1
|
Hull JA, Lee C, Kim JK, Lim SW, Park J, Park S, Lee SJ, Park G, Eom I, Kim M, Hyun H, Combs JE, Andring JT, Lomelino C, Kim CU, McKenna R. XFEL structure of carbonic anhydrase II: a comparative study of XFEL, NMR, X-ray and neutron structures. Acta Crystallogr D Struct Biol 2024; 80:194-202. [PMID: 38411550 PMCID: PMC10910541 DOI: 10.1107/s2059798324000482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024] Open
Abstract
The combination of X-ray free-electron lasers (XFELs) with serial femtosecond crystallography represents cutting-edge technology in structural biology, allowing the study of enzyme reactions and dynamics in real time through the generation of `molecular movies'. This technology combines short and precise high-energy X-ray exposure to a stream of protein microcrystals. Here, the XFEL structure of carbonic anhydrase II, a ubiquitous enzyme responsible for the interconversion of CO2 and bicarbonate, is reported, and is compared with previously reported NMR and synchrotron X-ray and neutron single-crystal structures.
Collapse
Affiliation(s)
- Joshua A. Hull
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Cheol Lee
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Kyun Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seon Woo Lim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaehyun Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
- Department of Chemical Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Sehan Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Sang Jae Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Gisu Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - HyoJung Hyun
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Jacob E. Combs
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jacob T. Andring
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Carrie Lomelino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chae Un Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Kowalik M, Masternak J, Olszewski M, Maciejewska N, Kazimierczuk K, Sitkowski J, Dąbrowska AM, Chylewska A, Makowski M. Anticancer Study on Ir III and Rh III Half-Sandwich Complexes with the Bipyridylsulfonamide Ligand. Inorg Chem 2024; 63:1296-1316. [PMID: 38174357 DOI: 10.1021/acs.inorgchem.3c03801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Organometallic half-sandwich complexes [(η5-Cp)IrCl(L)]PF6 (1) and [(η5-Cp)RhCl(L)]PF6 (2) were prepared using pentamethylcyclopentadienyl chloride dimers of iridium(III) or rhodium(III) with the 4-amino-N-(2,2'-bipyridin-5-yl)benzenesulfonamide ligand (L) and ammonium hexafluorophosphate. The crystal structures of L, 1, and 2 were analyzed in detail. The coordination reactions of the ligand with the central ions were confirmed using various spectroscopic techniques. Additionally, the interactions between sulfaligand, Ir(III), and Rh(III) complexes with carbonic anhydrase (CA), human serum albumin (HSA), and CT-DNA were investigated. The iridium(III) complex (1) did not show any antiproliferative properties against four different cancer cell lines, i.e., nonsmall cell lung cancer A549, colon cancer HCT-116, breast cancer MCF7, lymphoblastic leukemia Nalm-6, and a nonmalignant human embryonic kidney cell line HEK293, due to high binding affinity to GSH. The sulfonamide ligand (L) and rhodium(III) complex (2) were further studied. L showed competitive inhibition toward CA, while complexes 1 and 2, uncompetitive. All compounds interacted with HSA, causing a conformational change in the protein's α-helical structure, suggesting the induction of a more open conformation in HSA, reducing its biological activity. Both L and 2 were found to induce cell death through a caspase-dependent pathway. These findings position L and 2 as potential starting compounds for pharmaceutical, therapeutic, or medicinal research.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Mateusz Olszewski
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Natalia Maciejewska
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Katarzyna Kazimierczuk
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jerzy Sitkowski
- Institute of Organic Chemistry, Polish Academic of Science, Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland
| | | | - Agnieszka Chylewska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
McConnell KD, Fitzkee NC, Emerson JP. Metal Ion Binding Induces Local Protein Unfolding and Destabilizes Human Carbonic Anhydrase II. Inorg Chem 2022; 61:1249-1253. [PMID: 34989562 PMCID: PMC8919859 DOI: 10.1021/acs.inorgchem.1c03271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human carbonic anhydrase II (HCA) is a robust metalloprotein and an excellent biological model system to study the thermodynamics of metal ion coordination. Apo-HCA binds one zinc ion or two copper ions. We studied these binding processes at five temperatures (15-35 °C) using isothermal titration calorimetry, yielding thermodynamic parameters corrected for pH and buffer effects. We then sought to identify binding-induced structural changes. Our data suggest that binding at the active site organizes 6-8 residues; however, copper binding near the N-terminus results in a net unfolding of 6-7 residues. This surprising destabilization was confirmed using circular dichroism and protein stability measurements. Metal binding induced unfolding may represent an important regulatory mechanism, but it may be easily missed by NMR and X-ray crystallography. Thus, in addition to highlighting a highly novel binding-induced unfolding event, we demonstrate the value of calorimetry for studying the structural implications of metal binding.
Collapse
Affiliation(s)
- Kayla D. McConnell
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Joseph P. Emerson
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
4
|
Sosa AFC, Bednar RM, Mehl RA, Schwartz DK, Kaar JL. Faster Surface Ligation Reactions Improve Immobilized Enzyme Structure and Activity. J Am Chem Soc 2021; 143:7154-7163. [PMID: 33914511 PMCID: PMC8574164 DOI: 10.1021/jacs.1c02375] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During integration into materials, the inactivation of enzymes as a result of their interaction with nanometer size denaturing "hotspots" on surfaces represents a critical challenge. This challenge, which has received far less attention than improving the long-term stability of enzymes, may be overcome by limiting the exploration of surfaces by enzymes. One way this may be accomplished is through increasing the rate constant of the surface ligation reaction and thus the probability of immobilization with reactive surface sites (i.e., ligation efficiency). Here, the connection between ligation reaction efficiency and the retention of enzyme structure and activity was investigated by leveraging the extremely fast reaction of strained trans-cyclooctene (sTCOs) and tetrazines (Tet). Remarkably, upon immobilization via Tet-sTCO chemistry, carbonic anhydrase (CA) retained 77% of its solution-phase activity, while immobilization via less efficient reaction chemistries, such as thiol-maleimide and azide-dibenzocyclooctyne, led to activity retention of only 46% and 27%, respectively. Dynamic single-molecule fluorescence tracking methods further revealed that longer surface search distances prior to immobilization (>0.5 μm) dramatically increased the probability of CA unfolding. Notably, the CA distance to immobilization was significantly reduced through the use of Tet-sTCO chemistry, which correlated with the increased retention of structure and activity of immobilized CA compared to the use of slower ligation chemistries. These findings provide an unprecedented insight into the role of ligation reaction efficiency in mediating the exploration of denaturing hotspots on surfaces by enzymes, which, in turn, may have major ramifications in the creation of functional biohybrid materials.
