1
|
Geng J, Aioub M, El-Sayed MA, Barry BA. UV Resonance Raman Study of Apoptosis, Platinum-Based Drugs, and Human Cell Lines. Chemphyschem 2018; 19:1428-1431. [DOI: 10.1002/cphc.201800252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jiafeng Geng
- School of Chemistry and Biochemistry and the Parker H. Petit Institute of Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta, Georgia USA
| | - Mena Aioub
- School of Chemistry and Biochemistry, the Parker H. Petit Institute of Bioengineering and Bioscience, and the Laser Dynamics Laboratory; Georgia Institute of Technology; Atlanta, Georgia USA
| | - Mostafa A. El-Sayed
- School of Chemistry and Biochemistry, the Parker H. Petit Institute of Bioengineering and Bioscience, and the Laser Dynamics Laboratory; Georgia Institute of Technology; Atlanta, Georgia USA
| | - Bridgette A. Barry
- School of Chemistry and Biochemistry and the Parker H. Petit Institute of Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta, Georgia USA
| |
Collapse
|
2
|
Chen M, Jiang M, Sun Y, Guo ZF, Guo Z. Stabilization of the second oxyanion intermediate by 1,4-dihydroxy-2-naphthoyl-coenzyme A synthase of the menaquinone pathway: spectroscopic evidence of the involvement of a conserved aspartic acid. Biochemistry 2011; 50:5893-904. [PMID: 21627110 DOI: 10.1021/bi200376x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1,4-Dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes an intramolecular Claisen condensation involving two oxyanion intermediates in the biosynthetic pathway of menaquinone, an essential respiration electron transporter in many microorganisms. Here we report the finding that the DHNA-CoA product and its analogues bind and inhibit the synthase from Escherichia coli with significant ultraviolet--visible spectral changes, which are similar to the changes induced by deprotonation of the free inhibitors in a basic solution. Dissection of the structure--affinity relationships of the inhibitors identifies the hydroxyl groups at positions 1 (C1-OH) and 4 (C4-OH) of DHNA-CoA or their equivalents as the dominant and minor sites, respectively, for the enzyme--ligand interaction that polarizes or deprotonates the bound ligands to cause the observed spectral changes. In the meantime, spectroscopic studies with active site mutants indicate that C4-OH of the enzyme-bound DHNA-CoA interacts with conserved polar residues Arg-91, Tyr-97, and Tyr-258 likely through a hydrogen bonding network that also includes Ser-161. In addition, site-directed mutation of the conserved Asp-163 to alanine causes a complete loss of the ligand binding ability of the protein, suggesting that the Asp-163 side chain is most likely hydrogen-bonded to C1-OH of DHNA-CoA to provide the dominant polarizing effect. Moreover, this mutation also completely eliminates the enzyme activity, strongly supporting the possibility that the Asp-163 side chain provides a strong stabilizing hydrogen bond to the tetrahedral oxyanion, which takes a position similar to that of C1-OH of the enzyme-bound DHNA-CoA and is the second high-energy intermediate in the intracellular Claisen condensation reaction. Interestingly, both Arg-91 and Tyr-97 are located in a disordered loop forming part of the active site of all available DHNA-CoA synthase structures. Their involvement in the interaction with the small molecule ligands suggests that the disordered loop is folded in interaction with the substrates or reaction intermediates, supporting an induced-fit catalytic mechanism for the enzyme.
Collapse
Affiliation(s)
- Minjiao Chen
- Department of Chemistry and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
3
|
Horinouchi M, Kurita T, Hayashi T, Kudo T. Steroid degradation genes in Comamonas testosteroni TA441: Isolation of genes encoding a Δ4(5)-isomerase and 3α- and 3β-dehydrogenases and evidence for a 100 kb steroid degradation gene hot spot. J Steroid Biochem Mol Biol 2010; 122:253-63. [PMID: 20554032 DOI: 10.1016/j.jsbmb.2010.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 11/21/2022]
Abstract
In previous studies, we identified two major Comamonas testosteroni TA441 gene clusters involved in steroid degradation. Because most of the genes included in these clusters were revealed to be involved in degradation of basic steroidal structures and a few were suggested to be involved in the degradation of modified steroid compounds, we investigated the spectrum of steroid compounds degradable for TA441 to better identify the genes involved in steroid degradation. TA441 degraded testosterone, progesterone, epiandrosterone, dehydroepiandrosterone, cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid. The results suggested TA441 having 3α-dehydrogenase and Δ4(5)-isomerase, and 3β-,17β-dehydrogenase gene, we isolated these genes, all of which had high homology to the corresponding genes of C. testosteroni ATCC11996. Results of gene-disruption experiments indicated that 3β,17β-dehydrogenase is a unique 3β-dehydrogenase which also acts as a 17β-dehydrogenase in TA441, and there will be at least one more enzyme with 17β-dehydrogenating activity. The 3α-dehydrogenase and Δ4(5)-isomerase genes were found adjacent in the DNA region between the two main steroid degradation gene clusters together with a number of other genes that may be involved in steroid degradation, suggesting the presence of a steroid degradation gene hot spot over 100 kb in size in TA441.
