containing mutant lost affinity for DNA and its activity was inhibited by 10 mM Mg(2+). However, the Ser99 mutant has normal activity in 2 mM Mg(2+). Using crystallographic data and molecular dynamics simulation, we have provided a mechanistic basis for the altered properties of the C99S mutant. We earlier predicted that Mg(2+), with potential binding sites A and B, binds at the B site of wild-type APE1-substrate complex and moves to the A site after cleavage occurs, as observed in the crystal structure. The APE1-substrate complex is stabilized by a H bond between His309 and the AP site. We now show that this bond is broken to destabilize the complex in the absence of the Mg(2+). This effect due to the mutation of Cys99, approximately 16 A from the active site, on the DNA binding and activity is surprising. Mg(2+) at the B site promotes stabilization of the C99S mutant complex. At higher Mg(2+) concentration the A site is also filled, causing the B-site Mg(2+) to shift together with the AP site. At the same time, the H bond between His309 and the AP site shifts toward the 5' site of DNA. These shifts could explain the lower activity of the C99S mutant at higher [Mg(2+)]. The unexpected involvement of Cys99 in APE1's substrate binding and catalysis provides an example of involvement of a residue far from the active site.
Collapse
Affiliation(s)
- Anil K Mantha
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
40
|
Oezguen N, Schein CH, Peddi SR, Power TD, Izumi T, Braun W. A "moving metal mechanism" for substrate cleavage by the DNA repair endonuclease APE-1. Proteins 2007; 68:313-23. [PMID: 17427952 DOI: 10.1002/prot.21397] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apurinic/apyrimidinic endonuclease (APE-1) is essential for base excision repair (BER) of damaged DNA. Here molecular dynamics (MD) simulations of APE1 complexed with cleaved and uncleaved damaged DNA were used to determine the role and position of the metal ion(s) in the active site before and after DNA cleavage. The simulations started from an energy minimized wild-type structure of the metal-free APE1/damaged-DNA complex (1DE8). A grid search with one Mg2+ ion located two low energy clusters of Mg2+ consistent with the experimentally determined metal ion positions. At the start of the longer MD simulations, Mg2+ ions were placed at different positions as seen in the crystal structures and the movement of the ion was followed over the course of the trajectory. Our analysis suggests a "moving metal mechanism" in which one Mg2+ ion moves from the B- (more buried) to the A-site during substrate cleavage. The anticipated inversion of the phosphate oxygens occurs during the in-line cleavage reaction. Experimental results, which show competition between Ca2+ and Mg2+ for catalyzing the reaction, and high concentrations of Mg2+ are inhibitory, indicate that both sites cannot be simultaneously occupied for maximal activity.
Collapse
Affiliation(s)
- Numan Oezguen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0857, USA
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Bashton M, Chothia C. The generation of new protein functions by the combination of domains. Structure 2007; 15:85-99. [PMID: 17223535 DOI: 10.1016/j.str.2006.11.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 11/21/2006] [Accepted: 11/21/2006] [Indexed: 11/21/2022]
Abstract
During evolution, many new proteins have been formed by the process of gene duplication and combination. The genes involved in this process usually code for whole domains. Small proteins contain one domain; medium and large proteins contain two or more domains. We have compared homologous domains that occur in both one-domain proteins and multidomain proteins. We have determined (1) how the functions of the individual domains in the multidomain proteins combine to produce their overall functions and (2) the extent to which these functions are similar to those in the one-domain homologs. We describe how domain combinations increase the specificity of enzymes; act as links between domains that have functional roles; regulate activity; combine within one chain functions that can act either independently, in concert or in new contexts; and provide the structural framework for the evolution of entirely new functions.
Collapse
Affiliation(s)
- Matthew Bashton
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom.
| | | |
Collapse
|
43
|
Liang R, Liu X, Pei D, Liu J. Biochemical characterization and functional complementation of ribonuclease HII and ribonuclease HIII from Chlamydophila pneumoniae AR39. Microbiology (Reading) 2007; 153:787-793. [PMID: 17322199 DOI: 10.1099/mic.0.2006/003434-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlamydophila pneumoniae AR39 contains two different ORFs (CP0654 and CP0782) encoding ribonuclease H (RNase H) homologues, Cpn-RNase HII and Cpn-RNase HIII. Sequence alignments show that the two homologues both contain the conserved motifs of type 2 RNase H, and Cpn-RNase HII has the conserved active-site motif (DEDD) of RNase HII. Cpn-RNase HIII also contains a unique active-site motif (DEDE), common to other RNase HIIIs. Complementation assays indicated that Cpn-RNase HII can complement both Escherichia coli RNase HII and RNase HI, but Cpn-RNase HIII can only complement the latter. In vitro enzyme activity experiments showed that neither Cpn-RNase HII nor Cpn-RNase HIII is thermostable and their optimum pH values were 9.0 and 10.0, respectively. Cpn-RNase HII cleaves a 12 bp RNA-DNA substrate at multiple sites, but Cpn-RNase HIII at only one site. When a 35 bp DNA-RNA-DNA/DNA chimeric substrate was used, cleavage was only observed with Cpn-RNase HII. These results indicate that the RNase H combination of C. pneumoniae AR39 is not simple substitution of E. coli RNase H, perhaps representing a more primordial type. This is believed to be the first in vivo functional study of Chlamydophila RNase Hs and the results should contribute to the analysis of RNase Hs of other parasite species.