Collapse
Affiliation(s)
- Andres F. Chaparro Sosa
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
| | - Riley M. Bednar
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, OR 97331-7305
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Building, Corvallis, OR 97331-7305
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
| | - Joel L. Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
| |
Collapse
|
5
|
The Active Site of a Prototypical “Rigid” Drug Target is Marked by Extensive Conformational Dynamics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Singh H, Das CK, Vasa SK, Grohe K, Schäfer LV, Linser R. The Active Site of a Prototypical "Rigid" Drug Target is Marked by Extensive Conformational Dynamics. Angew Chem Int Ed Engl 2020; 59:22916-22921. [PMID: 32965765 PMCID: PMC7756556 DOI: 10.1002/anie.202009348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/16/2020] [Indexed: 12/23/2022]
Abstract
Drug discovery, in particular optimization of candidates using medicinal chemistry, is generally guided by structural biology. However, for optimizing binding kinetics, relevant for efficacy and off-target effects, information on protein motion is important. Herein, we demonstrate for the prototypical textbook example of an allegedly "rigid protein" that substantial active-site dynamics have generally remained unrecognized, despite thousands of medicinal-chemistry studies on this model over decades. Comparing cryogenic X-ray structures, solid-state NMR on micro-crystalline protein at room temperature, and solution NMR structure and dynamics, supported by MD simulations, we show that under physiologically relevant conditions the pocket is in fact shaped by pronounced open/close conformational-exchange dynamics. The study, which is of general significance for pharmacological research, evinces a generic pitfall in drug discovery routines.
Collapse
Affiliation(s)
- Himanshu Singh
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.,Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Chandan K Das
- Theoretical Chemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Suresh K Vasa
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.,Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Kristof Grohe
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.,Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Lars V Schäfer
- Theoretical Chemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Rasmus Linser
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.,Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| |
Collapse
|
7
|
Cabaleiro-Lago C, Lundqvist M. The Effect of Nanoparticles on the Structure and Enzymatic Activity of Human Carbonic Anhydrase I and II. Molecules 2020; 25:E4405. [PMID: 32992797 PMCID: PMC7582742 DOI: 10.3390/molecules25194405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022] Open
Abstract
Human carbonic anhydrases (hCAs) belong to a well characterized group of metalloenzymes that catalyze the conversion of carbonic dioxide into bicarbonate. There are currently 15 known human isoforms of carbonic anhydrase with different functions and distribution in the body. This links to the relevance of hCA variants to several diseases such as glaucoma, epilepsy, mountain sickness, ulcers, osteoporosis, obesity and cancer. This review will focus on two of the human isoforms, hCA I and hCA II. Both are cytosolic enzymes with similar topology and 60% sequence homology but different catalytic efficiency and stability. Proteins in general adsorb on surfaces and this is also the case for hCA I and hCA II. The adsorption process can lead to alteration of the original function of the protein. However, if the function is preserved interesting biotechnological applications can be developed. This review will cover the knowledge about the interaction between hCAs and nanomaterials. We will highlight how the interaction may lead to conformational changes that render the enzyme inactive. Moreover, the importance of different factors on the final effect on hCAs, such as protein stability, protein hydrophobic or charged patches and chemistry of the nanoparticle surface will be discussed.
Collapse
Affiliation(s)
- Celia Cabaleiro-Lago
- Department of Environmental Science and Bioscience, Kristianstad University, 29188 Kristianstad, Sweden;
| | - Martin Lundqvist
- Department of Biochemistry and Structural Biology, Lund University, 22100 Lund, Sweden
| |
Collapse
|
8
|
Li H, Sheng Y, McGee W, Cammarata M, Holden D, Loo JA. Structural Characterization of Native Proteins and Protein Complexes by Electron Ionization Dissociation-Mass Spectrometry. Anal Chem 2017; 89:2731-2738. [PMID: 28192979 DOI: 10.1021/acs.analchem.6b02377] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) has played an increasingly important role in the identification and structural and functional characterization of proteins. In particular, the use of tandem mass spectrometry has afforded one of the most versatile methods to acquire structural information for proteins and protein complexes. The unique nature of electron capture dissociation (ECD) for cleaving protein backbone bonds while preserving noncovalent interactions has made it especially suitable for the study of native protein structures. However, the intra- and intermolecular interactions stabilized by hydrogen bonds and salt bridges can hinder the separation of fragments even with preactivation, which has become particularly problematic for the study of large macromolecular proteins and protein complexes. Here, we describe the capabilities of another activation method, 30 eV electron ionization dissociation (EID), for the top-down MS characterization of native protein-ligand and protein-protein complexes. Rich structural information that cannot be delivered by ECD can be generated by EID. EID allowed for the comparison of the gas-phase and the solution-phase structural stability and unfolding process of human carbonic anhydrase I (HCA-I). In addition, the EID fragmentation patterns reflect the structural similarities and differences among apo-, Zn-, and Cu,Zn-superoxide dismutase (SOD1) dimers. In particular, the structural changes due to Cu-binding and a point mutation (G41D) were revealed by EID-MS. The performance of EID was also compared to that of 193 nm ultraviolet photodissociation (UVPD), which allowed us to explore their qualitative similarities and differences as potential valuable tools for the MS study of native proteins and protein complexes.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California , Los Angeles, California 90095, United States
| | - Yuewei Sheng
- Department of Chemistry and Biochemistry, UCLA/DOE Institute of Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| | - William McGee
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Michael Cammarata
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Dustin Holden
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California , Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, UCLA/DOE Institute of Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Assarsson A, Nasir I, Lundqvist M, Cabaleiro-Lago C. Kinetic and thermodynamic study of the interactions between human carbonic anhydrase variants and polystyrene nanoparticles of different size. RSC Adv 2016. [DOI: 10.1039/c6ra06175c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The protein packing at the surface may increase as the size of particles decreases given the right particle–protein characteristics.
