1
|
Tao Y, Xu P, Zhang S, Shangguan W, Yang G, Liu K, Li X, Sun Y, Zhao Q, Li D, Yu B, Liu C. Time-course remodeling and pathology intervention of α-synuclein amyloid fibril by heparin and heparin-like oligosaccharides. Nat Struct Mol Biol 2025; 32:369-380. [PMID: 39420234 DOI: 10.1038/s41594-024-01407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Amyloid fibrils represent a pathological state of protein polymer that is closely associated with various neurodegenerative diseases. Polysaccharides have a prominent role in recognizing amyloid fibrils and mediating their pathogenicity. However, the mechanism underlying the amyloid-polysaccharide interaction remains elusive. We also do not know its impact on the structure and pathology of formed fibrils. Here, we used cryo-electron microscopy to analyze the atomic structures of mature α-synuclein (α-syn) fibrils upon binding with polymeric heparin and heparin-like oligosaccharides. The fibril structure, including the helical twist and conformation of α-syn, changed over time upon the binding of heparin but not oligosaccharides. The sulfation pattern and numbers of saccharide units are important for the binding. Similarly, negatively charged biopolymers typically interact with amyloid fibrils, including tau and various α-syn polymorphs, leading to alterations in their conformation. Moreover, we show that heparin-like oligosaccharides can not only block neuronal uptake and propagation of formed α-syn fibrils but also inhibit α-syn fibrillation. This work demonstrates a distinctive activity of heparin and biopolymers in remodeling amyloid fibrils and suggests the pharmaceutical potential of heparin-like oligosaccharides.
Collapse
Affiliation(s)
- Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Shangguan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guang Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Kaien Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Cong Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2025; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Singh R, Panghal A, Jadhav K, Thakur A, Verma RK, Singh C, Goyal M, Kumar J, Namdeo AG. Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer's Disease. Mol Neurobiol 2024; 61:10916-10940. [PMID: 38809370 DOI: 10.1007/s12035-024-04256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Changes in the transition metal homeostasis in the brain are closely linked with Alzheimer's disease (AD), including intraneuronal iron accumulation and extracellular copper and zinc pooling in the amyloid plague. The brain copper, zinc, and iron surplus are commonly acknowledged characteristics of AD, despite disagreements among some. This has led to the theory that oxidative stress resulting from abnormal homeostasis of these transition metals may be a causative explanation behind AD. In the nervous system, the interaction of metals with proteins appears to be an essential variable in the development or suppression of neurodegeneration. Chelation treatment may be an option for treating neurodegeneration induced by transition metal ion dyshomeostasis. Some clinicians even recommend using chelating agents as an adjunct therapy for AD. The current review also looks at the therapeutic strategies that have been attempted, primarily with metal-chelating drugs. Metal buildup in the nervous system, as reported in the AD, could be the result of compensatory mechanisms designed to improve metal availability for physiological functions.
Collapse
Affiliation(s)
- Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institutes of Nano Science and Technology (INST), Sector 81. Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Krishna Jadhav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, ICFAI University, Baddi, Distt. Solan, Himachal Pradesh, 174103, India
| | - Rahul Kumar Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Charan Singh
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India.
| | - Ajay G Namdeo
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| |
Collapse
|
4
|
Middleton DA. NMR studies of amyloid interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:63-96. [PMID: 39645351 DOI: 10.1016/j.pnmrs.2024.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 12/09/2024]
Abstract
Amyloid fibrils are insoluble, fibrous nanostructures that accumulate extracellularly in biological tissue during the progression of several human disorders, including Alzheimer's disease (AD) and type 2 diabetes. Fibrils are assembled from protein monomers via the transient formation of soluble, cytotoxic oligomers, and have a common molecular architecture consisting of a spinal core of hydrogen-bonded protein β-strands. For the past 25 years, NMR spectroscopy has been at the forefront of research into the structure and assembly mechanisms of amyloid aggregates. Until the recent boom in fibril structure analysis by cryo-electron microscopy, solid-state NMR was unrivalled in its ability to provide atomic-level models of amyloid fibril architecture. Solution-state NMR has also provided complementary information on the early stages in the amyloid assembly mechanism. Now, both NMR modalities are proving to be valuable in unravelling the complex interactions between amyloid species and a diverse range of physiological metal ions, molecules and surfaces that influence the assembly pathway, kinetics, morphology and clearance in vivo. Here, an overview is presented of the main applications of solid-state and solution-state NMR for studying the interactions between amyloid proteins and biomembranes, glycosaminoglycan polysaccharides, metal ions, polyphenols, synthetic therapeutics and diagnostics. Key NMR methodology is reviewed along with examples of how to overcome the challenges of detecting interactions with aggregating proteins. The review heralds this new role for NMR in providing a comprehensive and pathologically-relevant view of the interactions between protein and non-protein components of amyloid. Coverage of both solid- and solution-state NMR methods and applications herein will be informative and valuable to the broad communities that are interested in amyloid proteins.