Collapse
|
4
|
Affiliation(s)
- Thomas G Spiro
- Chemistry Department, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
5
|
Horsman GP, Jirasek A, Vaillancourt FH, Barbosa CJ, Jarzecki AA, Xu C, Mekmouche Y, Spiro TG, Lipscomb JD, Blades MW, Turner RF, Eltis LD. Spectroscopic studies of the anaerobic enzyme-substrate complex of catechol 1,2-dioxygenase. J Am Chem Soc 2006; 127:16882-91. [PMID: 16316234 PMCID: PMC3418915 DOI: 10.1021/ja053800o] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The basis of the respective regiospecificities of intradiol and extradiol dioxygenase is poorly understood and may be linked to the protonation state of the bidentate-bound catechol in the enzyme/substrate complex. Previous ultraviolet resonance Raman (UVRR) and UV-visible (UV-vis) difference spectroscopic studies demonstrated that, in extradiol dioxygenases, the catechol is bound to the Fe(II) as a monoanion. In this study, we use the same approaches to demonstrate that, in catechol 1,2-dioxygenase (C12O), an intradiol enzyme, the catechol binds to the Fe(III) as a dianion. Specifically, features at 290 nm and 1550 cm(-1) in the UV-vis and UVRR difference spectra, respectively, are assigned to dianionic catechol based on spectra of the model compound, ferric tris(catecholate). The UVRR spectroscopic band assignments are corroborated by density functional theory (DFT) calculations. In addition, negative features at 240 nm in UV-vis difference spectra and at 1600, 1210, and 1175 cm(-1) in UVRR difference spectra match those of a tyrosinate model compound, consistent with protonation of the axial tyrosinate ligand when it is displaced from the ferric ion coordination sphere upon substrate binding. The DFT calculations ascribe the asymmetry of the bound dianionic substrate to the trans donor effect of an equatorially ligated tyrosinate ligand. In addition, the computations suggest that trans donation from the tyrosinate ligand may facilitate charge transfer from the substrate to yield the iron-bound semiquinone transition state, which is capable of reacting with dioxygen. In illustrating the importance of ligand trans effects in a biological system, the current study demonstrates the power of combining difference UVRR and optical spectroscopies to probe metal ligation in solution.
Collapse
Affiliation(s)
- Geoff P. Horsman
- Departments of Biochemistry and Microbiology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Andrew Jirasek
- Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Frédéric H. Vaillancourt
- Departments of Biochemistry and Microbiology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher J. Barbosa
- Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Changliang Xu
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Yasmina Mekmouche
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Thomas G. Spiro
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael W. Blades
- Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Robin F.B. Turner
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lindsay D. Eltis
- Departments of Biochemistry and Microbiology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Corresponding author: Lindsay D. Eltis,
| |
Collapse
|
6
|
Park H, Merz KM. Molecular dynamics and quantum chemical studies on the catalytic mechanism of Delta5-3-ketosteroid isomerase: the catalytic diad versus the cooperative hydrogen bond mechanism. J Am Chem Soc 2003; 125:901-11. [PMID: 12537487 DOI: 10.1021/ja0208097] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To further understand Delta(5)-3-ketosteroid isomerase (KSI) catalysis, we carried out molecular dynamics (MD) simulations of the KSI dimer ligated with a substrate and reaction intermediate analogue and high level ab initio calculations on relevant enzymatic reaction models. Simulation of the enzyme-substrate complex dimer systems showed asymmetric dynamics between the two monomers, in which the hydrogen bond pattern between the substrate and active site residues in the first and the second subunits supported the cooperative hydrogen bond (CH) and the catalytic diad (CD) mechanisms, respectively. On the other hand, only the CH mechanism was supported in the MD simulation of the enzyme-intermediate complex dimer. From MP2/6-31+G**//RHF/6-31G** calculations, we found the kinetic barriers for the two reaction mechanisms were similar. The CH route afforded a greater stabilization to the enolate intermediate than did the CD counterpart. Thus, the present computational studies indicate that the CH mechanism would be favored over the CD one in the catalytic action of KSI. However, the latter could not be ruled out conclusively because of the explicit appearance of a CD configuration in the MD trajectories of the enzyme-substrate complex and because of the similar intrinsic activation barrier for the CH and CD mechanisms. The appearance of configurations that favor the CD pathway is rationalized in terms of a model in which the KSI-substrate complex does not have a strong preference for one hydrogen bonding pattern over another, while the KSI-intermediate complex favors a cooperative hydrogen bond pattern in order to stabilize the reaction intermediate. This hypothesis is supported by the ab initio calculations which indicate that the CH intermediate is more stable than the CD one by approximately 6.3 kcal/mol.