Collapse
Affiliation(s)
- A. Assarsson
- Lund University
- Division of Biochemistry and Structural Biology
- Lund
- Sweden
| | - I. Nasir
- Lund University
- Division of Biochemistry and Structural Biology
- Lund
- Sweden
| | - M. Lundqvist
- Lund University
- Division of Biochemistry and Structural Biology
- Lund
- Sweden
| | - C. Cabaleiro-Lago
- Lund University
- Division of Biochemistry and Structural Biology
- Lund
- Sweden
| |
Collapse
|
10
|
Nasir I, Lundqvist M, Cabaleiro-Lago C. Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase. NANOSCALE 2015; 7:17504-15. [PMID: 26445221 DOI: 10.1039/c5nr05360a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in combination with the inherent protein stability. 8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence revealed that HCAs adsorb to both hydrophilic and hydrophobic surfaces, however the dynamics of the unfolding at the nanoparticle surfaces drastically vary with the polarity. The size of the nanoparticles has opposite effects depending on the polarity of the nanoparticle surface. The apolar nanoparticles induce seconds timescale structural rearrangements whereas polar nanoparticles induce hours timescale structural rearrangements on the same charged HCA variant. Here, a simple model is proposed where the difference in the timescales of adsorption is correlated with the energy barriers for initial docking and structural rearrangements which are firmly regulated by the surface polarity. Near-UV circular dichorism (CD) further supports that both protein variants undergo structural rearrangements at the nanoparticle surfaces regardless of being "hard" or "soft". However, the conformational changes induced by the apolar surfaces differ for each HCA isoform and diverge from the previously reported effect of silica nanoparticles.
Collapse
Affiliation(s)
- Irem Nasir
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, SE 221 00, Lund, Sweden.
| | | | | |
Collapse
|
11
|
Nasir I, Fatih W, Svensson A, Radu D, Linse S, Cabaleiro Lago C, Lundqvist M. High Throughput Screening Method to Explore Protein Interactions with Nanoparticles. PLoS One 2015; 10:e0136687. [PMID: 26313757 PMCID: PMC4551901 DOI: 10.1371/journal.pone.0136687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/06/2015] [Indexed: 12/01/2022] Open
Abstract
The interactions of biological macromolecules with nanoparticles underlie a wide variety of current and future applications in the fields of biotechnology, medicine and bioremediation. The same interactions are also responsible for mediating potential biohazards of nanomaterials. Some applications require that proteins adsorb to the nanomaterial and that the protein resists or undergoes structural rearrangements. This article presents a screening method for detecting nanoparticle-protein partners and conformational changes on time scales ranging from milliseconds to days. Mobile fluorophores are used as reporters to study the interaction between proteins and nanoparticles in a high-throughput manner in multi-well format. Furthermore, the screening method may reveal changes in colloidal stability of nanomaterials depending on the physicochemical conditions.
Collapse
Affiliation(s)
- Irem Nasir
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | | | | | | | - Sara Linse
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Celia Cabaleiro Lago
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Martin Lundqvist
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
- Upper 2nd school, Klippan, Sweden
- * E-mail:
| |
Collapse
|
12
|
Kumar TKS, Sivaraman T, Samuel D, Srisailam S, Ganesh G, Hsieh HC, Hung KW, Peng HJ, Ho MC, Arunkumar AI, Yu C. Protein Folding and β-Sheet Proteins. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200000141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Aggarwal M, Boone CD, Kondeti B, McKenna R. Structural annotation of human carbonic anhydrases. J Enzyme Inhib Med Chem 2012; 28:267-77. [DOI: 10.3109/14756366.2012.737323] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Mayank Aggarwal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida,
Gainesville, FL, USA
| | - Christopher D. Boone
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida,
Gainesville, FL, USA
| | - Bhargav Kondeti
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida,
Gainesville, FL, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida,
Gainesville, FL, USA
| |
Collapse
|
14
|
Blanco-Rivero A, Shutova T, Román MJ, Villarejo A, Martinez F. Phosphorylation controls the localization and activation of the lumenal carbonic anhydrase in Chlamydomonas reinhardtii. PLoS One 2012; 7:e49063. [PMID: 23139834 PMCID: PMC3490910 DOI: 10.1371/journal.pone.0049063] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 10/09/2012] [Indexed: 11/25/2022] Open
Abstract
Background Cah3 is the only carbonic anhydrase (CA) isoform located in the thylakoid lumen of Chlamydomonas reinhardtii. Previous studies demonstrated its association with the donor side of the photosystem II (PSII) where it is required for the optimal function of the water oxidizing complex. However this enzyme has also been frequently proposed to perform a critical function in inorganic carbon acquisition and CO2 fixation and all mutants lacking Cah3 exhibit very poor growth after transfer to low CO2 conditions. Results/Conclusions In the present work we demonstrate that after transfer to low CO2, Cah3 is phosphorylated and that phosphorylation is correlated to changes in its localization and its increase in activity. When C. reinhardtii wild-type cells were acclimated to limiting CO2 conditions, the Cah3 activity increased about 5–6 fold. Under these conditions, there were no detectable changes in the level of the Cah3 polypeptide. The increase in activity was specifically inhibited in the presence of Staurosporine, a protein kinase inhibitor, suggesting that the Cah3 protein was post-translationally regulated via phosphorylation. Immunoprecipitation and in vitro dephosphorylation experiments confirm this hypothesis. In vivo phosphorylation analysis of thylakoid polypeptides indicates that there was a 3-fold increase in the phosphorylation signal of the Cah3 polypeptide within the first two hours after transfer to low CO2 conditions. The increase in the phosphorylation signal was correlated with changes in the intracellular localization of the Cah3 protein. Under high CO2 conditions, the Cah3 protein was only associated with the donor side of PSII in the stroma thylakoids. In contrast, in cells grown at limiting CO2 the protein was partly concentrated in the thylakoids crossing the pyrenoid, which did not contain PSII and were surrounded by Rubisco molecules. Significance This is the first report of a CA being post-translationally regulated and describing phosphorylation events in the thylakoid lumen.
Collapse
Affiliation(s)
| | - Tatiana Shutova
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - María José Román
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Arsenio Villarejo
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Flor Martinez
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
15
|
Brun MA, Griss R, Reymond L, Tan KT, Piguet J, Peters RJRW, Vogel H, Johnsson K. Semisynthesis of fluorescent metabolite sensors on cell surfaces. J Am Chem Soc 2011; 133:16235-42. [PMID: 21879732 DOI: 10.1021/ja206915m] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Progress in understanding signal transduction and metabolic pathways is hampered by a shortage of suitable sensors for tracking metabolites, second messengers, and neurotransmitters in living cells. Here we introduce a class of rationally designed semisynthetic fluorescent sensor proteins, called Snifits, for measuring metabolite concentrations on the cell surface of mammalian cells. Functional Snifits are assembled on living cells through two selective chemical labeling reactions of a genetically encoded protein scaffold. Our best Snifit displayed fluorescence intensity ratio changes on living cells significantly higher than any previously reported cell-surface-targeted fluorescent sensor protein. This work establishes a generally applicable and rational strategy for the generation of cell-surface-targeted fluorescent sensor proteins for metabolites of interest.