Collapse
Affiliation(s)
- David A Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| |
Collapse
|
5
|
Sabouri S, Rostamirad M, Dempski RE. Unlocking the brain's zinc code: implications for cognitive function and disease. FRONTIERS IN BIOPHYSICS 2024; 2:1406868. [PMID: 39758530 PMCID: PMC11698502 DOI: 10.3389/frbis.2024.1406868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Zn2+ transport across neuronal membranes relies on two classes of transition metal transporters: the ZnT (SLC30) and ZIP (SLC39) families. These proteins function to decrease and increase cytosolic Zn2+ levels, respectively. Dysfunction of ZnT and ZIP transporters can alter intracellular Zn2+ levels resulting in deleterious effects. In neurons, imbalances in Zn2+ levels have been implicated as risk factors in conditions such as Alzheimer's disease and neurodegeneration, highlighting the pivotal role of Zn2+ homeostasis in neuropathologies. In addition, Zn2+ modulates the function of plasma membrane proteins, including ion channels and receptors. Changes in Zn2+ levels, on both sides of the plasma membrane, profoundly impact signaling pathways governing cell development, differentiation, and survival. This review is focused on recent developments of neuronal Zn2+ homeostasis, including the impact of Zn2+ dyshomeostasis in neurological disorders, therapeutic approaches, and the increasingly recognized role of Zn2+ as a neurotransmitter in the brain.
Collapse
Affiliation(s)
| | | | - Robert E. Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
6
|
Pelaez-Aguilar AE, Mata-Salgado F, Morales-Ortiz A, Millán-Pacheco C, Olvera-Carranza C, Salgado-Delgado J, Pastor N, Rivillas-Acevedo L. Cu(II) binding to the λ6aJL2-R24G antibody light chain protein associated with light chain amyloidosis disease: The role of histidines. Int J Biol Macromol 2024; 270:132393. [PMID: 38761898 DOI: 10.1016/j.ijbiomac.2024.132393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Light chain amyloidosis is a conformational disease caused by the abnormal proliferation and deposition of antibody light chains as amyloid fibers in organs and tissues. The effect of Cu(II) binding to the model recombinant protein 6aJL2-R24G was previously characterized in our group, and we found an acceleration of the aggregation kinetics of the protein. In this study, in order to confirm the Cu(II) binding sites, histidine variants of 6aJL2-R24G were prepared and the effects of their interaction with Cu(II) were analyzed by circular dichroism, fluorescence spectroscopy, isothermal calorimetry titrations, and molecular dynamics simulations. Confirming our earlier work, we found that His8 and His99 are the highest affinity Cu(II) binding sites, and that Cu(II) binding to both sites is a cooperative event.