Collapse
Affiliation(s)
- Hwangseo Park
- 152 Davey Laboratory, Department of Chemistry, Pennsylvania State University, University Park, PA 16802-6300, USA
| | | |
Collapse
|
7
|
Bell AF, Feng Y, Hofstein HA, Parikh S, Wu J, Rudolph MJ, Kisker C, Whitty A, Tonge PJ. Stereoselectivity of enoyl-CoA hydratase results from preferential activation of one of two bound substrate conformers. CHEMISTRY & BIOLOGY 2002; 9:1247-55. [PMID: 12445775 DOI: 10.1016/s1074-5521(02)00263-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Enoyl-CoA hydratase catalyzes the hydration of trans-2-crotonyl-CoA to 3(S)- and 3(R)-hydroxybutyryl-CoA with a stereoselectivity (3(S)/3(R)) of 400,000 to 1. Importantly, Raman spectroscopy reveals that both the s-cis and s-trans conformers of the substrate analog hexadienoyl-CoA are bound to the enzyme, but that only the s-cis conformer is polarized. This selective polarization is an example of ground state strain, indicating the existence of catalytically relevant ground state destabilization arising from the selective complementarity of the enzyme toward the transition state rather than the ground state. Consequently, the stereoselectivity of the enzyme-catalyzed reaction results from the selective activation of one of two bound substrate conformers rather than from selective binding of a single conformer. These findings have important implications for inhibitor design and the role of ground state interactions in enzyme catalysis.
Collapse
Affiliation(s)
- Alasdair F Bell
- Department of Chemistry, Center for Structural Biology, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Theoretical Evaluation of the Electrophilic Catalyses in Successive Enolization and Reketonization Reactions by Δ5-3-Ketosteroid Isomerase. B KOREAN CHEM SOC 2002. [DOI: 10.5012/bkcs.2002.23.6.837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Toney MD. Computational studies on nonenzymatic and enzymatic pyridoxal phosphate catalyzed decarboxylations of 2-aminoisobutyrate. Biochemistry 2001; 40:1378-84. [PMID: 11170465 DOI: 10.1021/bi0012383] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A computational study of nonenzymatic and enzymatic pyridoxal phosphate-catalyzed decarboxylation of 2-aminoisobutyrate (AIB) is presented. Four prototropic isomers of a model aldimine between AIB and 5'-deoxypyridoxal, with acetate interacting with the pyridine nitrogen, were employed in calculations of both gas phase and water model (PM3 and PM3-SM3) decarboxylation reaction paths. Calculations employing the transition state structures obtained for the four isomers allow the demonstration of stereoelectronic effects in transition state stabilization as well as a separation of the contributions of the Schiff base and pyridine ring moieties to this stabilization. The unprotonated Schiff base contribution (approximately 16 kcal/mol) is larger than that of the pyridine ring even when it is protonated (approximately 10 kcal/mol), providing an explanation of the catalytic power of pyruvoyl-dependent amino acid decarboxylases. An active site model of dialkylglycine decarboxylase was constructed and validated, and enzymatic decarboxylation reaction paths were calculated. The reaction coordinate is shown to be complex, with proton transfer from Lys272 to the coenzyme C4' likely simultaneous with C alpha--CO(2)(-) bond cleavage. The proposed concerted decarboxylation/proton-transfer mechanism provides a simple explanation for the observed specificity of this enzyme toward oxidative decarboxylation.