Collapse
Affiliation(s)
- Matthias A Brun
- Institute of Chemical Sciences and Engineering, National Centre of Competence in Research Chemical Biology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kinetic and crystallographic studies of the role of tyrosine 7 in the active site of human carbonic anhydrase II. Arch Biochem Biophys 2010; 506:181-7. [PMID: 21145876 DOI: 10.1016/j.abb.2010.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 11/21/2022]
Abstract
The rate limiting step in catalysis of bicarbonate dehydration by human carbonic anhydrase II (HCA II) is an intramolecular proton transfer from His64 to the zinc-bound hydroxide. We have examined the role of Tyr7 using site-specific mutagenesis and measuring catalysis by the ¹⁸O exchange method using membrane inlet mass spectrometry. The side chain of Tyr7 in HCA II extends into the active-site cavity about 7 Å from the catalytic zinc atom. Replacement of Tyr7 with eight other amino acids had no effect on the interconversion of bicarbonate and CO₂, but in some cases caused enhancements in the rate constant of proton transfer by nearly 10-fold. The variant Y7I HCA II enhanced intramolecular proton transfer approximately twofold; its structure was determined by X-ray crystallography at 1.5 Å resolution. No changes were observed in the ordered solvent structure in the active-site cavity or in the conformation of the side chain of the proton shuttle His64. However, the first 11 residues of the amino-terminal chain in Y7I HCA II assumed an alternate conformation compared with the wild type. Differential scanning calorimetry showed variants at position 7 had a melting temperature approximately 8 °C lower than that of the wild type.
Collapse
|
17
|
Mirarefi P, Lee CT. Photo-induced unfolding and inactivation of bovine carbonic anhydrase in the presence of a photoresponsive surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:106-14. [DOI: 10.1016/j.bbapap.2009.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 09/01/2009] [Accepted: 09/11/2009] [Indexed: 11/28/2022]
|
18
|
Krishnamurthy VM, Kaufman GK, Urbach AR, Gitlin I, Gudiksen KL, Weibel DB, Whitesides GM. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem Rev 2008; 108:946-1051. [PMID: 18335973 PMCID: PMC2740730 DOI: 10.1021/cr050262p] [Citation(s) in RCA: 571] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Vijay M. Krishnamurthy
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - George K. Kaufman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Adam R. Urbach
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Irina Gitlin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Katherine L. Gudiksen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Douglas B. Weibel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| |
Collapse
|
19
|
Vincenzetti S, Quadrini B, Mariani P, De Sanctis G, Cammertoni N, Polzonetti V, Pucciarelli S, Natalini P, Vita A. Modulation of human cytidine deaminase by specific aminoacids involved in the intersubunit interactions. Proteins 2008; 70:144-56. [PMID: 17640070 DOI: 10.1002/prot.21533] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An investigation was made of the role exerted by some residues supposed to be involved in the intersubunit interaction and also in the catalytic site of homotetrameric human cytidine deaminase (T-CDA). Attention was focused on Y33, Y60, R68, and F137 residues that are a part of a conserved region in most T-CDAs. Hence, a series of site-directed mutagenesis experiments was set up obtaining seven mutants: Y60G, Y33G, Y33F Y33S, F137A, R68G, and R68Q. Each active purified mutant protein was characterized kinetically, with a series of substrates and inhibitors, and the effect of temperature on enzyme activity and stability was also investigated. Circular dichroism (CD) experiments at different temperatures and in presence of small amounts of sodium dodecyl sulphate (SDS) were performed in all the soluble mutant CDAs. The results obtained by site-directed mutagenesis studies were compared to the crystallographic data of B. subtilis CDA and E. coli CDA and to molecular modeling studies previously performed on human CDA. The mutation of Y60 to glycine produced an enzyme with a more compact quaternary structure with respect to the wild-type; this mutation did not have a dramatic effect on cytidine deamination, but it slightly affected the binding with the substrate. None of the mutant CDAs in Y33 showed enzymatic activity; they existed only as monomers, indicating that this residue, located at the intersubunit interface, may be responsible for the correct folding of human CDA. The insertion of an alanine instead of phenylalanine at position 137 led to a soluble but completely inactive enzyme unable to form a tetramer, suggesting that F137 residue may be important for the assembling of the tetramer and also for the arrangement of the CDA active site. Finally, R68G and R68Q mutations revealed that the presence of the amino group seems to be important for the catalytic process but not for substrate binding, as already shown in B. subtilis CDA. The quaternary structure of R68Q was not affected by the mutation, as shown by the SDS-induced dissociation experiments and CD studies, whereas R68G dissociated very easily in presence of small amounts of SDS. These experiments indicated that in the human CDA, the side chain of arginine 68 involved in the catalytic process in one subunit active site might come from another subunit. The data obtained from these studies confirmed the presence of a complicated set of intersubunit interactions in the active site of human CDA, as shown in other T-CDAs.
Collapse
Affiliation(s)
- S Vincenzetti
- Dipartimento di Scienze Morfologiche e Biochimiche Comparate, Università di Camerino, 62032 Camerino (MC), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Covalt JC, Cao TB, Magdaroag JRC, Gross LA, Jennings PA. Temperature, media, and point of induction affect the N-terminal processing of interleukin-1β. Protein Expr Purif 2005; 41:45-52. [PMID: 15802220 DOI: 10.1016/j.pep.2005.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 01/12/2005] [Indexed: 10/25/2022]
Abstract
The expression of recombinant proteins in bacterial hosts may alter the biophysical properties of the protein of interest as a result of differences in post-translational processing from that observed when produced in the native cell. For example, recombinant human interleukin-1beta (IL-1beta) is produced as three isoforms when expressed in the Escherichia coli strain BL-21(DE3). These isoforms are produced by the non-homogeneous processing of the N-terminal methionine residue by the endogenous bacterial aminopeptidase and differ in the first residue (1-met, 1-ala, and 1-pro). Importantly, these isoforms have significantly different binding affinities for the IL receptor protein. Varying the temperature, media composition, and point of induction affects this N-terminal processing to favor one of the three isoforms of IL-1beta. We found changes in media composition and/or point of induction affected the abundance of the isoforms by as much as 15-fold. The 1-pro isoform decreased from 60.9 to 4.7% in Luria broth (LB) and minimal media (MM), respectively, when protein expression was induced at an OD600 of 0.9. Conversely, the abundance of the 1-met isoform is much higher in MM than in LB showing the reverse effect (2.6 and 50.7% in LB and MM, respectively, at an OD600 of 0.9), and the degree to which they are favored depends significantly upon the induction point. Our results show that it is possible to favor the expression of various N-terminal isoforms of IL-1beta by adjusting the environmental growth conditions. Given that the initiator methionine residue is necessary for expression in bacterial hosts and is known to affect the stability of other recombinant proteins our approach may be a useful general method for determining the optimal conditions for expressing and purifying pure, homogenous samples of recombinant proteins for structural and biological studies.