Collapse
Affiliation(s)
- Angel E Pelaez-Aguilar
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Fernanda Mata-Salgado
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Alan Morales-Ortiz
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - César Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Clarita Olvera-Carranza
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Jesus Salgado-Delgado
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Lina Rivillas-Acevedo
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
7
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
8
|
Dahdah A, de Silva NH, Maniam S, Blanch EW. Characterizing fibril morphological changes by spirooxindoles for neurodegenerative disease application. Analyst 2024; 149:1229-1237. [PMID: 38224234 DOI: 10.1039/d3an01773g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Fibrillation of proteins and polypeptides, which leads to the deposition of plaques in cells and tissues has been widely associated with many neuropathological diseases. Inhibition of protein misfolding and aggregation is crucial for the prevention and treatment of these conditions. The growing interest in identifying inhibitor molecules to prevent the formation of fibrils in vivo has led to the results highlighted in this study. Due to their hydrophobic structure and potential to readily cross the blood brain barrier, a library of spirooxindole compounds were synthesized with those labelled Hd-63, Hd-66 and Hd-74 proving to be the most potent against fibril formation. Our spectroscopic analysis provides detailed insight, that the introduction of these spirooxindole compounds leads to morphological changes in the mechanism of fibril formation which prevent the formation of highly ordered fibrils, instead results in the formation of disordered aggregates which are not fibrillar in nature.
Collapse
Affiliation(s)
- Anthony Dahdah
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia.
| | - Nilamuni H de Silva
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia.
| | - Subashani Maniam
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia.
| | - Ewan W Blanch
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
9
|
Eremina OE, Yarenkov NR, Bikbaeva GI, Kapitanova OO, Samodelova MV, Shekhovtsova TN, Kolesnikov IE, Syuy AV, Arsenin AV, Volkov VS, Tselikov GI, Novikov SM, Manshina AA, Veselova IA. Silver nanoparticle-based SERS sensors for sensitive detection of amyloid-β aggregates in biological fluids. Talanta 2024; 266:124970. [PMID: 37536108 DOI: 10.1016/j.talanta.2023.124970] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
One of the hallmarks of Alzheimer's disease (AD) pathogenesis is the production, aggregation, and deposition of amyloid-β (Aβ) peptide. Surface-enhanced Raman spectroscopy (SERS) is a promising analytical technique capable of providing valuable information on chemical composition and molecule conformations in biological samples. However, one of the main challenges for introducing the SERS technique into the practice is preparation of scalable and at the same time stable nanostructured sensors with uniform spatial distribution of nanoparticles. Herein, we propose SERS platforms for reproducible, sensitive, label-free quantification of amyloid-β aggregates for short-wavelength - 532 and 633 nm - lasers. A SERS sensor - based on silver nanoparticles immobilized into a chitosan film (AgNP/CS) - provided a uniform distribution of AgNPs from a colloidal suspension across the SERS sensor, resulting in nanomolar limits of detection (LODs) for Aβ42 aggregates with a portable 532 nm laser. The laser-induced deposition was used to obtain denser periodic plasmonic sensors (AgNP/LID) with a uniform nanoparticle distribution. The AgNP/LID SERS sensor allowed for 15 pM LOD for Aβ42 aggregates with 633 nm laser. Notably, both nanostructured substrates allowed to distinguish amyloid aggregates from monomers. Therefore, our approach demonstrated applicability of SERS for detection of macromolecular volumetric objects as amyloid-β aggregates for fundamental biological studies as well as for "point-of-care" diagnostics and screening for early stages of neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga E Eremina
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Nikita R Yarenkov
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Gulia I Bikbaeva
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Olesya O Kapitanova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia; Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, Research Park, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Alexander V Syuy
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Institute of High Technologies and Advanced Materials of the Far Eastern Federal University, Vladivostok, Russia
| | - Aleksey V Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Emerging Technologies Research Center, XPANCEO, Dubai, United Arab Emirates
| | - Valentyn S Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
| | - Gleb I Tselikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey M Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alina A Manshina
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Irina A Veselova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
10
|
Paul D, Agrawal R, Singh S. Alzheimer's disease and clinical trials. J Basic Clin Physiol Pharmacol 2024; 35:31-44. [PMID: 38491747 DOI: 10.1515/jbcpp-2023-0264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) is spreading its root disproportionately among the worldwide population. Many genes have been identified as the hallmarks of AD. Based upon the knowledge, many clinical trials have been designed and conducted. Attempts have been made to alleviate the pathology associated with AD by targeting the molecular products of these genes. Irrespective of the understanding on the genetic component of AD, many clinical trials have failed and imposed greater challenges on the path of drug discovery. Therefore, this review aims to identify research and review articles to pinpoint the limitations of drug candidates (thiethylperazine, CT1812, crenezumab, CNP520, and lecanemab), which are under or withdrawn from clinical trials. Thorough analysis of the cross-talk pathways led to the identification of many confounding factors, which could interfere with the success of clinical trials with drug candidates such as thiethylperazine, CT1812, crenezumab, and CNP520. Though these drug candidates were enrolled in clinical trials, yet literature review shows many limitations. These limitations raise many questions on the rationale behind the enrollments of these drug candidates in clinical trials. A meticulous prior assessment of the outcome of clinical studies may stop risky clinical trials at their inceptions. This may save time, money, and resources.