Collapse
Affiliation(s)
- M D Toney
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| |
Collapse
|
10
|
Metzler DE, Metzler CM, Sauke DJ. Enzymatic Addition, Elimination, Condensation, and Isomerization. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
MacLachlan J, Wotherspoon AT, Ansell RO, Brooks CJ. Cholesterol oxidase: sources, physical properties and analytical applications. J Steroid Biochem Mol Biol 2000; 72:169-95. [PMID: 10822008 DOI: 10.1016/s0960-0760(00)00044-3] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since Flegg (H.M. Flegg, An investigation of the determination of serum cholesterol by an enzymatic method, Ann. Clin. Biochem. 10 (1973) 79-84) and Richmond (W. Richmond, The development of an enzymatic technique for the assay of cholesterol in biological fluids, Scand. J. clin. Lab. Invest. 29 (1972) 25; W. Richmond, Preparation and properties of a bacterial cholesterol oxidase from Nocardia sp. and its application to enzyme assay of total cholesterol in serum, Clinical Chemistry 19 (1973) 1350-1356) first illustrated the suitability of cholesterol oxidase (COD) for the analysis of serum cholesterol, COD has risen to become the most widely used enzyme in clinical laboratories with the exception of glucose oxidase (GOD). The use is widespread because assays incorporating the enzyme are extremely simple, specific, and highly sensitive and thus offer distinct advantages over the Liebermann-Burchard analytical methodologies which employ corrosive reagents and can be prone to unreliable results due to interfering substances such as bilirubin. Individuals can now readily determine their own serum cholesterol levels with a simple disposable test kit. This review discusses COD in some detail and includes the topics: (1) The variety of bacterial sources available; (2) The various extraction/purification protocols utilised in order to obtain protein of sufficient clarification (purity) for use in food/clinical analysis; (3) Significant differences in the properties of the individual enzymes; (4) Substrate specificities of the various enzymes; (5) Examples of biological assays which have employed cholesterol oxidase as an integral part of the analysis, and the various assay protocols; (6) New steroidal products of COD. This review is not a comprehensive description of published work, but is intended to provide an account of recent and current research, and should promote further interest in the application of enzymes to analytical selectivity.
Collapse
Affiliation(s)
- J MacLachlan
- Department of Physical Sciences, Glasgow Caledonian University, City Campus, 70 Cowcaddens Road, Glasgow, UK.
| | | | | | | |
Collapse
|
12
|
Abstract
Hydrogen bonds are a key feature of chemical structure and reactivity. Recently there has been much interest in a special class of hydrogen bonds called "strong" or "low-barrier" and characterized by great strength, short distances, a low or vanishing barrier to hydrogen transfer, and distinctive features in the NMR spectrum. Although the energy of an ordinary hydrogen bond is ca 5 kcal mol-1, the strength of these hydrogen bonds may be > or = 10 kcal mol-1. The properties of these hydrogen bonds have been investigated by many experimental techniques, as well as by calculation and by correlations among those properties. Although it has been proposed that strong, short, low-barrier hydrogen bonds are important in enzymatic reactions, it is concluded that the evidence for them in small molecules and in biomolecules is inconclusive.
Collapse
Affiliation(s)
- C L Perrin
- Department of Chemistry, University of California San Diego, La Jolla 92093-0358, USA.
| | | |
Collapse
|
13
|
Kim SW, Joo S, Choi G, Cho HS, Oh BH, Choi KY. Mutational analysis of the three cysteines and active-site aspartic acid 103 of ketosteroid isomerase from Pseudomonas putida biotype B. J Bacteriol 1997; 179:7742-7. [PMID: 9401033 PMCID: PMC179737 DOI: 10.1128/jb.179.24.7742-7747.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate.
Collapse
Affiliation(s)
- S W Kim
- Department of Life Sciences and Center for Biofunctional Molecules, Pohang University of Science and Technology, Kyungbuk, Korea
| | | | | | | | | | | |
Collapse
|
14
|
Zhao Q, Abeygunawardana C, Talalay P, Mildvan AS. NMR evidence for the participation of a low-barrier hydrogen bond in the mechanism of delta 5-3-ketosteroid isomerase. Proc Natl Acad Sci U S A 1996; 93:8220-4. [PMID: 8710850 PMCID: PMC38650 DOI: 10.1073/pnas.93.16.8220] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) promotes an allylic rearrangement involving intramolecular proton transfer via a dienolic intermediate. This enzyme enhances the catalytic rate by a factor of 10(10). Two residues, Tyr-14, the general acid that polarizes the steroid 3-carbonyl group and facilitates enolization, and Asp-38 the general base that abstracts and transfers the 4 beta-proton to the 6 beta-position, contribute 10(4.7) and 10(5.6) to the rate increase, respectively. A major mechanistic enigma is the huge disparity between the pKa values of the catalytic groups and their targets. Upon binding of an analog of the dienolate intermediate to isomerase, proton NMR detects a highly deshielded resonance at 18.15 ppm in proximity to aromatic protons, and with a 3-fold preference for protium over deuterium (fractionation factor, phi = 0.34), consistent with formation of a short, strong (low-barrier) hydrogen bond to Tyr-14. The strength of this hydrogen bond is estimated to be at least 7.1 kcal/mol. This bond is relatively inaccessible to bulk solvent and is pH insensitive. Low-barrier hydrogen bonding of Tyr-14 to the intermediate, in conjunction with the previously demonstrated tunneling contribution to the proton transfer by Asp-38, provide a plausible and quantitative explanation for the high catalytic power of this isomerase.
Collapse
Affiliation(s)
- Q Zhao
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|