Collapse
Affiliation(s)
- James C Covalt
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0375, USA
| | | | | | | | | |
Collapse
|
21
|
McMurtrie HL, Cleary HJ, Alvarez BV, Loiselle FB, Sterling D, Morgan PE, Johnson DE, Casey JR. The bicarbonate transport metabolon. J Enzyme Inhib Med Chem 2004; 19:231-6. [PMID: 15499994 DOI: 10.1080/14756360410001704443] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
To allow cells to control their pH and bicarbonate levels, cells express bicarbonate transport proteins that rapidly and selectively move bicarbonate across the plasma membrane. Physical interactions have been identified between the carbonic anhydrase isoform, CAII, and the erythrocyte membrane Cl- /HCO3(-) anion exchanger, AE1, mediated by an acidic motif in the AE1 C-terminus. We have found that the presence of CAII attached to AE1 accelerates AE1 HCO3(-) transport activity, as AE1 moves bicarbonate either into or out of the cell. In efflux mode the presence of CAII attached to AE1 will increase the local concentration of bicarbonate at the AE1 transport site. As bicarbonate is transported into the cell by AE1, the presence of CAII on the cytosolic surface accelerates transport by consumption of bicarbonate, thereby maximizing the transmembrane bicarbonate concentration gradient experienced by the AE1 molecule. Functional and physical interactions also occur between CAII and Na+/HCO3(-) co-transporter isoforms NBC1 and NBC3. All examined bicarbonate transport proteins, except the DRA (SLC26A3) Cl-/HCO3(-) exchange protein, have a consensus CAII binding site in their cytoplasmic C-terminus. Interestingly, CAII does not bind DRA. CAIV is anchored to the extracellular surface of cells via a glycosylphosphatidyl inositol linkage. We have identified extracellular regions of AE1 and NBC1 that directly interact with CAIV, to form a physical complex between the proteins. In summary, bicarbonate transporters directly interact with the CAII and CAIV carbonic anhydrases to increase the transmembrane bicarbonate flux. The complex of a bicarbonate transporter with carbonic anhydrase forms a "Bicarbonate Transport Metabolon."
Collapse
Affiliation(s)
- Heather L McMurtrie
- Membrane Protein Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lundqvist M, Sethson I, Jonsson BH. Protein adsorption onto silica nanoparticles: conformational changes depend on the particles' curvature and the protein stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:10639-47. [PMID: 15544396 DOI: 10.1021/la0484725] [Citation(s) in RCA: 419] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have analyzed the adsorption of protein to the surfaces of silica nanoparticles with diameters of 6, 9, and 15 nm. The effects upon adsorption on variants of human carbonic anhydrase with differing conformational stabilities have been monitored using methods that give complementary information, i.e., circular dichroism (CD), nuclear magnetic resonance (NMR), analytical ultracentrifugation (AUC), and gel permeation chromatography. Human carbonic anhydrase I (HCAI), which is the most stable of the protein variants, establishes a dynamic equilibrium between bound and unbound protein following mixture with silica particles. Gel permeation and AUC experiments indicate that the residence time of HCAI is on the order of approximately 10 min and slowly increases with time, which allows us to study the effects of the interaction with the solid surface on the protein structure in more detail than would be possible for a process with faster kinetics. The effects on the protein conformation from the interaction have been characterized using CD and NMR measurements. This study shows that differences in particle curvature strongly influence the amount of the protein's secondary structure that is perturbed. Particles with a longer diameter allow formation of larger particle-protein interaction surfaces and cause larger perturbations of the protein's secondary structure upon interaction. In contrast, the effects on the tertiary structure seem to be independent of the particles' curvature.
Collapse
Affiliation(s)
- Martin Lundqvist
- Molecular Biotechnology/IFM, Linköping University, SE-58183 Linköping, Sweden
| | | | | |
Collapse
|
23
|
Dahl NK, Jiang L, Chernova MN, Stuart-Tilley AK, Shmukler BE, Alper SL. Deficient HCO3- transport in an AE1 mutant with normal Cl- transport can be rescued by carbonic anhydrase II presented on an adjacent AE1 protomer. J Biol Chem 2003; 278:44949-58. [PMID: 12933803 DOI: 10.1074/jbc.m308660200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cl-/HCO3- exchange activity mediated by the AE1 anion exchanger is reduced by carbonic anhydrase II (CA2) inhibition or by prevention of CA2 binding to the AE1 C-terminal cytoplasmic tail. This type of AE1 inhibition is thought to represent reduced metabolic channeling of HCO3- to the intracellular HCO3- binding site of AE1. To test the hypothesis that CA2 binding might itself allosterically activate AE1 in Xenopus oocytes, we compared Cl-/Cl- and Cl-/HCO3- exchange activities of AE1 polypeptides with truncation and missense mutations in the C-terminal tail. The distal renal tubular acidosis-associated AE1 901X mutant exhibited both Cl-/Cl- and Cl-/HCO3- exchange activities. In contrast, AE1 896X, 891X, and AE1 missense mutants in the CA2 binding site were inactive as Cl-/HCO3- exchangers despite exhibiting normal Cl-/Cl- exchange activities. Co-expression of CA2 enhanced wild-type AE1-mediated Cl-/HCO3- exchange, but not Cl-/Cl- exchange. CA2 co-expression could not rescue Cl-/HCO3- exchange activity in AE1 mutants selectively impaired in Cl-/HCO3- exchange. However, co-expression of transport-incompetent AE1 mutants with intact CA2 binding sites completely rescued Cl-/HCO3- exchange by an AE1 missense mutant devoid of CA2 binding, with activity further enhanced by CA2 co-expression. The same transport-incompetent AE1 mutants failed to rescue Cl-/HCO3- exchange by the AE1 truncation mutant 896X, despite preservation of the latter's core CA2 binding site. These data increase the minimal extent of a functionally defined CA2 binding site in AE1. The inter-protomeric rescue of HCO3- transport within the AE1 dimer shows functional proximity of the C-terminal cytoplasmic tail of one protomer to the anion translocation pathway in the adjacent protomer within the AE1 heterodimer. The data strongly support the hypothesis that an intact transbilayer anion translocation pathway is completely contained within an AE1 monomer.