Collapse
Affiliation(s)
- Deepraj Paul
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| | - Rohini Agrawal
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| | - Swati Singh
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| |
Collapse
|
11
|
Kozin SA, Kechko OI, Adzhubei AA, Makarov AA, Mitkevich VA. Switching On/Off Amyloid Plaque Formation in Transgenic Animal Models of Alzheimer's Disease. Int J Mol Sci 2023; 25:72. [PMID: 38203242 PMCID: PMC10778642 DOI: 10.3390/ijms25010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A hallmark of Alzheimer's disease (AD) are the proteinaceous aggregates formed by the amyloid-beta peptide (Aβ) that is deposited inside the brain as amyloid plaques. The accumulation of aggregated Aβ may initiate or enhance pathologic processes in AD. According to the amyloid hypothesis, any agent that has the capability to inhibit Aβ aggregation and/or destroy amyloid plaques represents a potential disease-modifying drug. In 2023, a humanized IgG1 monoclonal antibody (lecanemab) against the Aβ-soluble protofibrils was approved by the US FDA for AD therapy, thus providing compelling support to the amyloid hypothesis. To acquire a deeper insight on the in vivo Aβ aggregation, various animal models, including aged herbivores and carnivores, non-human primates, transgenic rodents, fish and worms were widely exploited. This review is based on the recent data obtained using transgenic animal AD models and presents experimental verification of the critical role in Aβ aggregation seeding of the interactions between zinc ions, Aβ with the isomerized Asp7 (isoD7-Aβ) and the α4β2 nicotinic acetylcholine receptor.
Collapse
Affiliation(s)
- Sergey A. Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| | | | | | | | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| |
Collapse
|
12
|
Jeong WC, Min JY, Kang TG, Bae H. Association between pseudoexfoliation and Alzheimer's disease-related brain atrophy. PLoS One 2023; 18:e0286727. [PMID: 37289754 PMCID: PMC10249790 DOI: 10.1371/journal.pone.0286727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND/AIMS Pseudoexfoliation (PEX) syndrome is an age-related disorder characterized by the accumulation of extracellular material in the anterior eye segment. PEX pathogenesis is not fully understood, but amyloid which accumulates in the brain of patients with Alzheimer's disease (AD) is a PEX component. PEX deposition shares features with amyloid aggregation in AD, and brain atrophy is a common AD feature, with β-amyloid accumulation among contributing factors. This study investigated whether PEX syndrome is associated with AD-related brain atrophy. METHODS We reviewed the medical records of patients diagnosed with PEX at the Veterans Health Service Medical Center between January 2015 and August 2021. This retrospective cohort study included 48 patients with PEX and 48 healthy age- and sex-matched controls. Patients with PEX were divided into two groups: with and without glaucoma. The main outcome measure was brain atrophy, using a visual rating scale, and AD incidence. Brain atrophy was measured using the Scheltens scale for medial temporal atrophy, the posterior cortical atrophy scale for parietal atrophy, and the Pasquier scale for global cortical atrophy. RESULTS The percentage of participants with medial temporal atrophy was 56.3% in the PEX group and 35.4% in the control group. The global cortical atrophy and parietal atrophy scores were significantly higher in the PEX group (P<0.05), whereas the PEX and PEX glaucoma groups showed no difference. Among the 96 participants, 16 and 5 participants in the PEX and control groups, respectively, were diagnosed with dementia. Patients with PEX glaucoma tended to have lower Mini-Mental State Examination scores, indicating impaired cognitive function, than those without glaucoma. CONCLUSION PEX is associated with brain atrophy, reflecting the risk of developing AD. Patients with PEX glaucoma may present with advanced AD stages. Our results suggest that PEX may be a predictor of AD.