Collapse
Affiliation(s)
- Rubing Liang
- College of Life Science and Technology, Shanghai Jiaotong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xipeng Liu
- College of Life Science and Technology, Shanghai Jiaotong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Dongli Pei
- College of Life Science and Technology, Shanghai Jiaotong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Jianhua Liu
- College of Life Science and Technology, Shanghai Jiaotong University, 800 Dong-Chuan Road, Shanghai 200240, China
| |
Collapse
|
44
|
Cheng SQ, Wang YR, Yan JF, Zeng X. Hydrolysis of phosphodiester catalyzed by analogous dinuclear Cu(II) complex in CTAB micellar solution. Colloids Surf A Physicochem Eng Asp 2007. [DOI: 10.1016/j.colsurfa.2006.05.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Hiller DA, Perona JJ. Positively charged C-terminal subdomains of EcoRV endonuclease: contributions to DNA binding, bending, and cleavage. Biochemistry 2006; 45:11453-63. [PMID: 16981705 PMCID: PMC2515858 DOI: 10.1021/bi0606400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The carboxy-terminal subdomains of the homodimeric EcoRV restriction endonuclease each bear a net charge of +4 and are positioned on the inner concave surface of the 50 degree DNA bend that is induced by the enzyme. A complete kinetic and structural analysis of a truncated EcoRV mutant lacking these domains was performed to assess the importance of this diffuse charge in facilitating DNA binding, bending, and cleavage. At the level of formation of an enzyme-DNA complex, the association rate for the dimeric mutant enzyme was sharply decreased by 10(3)-fold, while the equilibrium dissociation constant was weakened by nearly 10(6)-fold compared with that of wild-type EcoRV. Thus, the C-terminal subdomains strongly stabilize the enzyme-DNA ground-state complex in which the DNA is known to be bent. Further, the extent of DNA bending as observed by fluorescence resonance energy transfer was also significantly decreased. The crystal structure of the truncated enzyme bound to DNA and calcium ions at 2.4 A resolution reveals that the global fold is preserved and suggests that a divalent metal ion crucial to catalysis is destabilized in the active site. This may explain the 100-fold decrease in the rate of metal-dependent phosphoryl transfer observed for the mutant. These results show that diffuse positive charge associated with the C-terminal subdomains of EcoRV plays a key role in DNA association, bending, and cleavage.
Collapse
Affiliation(s)
| | - John J. Perona
- Corresponding author Telephone: 805−893−7389 FAX: 805−893−4120
| |
Collapse
|
46
|
Fernandes C, Parrilha GL, Lessa JA, Santiago LJ, Kanashiro MM, Boniolo FS, Bortoluzzi AJ, Vugman NV, Herbst MH, Horn A. Synthesis, crystal structure, nuclease and in vitro antitumor activities of a new mononuclear copper(II) complex containing a tripodal N3O ligand. Inorganica Chim Acta 2006. [DOI: 10.1016/j.ica.2006.04.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Skowronek KJ, Kosinski J, Bujnicki JM. Theoretical model of restriction endonuclease HpaI in complex with DNA, predicted by fold recognition and validated by site-directed mutagenesis. Proteins 2006; 63:1059-68. [PMID: 16498623 DOI: 10.1002/prot.20920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type II restriction enzymes are commercially important deoxyribonucleases and very attractive targets for protein engineering of new specificities. At the same time they are a very challenging test bed for protein structure prediction methods. Typically, enzymes that recognize different sequences show little or no amino acid sequence similarity to each other and to other proteins. Based on crystallographic analyses that revealed the same PD-(D/E)XK fold for more than a dozen case studies, they were nevertheless considered to be related until the combination of bioinformatics and mutational analyses has demonstrated that some of these proteins belong to other, unrelated folds PLD, HNH, and GIY-YIG. As a part of a large-scale project aiming at identification of a three-dimensional fold for all type II REases with known sequences (currently approximately 1000 proteins), we carried out preliminary structure prediction and selected candidates for experimental validation. Here, we present the analysis of HpaI REase, an ORFan with no detectable homologs, for which we detected a structural template by protein fold recognition, constructed a model using the FRankenstein monster approach and identified a number of residues important for the DNA binding and catalysis. These predictions were confirmed by site-directed mutagenesis and in vitro analysis of the mutant proteins. The experimentally validated model of HpaI will serve as a low-resolution structural platform for evolutionary considerations in the subgroup of blunt-cutting REases with different specificities. The research protocol developed in the course of this work represents a streamlined version of the previously used techniques and can be used in a high-throughput fashion to build and validate models for other enzymes, especially ORFans that exhibit no sequence similarity to any other protein in the database.