Collapse
Affiliation(s)
- Neera K Dahl
- Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
24
|
Mårtensson LG, Karlsson M, Carlsson U. Dramatic stabilization of the native state of human carbonic anhydrase II by an engineered disulfide bond. Biochemistry 2002; 41:15867-75. [PMID: 12501217 DOI: 10.1021/bi020433+] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To find a disulfide pair that could stabilize the enzyme human carbonic anhydrase II (HCA II), we grafted the disulfide bridge from the related and unusually stable carbonic anhydrase form from Neisseria gonorrhoeae (NGCA) into the human enzyme. Thus, the two Cys residues at positions 23 and 203 were engineered into a pseudo-wild-type form of HCA II (C206S), giving the mutant C206S/A23C/L203C. The disulfide bond was not formed spontaneously. The native state of the reduced form of the mutant was markedly destabilized (2.9 kcal/mol) compared to that of HCA II. Formation of a disulfide bridge was achieved by treatment by oxidized glutathione. This led to a significant stabilization of the native conformation. Compared to HCA II the unfolding midpoint for the variant was increased from 0.9 to 1.7 M guanidine HCl, corresponding to a stabilization of 3.7 kcal/mol. This makes the human enzyme almost as stable as the model protein NGCA, for which the unfolding of the native state has a midpoint at 2.1 M guanidine HCl. The stabilized protein underwent, contrary to all other investigated variants of HCA II, an apparent two-state unfolding transition, as judged from intrinsic Trp fluorescence measurements. A molten-globule intermediate is nevertheless formed but is suppressed because of the high denaturant pressure it faces upon rupture of the native state.
Collapse
|
25
|
Baxa U, Speransky V, Steven AC, Wickner RB. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc Natl Acad Sci U S A 2002; 99:5253-60. [PMID: 11959975 PMCID: PMC122756 DOI: 10.1073/pnas.082097899] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The [URE3] infectious protein (prion) of Saccharomyces cerevisiae is a self-propagating amyloid form of Ure2p. The C-terminal domain of Ure2p controls nitrogen catabolism by complexing with the transcription factor, Gln3p, whereas the asparagine-rich N-terminal "prion" domain is responsible for amyloid filament formation (prion conversion). On filament formation, Ure2p is inactivated, reflecting either a structural change in the C-terminal domain or steric blocking of its interaction with Gln3p. We fused the prion domain with four proteins whose activities should not be sterically impeded by aggregation because their substrates are very small: barnase, carbonic anhydrase, glutathione S-transferase, and green fluorescent protein. All formed amyloid filaments in vitro, whose diameters increased with the mass of the appended enzyme. The helical repeat lengths were consistent within a single filament but varied with the construct and between filaments from a single construct. CD data suggest that, in the soluble fusion proteins, the prion domain has no regular secondary structure, whereas earlier data showed that in filaments, it is virtually all beta-sheet. In filaments, the activity of the appended proteins was at most mildly reduced, when substrate diffusion effects were taken into account, indicating that they retained their native structures. These observations suggest that the amyloid content of these filaments is confined to their prion domain-containing backbones and imply that Ure2p is inactivated in [URE3] cells by a steric blocking mechanism.
Collapse
Affiliation(s)
- Ulrich Baxa
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
26
|
Andersson D, Carlsson U, Freskgård PO. Contribution of tryptophan residues to the CD spectrum of the extracellular domain of human tissue factor: application in folding studies and prediction of secondary structure. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1118-28. [PMID: 11179978 DOI: 10.1046/j.1432-1327.2001.01981.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The contribution to the circular dichroism (CD) spectrum made by each of the four Trp residues in the extracellular domain of human tissue factor, sTF (s designates soluble), was determined from difference CD spectra. The individual Trp CD spectra showed that all four residues contributed to the CD spectrum in almost the entire wavelength region investigated (180-305 nm). The sum of the individual spectra of each Trp residue in the near-UV region was qualitatively identical to the wild-type spectrum, clearly demonstrating that the Trp residues are the major contributors to the spectrum in this wavelength region. Trp CD bands interfere with the peptide bands in the far-UV region, leading to uncertainty in the predictions of the amounts of various types of secondary structure. Accordingly, the best prediction of secondary sTF structure content was achieved using a hypothetical Trp-free CD spectrum obtained after subtraction of all individual Trp spectra from the wild-type spectrum. The mutated Trp residues were also exploited as intrinsic probes to monitor the formation of local native-like tertiary structure by kinetic near-UV CD measurements. The global folding reaction was followed in parallel with a novel functional assay that registered the recovery of cofactor activity, i.e. stimulation of the amidolytic activity of Factor VIIa. From these measurements, it was found that sTF appears to regain FVIIa cofactor activity before the final side-chain packing of the Trp residues. The combined kinetic refolding results suggest that the compact asymmetric environments of the individual Trp residues in sTF are formed simultaneously, leading to the conclusion that the native tertiary structure of the whole protein is formed in a cooperative manner.
Collapse
Affiliation(s)
- D Andersson
- IFM-Department of Chemistry, Linköping University, Sweden
| | | | | |
Collapse
|
27
|
Arai M, Kuwajima K. Role of the molten globule state in protein folding. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:209-82. [PMID: 10751946 DOI: 10.1016/s0065-3233(00)53005-8] [Citation(s) in RCA: 355] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- M Arai
- Department of Physics, School of Science, University of Tokyo, Japan
| | | |
Collapse
|
28
|
Affiliation(s)
- U Carlsson
- IFM-Department of Chemistry, Linköping University, S-581 83 Linköping, Sweden
| | | |
Collapse
|
29
|
Jonasson P, Kjellsson A, Sethson I, Jonsson BH. Denatured states of human carbonic anhydrase II: an NMR study of hydrogen/deuterium exchange at tryptophan-indole-H(N) sites. FEBS Lett 1999; 445:361-5. [PMID: 10094490 DOI: 10.1016/s0014-5793(99)00042-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrogen/deuterium (H/D) exchange measurements in low and moderate concentrations of GuHCI were conducted on the side chain H(N) atoms of the seven tryptophans of pseudo wild-type human carbonic anhydrase II. Tryptophans 5, 16 and 245, situated in or close to the N-terminal domain were found to have little protection against exchange. The H/D exchange results for Trp-123, Trp-192 and Trp-209 showed that a previously identified molten globule and the native state gave a similar protection against exchange. Global unfolding of the protein is necessary for the efficient exchange at Trp-97, which is located in the central part of the beta-sheet.