Collapse
Affiliation(s)
- Won Cheol Jeong
- Department of Neurology, Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Jin-Young Min
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Tae Gu Kang
- Yonsei Bom Eye Clinic, Seoul, Kyeonggi-do, Republic of Korea
| | - Heewon Bae
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Colniță A, Toma VA, Brezeștean IA, Tahir MA, Dina NE. A Review on Integrated ZnO-Based SERS Biosensors and Their Potential in Detecting Biomarkers of Neurodegenerative Diseases. BIOSENSORS 2023; 13:bios13050499. [PMID: 37232860 DOI: 10.3390/bios13050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) applications in clinical diagnosis and spectral pathology are increasing due to the potential of the technique to bio-barcode incipient and differential diseases via real-time monitoring of biomarkers in fluids and in real-time via biomolecular fingerprinting. Additionally, the rapid advancements in micro/nanotechnology have a visible influence in all aspects of science and life. The miniaturization and enhanced properties of materials at the micro/nanoscale transcended the confines of the laboratory and are revolutionizing domains such as electronics, optics, medicine, and environmental science. The societal and technological impact of SERS biosensing by using semiconductor-based nanostructured smart substrates will be huge once minor technical pitfalls are solved. Herein, challenges in clinical routine testing are addressed in order to understand the context of how SERS can perform in real, in vivo sampling and bioassays for early neurodegenerative disease (ND) diagnosis. The main interest in translating SERS into clinical practice is reinforced by the practical advantages: portability of the designed setups, versatility in using nanomaterials of various matter and costs, readiness, and reliability. As we will present in this review, in the frame of technology readiness levels (TRL), the current maturity reached by semiconductor-based SERS biosensors, in particular that of zinc oxide (ZnO)-based hybrid SERS substrates, is situated at the development level TRL 6 (out of 9 levels). Three-dimensional, multilayered SERS substrates that provide additional plasmonic hot spots in the z-axis are of key importance in designing highly performant SERS biosensors for the detection of ND biomarkers.
Collapse
Affiliation(s)
- Alia Colniță
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor, 400006 Cluj-Napoca, Romania
- Institute of Biological Research, Department of Biochemistry and Experimental Biology, 48 Republicii, Branch of NIRDBS Bucharest, 400015 Cluj-Napoca, Romania
| | - Ioana Andreea Brezeștean
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Muhammad Ali Tahir
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Nicoleta Elena Dina
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Yi Y, Lim MH. Current understanding of metal-dependent amyloid-β aggregation and toxicity. RSC Chem Biol 2023; 4:121-131. [PMID: 36794021 PMCID: PMC9906324 DOI: 10.1039/d2cb00208f] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of effective therapeutics targeting amyloid-β (Aβ) aggregates for Alzheimer's disease (AD) has been very challenging, which suggests its complicated etiology associated with multiple pathogenic elements. In AD-affected brains, highly concentrated metals, such as copper and zinc, are found in senile plaques mainly composed of Aβ aggregates. These metal ions are coordinated to Aβ and affect its aggregation and toxicity profiles. In this review, we illustrate the current view on molecular insights into the assembly of Aβ peptides in the absence and presence of metal ions as well as the effect of metal ions on their toxicity.