Collapse
|
48
|
Roberts KD, Lambert JN, Ede NJ, Bray AM. Efficient methodology for the cyclization of linear peptide libraries via intramolecularS-alkylation using Multipin™ solid phase peptide synthesis. J Pept Sci 2006; 12:525-32. [PMID: 16710870 DOI: 10.1002/psc.761] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Methodology is described here for the efficient parallel synthesis and cyclization of linear peptide libraries using intramolecular S-alkylation chemistry in combination with Multipin solid phase peptide synthesis (Multipin SPPS). The effective use of this methodology was demonstrated with the synthesis of a 72-member combinatorial library of cyclic thioether peptide derivatives of the conserved four-residue structural motif DD/EXK found in the active sites of the five crystallographically defined orthodox type II restriction endonucleases, EcoRV, EcoRI, PvuII, BamHI and BglI.
Collapse
Affiliation(s)
- Kade D Roberts
- School of Chemistry, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
49
|
Xu QS, Roberts RJ, Guo HC. Two crystal forms of the restriction enzyme MspI-DNA complex show the same novel structure. Protein Sci 2005; 14:2590-600. [PMID: 16195548 PMCID: PMC2253285 DOI: 10.1110/ps.051565105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The crystal structure of the Type IIP restriction endonuclease MspI bound to DNA containing its cognate recognition sequence has been determined in both monoclinic and orthorhombic space groups. Significantly, these two independent crystal forms present an identical structure of a novel monomer-DNA complex, suggesting a functional role for this novel enzyme-DNA complex. In both crystals, MspI interacts with the CCGG DNA recognition sequence as a monomer, using an asymmetric mode of recognition by two different structural motifs in a single polypeptide. In the crystallographic asymmetric unit, the two DNA molecules in the two MspI-DNA complexes appear to stack with each other forming an end-to-end pseudo-continuous 19-mer duplex. They are primarily B-form and no major bends or kinks are observed. For DNA recognition, most of the specific contacts between the enzyme and the DNA are preserved in the orthorhombic structure compared with the monoclinic structure. A cation is observed near the catalytic center in the monoclinic structure at a position homologous to the 74/45 metal site of EcoRV, and the orthorhombic structure also shows signs of this same cation. However, the coordination ligands of the metal are somewhat different from those of the 74/45 metal site of EcoRV. Combined with structural information from other solved structures of Type II restriction enzymes, the possible relationship between the structures of the enzymes and their cleavage behaviors is discussed.
Collapse
Affiliation(s)
- Qian Steven Xu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
50
|
Hiller DA, Rodriguez AM, Perona JJ. Non-cognate Enzyme–DNA Complex: Structural and Kinetic Analysis of EcoRV Endonuclease Bound to the EcoRI Recognition Site GAATTC. J Mol Biol 2005; 354:121-36. [PMID: 16236314 DOI: 10.1016/j.jmb.2005.09.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/14/2005] [Accepted: 09/15/2005] [Indexed: 11/25/2022]
Abstract
The crystal structure of EcoRV endonuclease bound to non-cognate DNA at 2.0 angstroms resolution shows that very small structural adaptations are sufficient to ensure the extreme sequence specificity characteristic of restriction enzymes. EcoRV bends its specific GATATC site sharply by 50 degrees into the major groove at the center TA step, generating unusual base-base interactions along each individual DNA strand. In the symmetric non-cognate complex bound to GAATTC, the center step bend is relaxed to avoid steric hindrance caused by the different placement of the exocyclic thymine methyl groups. The decreased base-pair unstacking in turn leads to small conformational rearrangements in the sugar-phosphate backbone, sufficient to destabilize binding of crucial divalent metal ions in the active site. A second crystal structure of EcoRV bound to the base-analog GAAUTC site shows that the 50 degrees center-step bend of the DNA is restored. However, while divalent metals bind at high occupancy in this structure, one metal ion shifts away from binding at the scissile DNA phosphate to a position near the 3'-adjacent phosphate group. This may explain why the 10(4)-fold attenuated cleavage efficiency toward GAATTC is reconstituted by less than tenfold toward GAAUTC. Examination of DNA binding and bending by equilibrium and stopped-flow florescence quenching and fluorescence resonance energy transfer (FRET) methods demonstrates that the capacity of EcoRV to bend the GAATTC non-cognate site is severely limited, but that full bending of GAAUTC is achieved at only a threefold reduced rate compared with the cognate complex. Together, the structural and biochemical data demonstrate the existence of distinct mechanisms for ensuring specificity at the bending and catalytic steps, respectively. The limited conformational rearrangements observed in the EcoRV non-cognate complex provide a sharp contrast to the extensive structural changes found in a non-cognate BamHI-DNA crystal structure, thus demonstrating a diversity of mechanisms by which restriction enzymes are able to achieve specificity.
Collapse
Affiliation(s)
- David A Hiller
- Department of Chemistry and Biochemistry, and Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | | | | |
Collapse
|