Collapse
Affiliation(s)
- P Jonasson
- Department of Biochemistry, Umeå University, Sweden
| | | | | | | |
Collapse
|
30
|
Denisov VP, Jonsson BH, Halle B. Dynamics of Functional Water in the Active Site of Native Carbonic Anhydrase from 17O Magnetic Relaxation Dispersion. J Am Chem Soc 1999. [DOI: 10.1021/ja983930f] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vladimir P. Denisov
- Condensed Matter Magnetic Resonance Group Department of Chemistry, Lund University P.O. Box 124, S-22100 Lund, Sweden Department of Biochemistry, Umeå University S-90187 Umeå, Sweden
| | - Bengt-Harald Jonsson
- Condensed Matter Magnetic Resonance Group Department of Chemistry, Lund University P.O. Box 124, S-22100 Lund, Sweden Department of Biochemistry, Umeå University S-90187 Umeå, Sweden
| | - Bertil Halle
- Condensed Matter Magnetic Resonance Group Department of Chemistry, Lund University P.O. Box 124, S-22100 Lund, Sweden Department of Biochemistry, Umeå University S-90187 Umeå, Sweden
| |
Collapse
|
31
|
Borén K, Andersson P, Larsson M, Carlsson U. Characterization of a molten globule state of bovine carbonic anhydrase III: loss of asymmetrical environment of the aromatic residues has a profound effect on both the near- and far-UV CD spectrum. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1430:111-8. [PMID: 10082939 DOI: 10.1016/s0167-4838(98)00283-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bovine muscle carbonic anhydrase (isoenzyme III; BCAIII) exhibited a three-state unfolding process at equilibrium upon denaturation in guanidine hydrochloride (GuHCl). The stable folding intermediate appeared to be of molten globule type. The stability towards GuHCl in terms of mid-point concentrations of denaturation were very similar for BCAIII and human CAII (HCAII). It was further demonstrated that the aromatic amino acid residues contributed significantly to the circular dichroism (CD) spectrum in the far-UV wavelength region during the native-->molten globule state transition. Thus, the ellipiticity change at 218 nm was shown to monitor the loss of tertiary interactions of aromatic side chains at the first unfolding transition as well as the rupture of secondary structure at the second unfolding transition. Similar aromatic contributions to the far-UV CD spectrum, but with varying magnitudes, were also noted for BCAII and HCAII, further emphasizing that interference of aromatic residues should not be neglected at wavelengths that normally are assigned to secondary structural changes.
Collapse
Affiliation(s)
- K Borén
- IFM/Department of Chemistry, Linköping University, SE-581 83, Linköping, Sweden
| | | | | | | |
Collapse
|
32
|
Chaudhuri TK, Horii K, Yoda T, Arai M, Nagata S, Terada TP, Uchiyama H, Ikura T, Tsumoto K, Kataoka H, Matsushima M, Kuwajima K, Kumagai I. Effect of the extra n-terminal methionine residue on the stability and folding of recombinant alpha-lactalbumin expressed in Escherichia coli. J Mol Biol 1999; 285:1179-94. [PMID: 9887272 DOI: 10.1006/jmbi.1998.2362] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure, stability, and unfolding-refolding kinetics of Escherichia coli-expressed recombinant goat alpha-lactalbumin were studied by circular dichroism spectroscopy, X-ray crystallography, and stopped-flow measurements, and the results were compared with those of the authentic protein prepared from goat milk. The electric properties of the two proteins were also studied by gel electrophoresis and ion-exchange chromatography. Although the overall structures of the authentic and recombinant proteins are the same, the extra methionine residue at the N terminus of the recombinant protein remarkably affects the native-state stability and the electric properties. The native state of the recombinant protein was 3.5 kcal/mol less stable than the authentic protein, and the recombinant protein was more negatively charged than the authentic one. The recombinant protein unfolded 5.7 times faster than the authentic one, although there were no significant differences in the refolding rates of the two proteins. The destabilization of the recombinant protein can be fully interpreted in terms of the increased unfolding rate of the protein, indicating that the N-terminal region remains unorganized in the transition state of refolding, and hence is not involved in the folding initiation site of the protein. A comparison of the X-ray structures of recombinant alpha-lactalbumin determined here with that of the authentic protein shows that the structural differences between the proteins are confined to the N-terminal region. Theoretical considerations for the differences in the conformational and solvation free energies between the proteins show that the destabilization of the recombinant protein is primarily due to excess conformational entropy of the N-terminal methionine residue in the unfolded state, and also due to less exposure of hydrophobic surface on unfolding. The results suggest that when the N-terminal region of a protein has a rigid structure, expression of the protein by E. coli, which adds the extra methionine residue, destabilizes the native state through a conformational entropy effect. It also shows that differences in the electrostatic interactions of the N-terminal amino group with the side-chain atoms of Thr38, Asp37, and Asp83 bring about a difference in the pKa value of the N-terminal amino group between the proteins, resulting in a greater negative net charge of the recombinant protein at neutral pH.
Collapse
Affiliation(s)
- T K Chaudhuri
- Department of Physics Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang J, Matthews CR. The role of ligand binding in the kinetic folding mechanism of human p21(H-ras) protein. Biochemistry 1998; 37:14891-9. [PMID: 9778365 DOI: 10.1021/bi981116z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
p21(H-ras) plays a critical role in signal transduction pathways by cycling between an active, GTP/Mg2+ ternary complex and an inactive, GDP/Mg2+ complex. Urea-induced equilibrium unfolding studies [Zhang and Matthews (1998) Biochemistry 37, 14881-14890] have shown that GDP and Mg2+ play essential roles in stabilizing the protein. To probe the mechanism of folding and to examine the effects of these ligands on the kinetic folding reaction, unfolding and refolding experiments were performed at a variety of urea and ligand concentrations. A burst phase intermediate with substantial secondary structure and marginal stability was observed during refolding by stopped-flow circular dichroism spectroscopy. Three subsequent refolding phases were detected using a combination of absorbance, circular dichroism, and fluorescence spectroscopy. The fastest phase involves ligand binding and appears to directly form the fully folded enzyme. The intermediate and slow phases do not depend on either urea or ligand concentration under strongly refolding conditions and appear to reflect isomerization or rearrangement reactions. Double- jump experiments demonstrated that the intermediate and slow refolding phases both lead to the native conformation and correspond to parallel rather than sequential reactions. Unfolding is controlled by two phases that involve the release of the ligands when the ligands are in excess. At stoichiometric ligand concentrations, however, the rate-limiting steps in unfolding change from ligand release to isomerization or rearrangement reactions at high urea concentrations. Only the faster unfolding reaction is observed in the absence of Mg2+, suggesting that this reaction corresponds to the unfolding of the binary complex, p21(H-ras)*GDP. The slower unfolding reaction presumably corresponds to the unfolding of the ternary complex, p21(H-ras)*GDP. Mg2+. The kinetic data show that the refolding/unfolding of p21(H-ras) occurs through parallel channels that are strongly influenced by the binding/release of GDP and Mg2+ to/from a pair of native conformers.