Collapse
Affiliation(s)
- Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
15
|
Kiris I, Kukula-Koch W, Karayel-Basar M, Gurel B, Coskun J, Baykal AT. Proteomic alterations in the cerebellum and hippocampus in an Alzheimer's disease mouse model: Alleviating effect of palmatine. Biomed Pharmacother 2023; 158:114111. [PMID: 36502756 DOI: 10.1016/j.biopha.2022.114111] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent diseases that lead to memory deficiencies, severe behavioral abnormalities, and ultimately death. The need for more appropriate treatment of AD continues, and remains a sought-after goal. Previous studies showed palmatine (PAL), an isoquinoline alkaloid, might have the potential for combating AD because of its in vitro and in vivo activities. In this study, we aimed to assess PAL's therapeutic potential and gain insights into the working mechanism on protein level in the AD mouse model brain, for the first time. To this end, PAL was administered to 12-month-old 5xFAD mice at two doses after its successful isolation from the Siberian barberry shrub. PAL (10 mg/kg) showed statistically significant improvement in the memory and learning phase on the Morris water maze test. The PAL's ability to pass through the blood-brain barrier was verified via Multiple Reaction Monitoring (MRM). Label-free proteomics analysis revealed PAL administration led to changes most prominently in the cerebellum, followed by the hippocampus, but none in the cortex. Most of the differentially expressed proteins in PAL compared to the 5xFAD control group (ALZ) were the opposite of those in ALZ in comparison to healthy Alzheimer's littermates (ALM) group. HS105, HS12A, and RL12 were detected as hub proteins in the cerebellum. Collectively, here we present PAL as a potential therapeutic candidate owing to its alleviating effect in 5xFAD mice on not only cognitive impairment but also proteomes in the cerebellum and hippocampus.
Collapse
Affiliation(s)
- Irem Kiris
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - Merve Karayel-Basar
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Busra Gurel
- Sabanci University Nanotechnology Research and Application Center, SUNUM, Istanbul, Turkey
| | - Julide Coskun
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|
16
|
Bennour HA, Elmagbari FM, Hammouda AN, EL-Ferjani RM, Ben Amer Y, Soliman SM, Jackson GE. Synthesis, characterisation and density functional theory (DFT) studies of a triazine ring with a mixed ligand Schiff base complexes. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
17
|
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi TM, Arjmand M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer's disease. J Control Release 2023; 353:1-29. [PMID: 36343762 DOI: 10.1016/j.jconrel.2022.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Beta-amyloid (Aβ) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aβ. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aβ plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.
Collapse
Affiliation(s)
- Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Amir Shamloo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
18
|
Kozin SA. Role of Interaction between Zinc and Amyloid Beta in Pathogenesis of Alzheimer’s Disease. BIOCHEMISTRY (MOSCOW) 2023; 88:S75-S87. [PMID: 37069115 DOI: 10.1134/s0006297923140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Progression of Alzheimer's disease is accompanied by the appearance of extracellular deposits in the brain tissues of patients with characteristic supramolecular morphology (amyloid plaques) the main components of which are β-amyloid isoforms (Aβ) and biometal ions (zinc, copper, iron). For nearly 40 years and up to the present time, the vast majority of experimental data indicate critical role of formation and accumulation of amyloid plaques (cerebral amyloidogenesis) in pathogenesis of Alzheimer's disease, however, nature of the molecular agents that initiate cerebral amyloidogenesis, as well as causes of aggregation of the native Aβ molecules in vivo remained unknown for a long time. This review discusses the current level of fundamental knowledge about the molecular mechanisms of interactions of zinc ions with a number of Aβ isoforms present in amyloid plaques of the patients with Alzheimer's disease, and also shows how this knowledge made it possible to identify driving forces of the cerebral amyloidogenesis in Alzheimer's disease and made it possible to determine fundamentally new biomarkers and drug targets as part of development of innovative strategy for diagnosis and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
19
|
Suprun EV, Radko SP, Kozin SA, Mitkevich VA, Makarov AA. Electrochemical Analysis in Studying β-Amyloid Aggregation. BIOCHEMISTRY (MOSCOW) 2023; 88:S88-S104. [PMID: 37069116 DOI: 10.1134/s0006297923140067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
β-amyloid (Aβ) is comprised of a group of peptides formed as a result of cleavage of the amyloid precursor protein by secretases. Aβ aggregation is considered as a central event in pathogenesis of Alzheimer's disease, the most common human neurodegenerative disorder. Molecular mechanisms of Aβ aggregation have intensively being investigated using synthetic Aβ peptides by methods based on monitoring of aggregates, including determination of their size and structure. In this review, an orthogonal approach to the study of Aβ aggregation is considered, which relies on electrochemical registration of the loss of peptide monomers. Electrochemical analysis of Aβ (by voltammetry and amperometric flow injection analysis) is based on registration of the oxidation signal of electroactive amino acid residues of the peptide on an electrode surface. The Aβ oxidation signal disappears, when the peptide is included in the aggregate. The advantages and disadvantages of electrochemical analysis for the study of spontaneous and metal-induced aggregation of Aβ, comparative analysis of various peptide isoforms, and study of the process of complexation of metal ions with the metal-binding domain of Aβ are discussed. It is concluded that the combined use of the electrochemical method and the methods based on detection of Aβ aggregates makes it possible to obtain more complete information about the mechanisms of peptide aggregation.