Collapse
Affiliation(s)
- J Zhang
- Department of Chemistry, Center for Biomolecular Structure and Function, The Pennsylvania State University, University Park 16802, USA
| | | |
Collapse
|
34
|
Earnhardt JN, Qian M, Tu C, Lakkis MM, Bergenhem NC, Laipis PJ, Tashian RE, Silverman DN. The catalytic properties of murine carbonic anhydrase VII. Biochemistry 1998; 37:10837-45. [PMID: 9692974 DOI: 10.1021/bi980046t] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Carbonic anhydrase VII (CA VII) appears to be the most highly conserved of the active mammalian carbonic anhydrases. We have characterized the catalytic activity and inhibition properties of a recombinant murine CA VII. CA VII has steady-state constants similar to two of the most active isozymes of carbonic anhydrase, CA II and IV; also, it is very strongly inhibited by the sulfonamides ethoxzolamide and acetazolamide, yielding the lowest Ki values measured by the exchange of 18O between CO2 and water for any of the mammalian isozymes of carbonic anhydrase. The catalytic measurements of the hydration of CO2 and the dehydration of HCO3- were made by stopped-flow spectrophotometry and the exchange of 18O using mass spectrometry. Unlike the other isozymes of this class of CA, for which Kcat/K(m) is described by the single ionization of zinc-bound water, CA VII exhibits a pH profile for Kcat/K(m) for CO2 hydration described by two ionizations at pKa 6.2 and 7.5, with a maximum approaching 8 x 10(7) M-1 s-1. The pH dependence of kcat/K(m) for the hydrolysis of 4-nitrophenyl acetate could also be described by these two ionizations, yielding a maximum of 71 M-1 s-1 at pH > 9. Using a novel method that compares rates of 18O exchange and dehydration of HCO3-, we assigned values for the apparent pKa at 6.2 to the zinc-bound water and the pKa of 7.5 to His 64. The magnitude of Kcat, its pH profile, 18O-exchange data for both wild-type and a H64A mutant, and inhibition by CuSO4 and acrolein suggest that the histidine at position 64 is functioning as a proton-transfer group and is responsible for one of the observed ionizations. A truncation mutant of CA VII, in which 23 residues from the amino-terminal end were deleted, has its rate constant for intramolecular proton transfer decreased by an order of magnitude with no change in Kcat/K(m). This suggests a role for the amino-terminal end in enhancing proton transfer in catalysis by carbonic anhydrase.
Collapse
Affiliation(s)
- J N Earnhardt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
A 1193-bp cDNA containing the complete murine carbonic anhydrase IV coding sequence was isolated from a Balb/c kidney cDNA library. The entire coding sequence plus shorter segments was used in an Escherichia coli T7 expression vector system to produce four forms of murine CA IV, including (1) a protein representing the full-length coding sequence, (2) an amino-truncated protein lacking the 18 N-terminal amino acid plasma membrane targeting sequence, (3) a protein which lacked the plasma membrane targeting sequence and 26 C-terminal amino acids, and (4) a protein which lacked both 36 N-terminal residues (the plasma membrane targeting sequence plus 18 additional amino acids which included the first two cysteines) and 26 C-terminal residues. All four proteins were expressed as catalytically inactive inclusion bodies. After rapid dilution of washed, guanidine hydrochloride-denatured inclusion bodies into a glutathione-, l-arginine-containing renaturation buffer, an active carbonic anhydrase IV at yields of 3-4 mg/liter was easily purified from cultures expressing the form lacking the N-terminal targeting sequence and 26 C-terminal residues. The longest and shortest forms of carbonic anhydrase IV failed to refold into active enzyme under these conditions. The activity of purified recombinant carbonic anhydrase IV was highly resistant to sodium dodecyl sulfate, as is the native enzyme. This resistance presumably results from intramolecular disulfide bonds maintaining a functional active site configuration even in the presence of denaturing agents.
Collapse
Affiliation(s)
- J D Hurt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
36
|
Abstract
Carbonic anhydrase (CA; carbonate hydro-lyase, EC 4.2.1.1) is a zinc-containing enzyme that catalyzes the reversible hydration of carbon dioxide: CO2+ H2O<-->HCO3(-)+H+. The enzyme is the target for drugs, such as acetazolamide, methazolamide, and dichlorphenamide, for the treatment of glaucoma. There are three evolutionarily unrelated CA families, designated alpha, beta, and gamma. All known CAs from the animal kingdom are of the alpha type. There are seven mammalian CA isozymes with different tissue distributions and intracellular locations, CA I-VII. Crystal structures of human CA I and II, bovine CA III, and murine CA V have been determined. All of them have the same tertiary fold, with a central 10-stranded beta-sheet as the dominating secondary structure element. The zinc ion is located in a cone-shaped cavity and coordinated to three histidyl residues and a solvent molecule. Inhibitors bind at or near the metal center guided by a hydrogen-bonded system comprising Glu-106 and Thr-199. The catalytic mechanism of CA II has been studied in particular detail. It involves an attack of zinc-bound OH- on a CO2 molecule loosely bound in a hydrophobic pocket. The resulting zinc-coordinated HCO3- ion is displaced from the metal ion by H2O. The rate-limiting step is an intramolecular proton transfer from the zinc-bound water molecule to His-64, which serves as a proton shuttle between the metal center and buffer molecules in the reaction medium.
Collapse
Affiliation(s)
- S Lindskog
- Department of Biochemistry, Umeå University, Sweden
| |
Collapse
|
37
|
Abstract
In the past year, interesting new information concerning various aspects of the folding process of beta-sheet proteins has been gleaned. Kinetic and equilibrium folding intermediates have been characterized. Studies of extensively denatured states and of model peptide fragments have enabled important steps to be taken towards an understanding of the initiation of the folding process of beta-sheet proteins. Site-directed mutagenesis has been used in combination with various probes to monitor folding events.
Collapse
Affiliation(s)
- U Carlsson
- Department of Chemistry, Linköping University, Sweden
| | | |
Collapse
|