Collapse
Affiliation(s)
- Elena V Suprun
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Sergey P Radko
- Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
20
|
Iliyasu MO, Musa SA, Oladele SB, Iliya AI. Amyloid-beta aggregation implicates multiple pathways in Alzheimer's disease: Understanding the mechanisms. Front Neurosci 2023; 17:1081938. [PMID: 37113145 PMCID: PMC10128090 DOI: 10.3389/fnins.2023.1081938] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition characterized by tau pathology and accumulations of neurofibrillary tangles (NFTs) along with amyloid-beta (Aβ). It has been associated with neuronal damage, synaptic dysfunction, and cognitive deficits. The current review explained the molecular mechanisms behind the implications of Aβ aggregation in AD via multiple events. Beta (β) and gamma (γ) secretases hydrolyzed amyloid precursor protein (APP) to produce Aβ, which then clumps together to form Aβ fibrils. The fibrils increase oxidative stress, inflammatory cascade, and caspase activation to cause hyperphosphorylation of tau protein into neurofibrillary tangles (NFTs), which ultimately lead to neuronal damage. Acetylcholine (Ach) degradation is accelerated by upstream regulation of the acetylcholinesterase (AChE) enzyme, which leads to a deficiency in neurotransmitters and cognitive impairment. There are presently no efficient or disease-modifying medications for AD. It is necessary to advance AD research to suggest novel compounds for treatment and prevention. Prospectively, it might be reasonable to conduct clinical trials with unclean medicines that have a range of effects, including anti-amyloid and anti-tau, neurotransmitter modulation, anti-neuroinflammatory, neuroprotective, and cognitive enhancement.
Collapse
Affiliation(s)
- Musa O. Iliyasu
- Department of Anatomy, Kogi State University, Anyigba, Nigeria
- *Correspondence: Musa O. Iliyasu, ;
| | - Sunday A. Musa
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Nigeria
| | - Sunday B. Oladele
- Department of Veterinary Pathology, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
21
|
Ranasinghe JC, Wang Z, Huang S. Raman Spectroscopy on Brain Disorders: Transition from Fundamental Research to Clinical Applications. BIOSENSORS 2022; 13:27. [PMID: 36671862 PMCID: PMC9855372 DOI: 10.3390/bios13010027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Brain disorders such as brain tumors and neurodegenerative diseases (NDs) are accompanied by chemical alterations in the tissues. Early diagnosis of these diseases will provide key benefits for patients and opportunities for preventive treatments. To detect these sophisticated diseases, various imaging modalities have been developed such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). However, they provide inadequate molecule-specific information. In comparison, Raman spectroscopy (RS) is an analytical tool that provides rich information about molecular fingerprints. It is also inexpensive and rapid compared to CT, MRI, and PET. While intrinsic RS suffers from low yield, in recent years, through the adoption of Raman enhancement technologies and advanced data analysis approaches, RS has undergone significant advancements in its ability to probe biological tissues, including the brain. This review discusses recent clinical and biomedical applications of RS and related techniques applicable to brain tumors and NDs.
Collapse
Affiliation(s)
| | | | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
22
|
Xu Y, Xiong H, Zhang B, Lee I, Xie J, Li M, Zhang H, Seung Kim J. Photodynamic Alzheimer’s disease therapy: From molecular catalysis to photo-nanomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Applications of Single-Molecule Vibrational Spectroscopic Techniques for the Structural Investigation of Amyloid Oligomers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196448. [PMID: 36234985 PMCID: PMC9573641 DOI: 10.3390/molecules27196448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Amyloid oligomeric species, formed during misfolding processes, are believed to play a major role in neurodegenerative and metabolic diseases. Deepening the knowledge about the structure of amyloid intermediates and their aggregation pathways is essential in understanding the underlying mechanisms of misfolding and cytotoxicity. However, structural investigations are challenging due to the low abundance and heterogeneity of those metastable intermediate species. Single-molecule techniques have the potential to overcome these difficulties. This review aims to report some of the recent advances and applications of vibrational spectroscopic techniques for the structural analysis of amyloid oligomers, with special focus on single-molecule studies.
Collapse
|
24
|
Summers KL, Roseman G, Schilling KM, Dolgova NV, Pushie MJ, Sokaras D, Kroll T, Harris HH, Millhauser GL, Pickering IJ, George GN. Alzheimer's Drug PBT2 Interacts with the Amyloid β 1-42 Peptide Differently than Other 8-Hydroxyquinoline Chelating Drugs. Inorg Chem 2022; 61:14626-14640. [PMID: 36073854 PMCID: PMC9957665 DOI: 10.1021/acs.inorgchem.2c01694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although Alzheimer's disease (AD) was first described over a century ago, it remains the leading cause of age-related dementia. Innumerable changes have been linked to the pathology of AD; however, there remains much discord regarding which might be the initial cause of the disease. The "amyloid cascade hypothesis" proposes that the amyloid β (Aβ) peptide is central to disease pathology, which is supported by elevated Aβ levels in the brain before the development of symptoms and correlations of amyloid burden with cognitive impairment. The "metals hypothesis" proposes a role for metal ions such as iron, copper, and zinc in the pathology of AD, which is supported by the accumulation of these metals within amyloid plaques in the brain. Metals have been shown to induce aggregation of Aβ, and metal ion chelators have been shown to reverse this reaction in vitro. 8-Hydroxyquinoline-based chelators showed early promise as anti-Alzheimer's drugs. Both 5-chloro-7-iodo-8-hydroxyquinoline (CQ) and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2) underwent unsuccessful clinical trials for the treatment of AD. To gain insight into the mechanism of action of 8HQs, we have investigated the potential interaction of CQ, PBT2, and 5,7-dibromo-8-hydroxyquinoline (B2Q) with Cu(II)-bound Aβ(1-42) using X-ray absorption spectroscopy (XAS), high energy resolution fluorescence detected (HERFD) XAS, and electron paramagnetic resonance (EPR). By XAS, we found CQ and B2Q sequestered ∼83% of the Cu(II) from Aβ(1-42), whereas PBT2 sequestered only ∼59% of the Cu(II) from Aβ(1-42), suggesting that CQ and B2Q have a higher relative Cu(II) affinity than PBT2. From our EPR, it became clear that PBT2 sequestered Cu(II) from a heterogeneous mixture of Cu(II)Aβ(1-42) species in solution, leaving a single Cu(II)Aβ(1-42) species. It follows that the Cu(II) site in this Cu(II)Aβ(1-42) species is inaccessible to PBT2 and may be less solvent-exposed than in other Cu(II)Aβ(1-42) species. We found no evidence to suggest that these 8HQs form ternary complexes with Cu(II)Aβ(1-42).
Collapse
Affiliation(s)
- Kelly L. Summers
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Kevin M. Schilling
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Natalia V. Dolgova
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - M. Jake Pushie
- Department of Surgery, University of Saskatchewan, 103 Hospital Dr, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Hugh H. Harris
- Department of Chemistry, University of Adelaide, South Australia 5005, Australia
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Ingrid J. Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham N. George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
25
|
ZOMEC via the p-Akt/Nrf2 Pathway Restored PTZ-Induced Oxidative Stress-Mediated Memory Dysfunction in Mouse Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8902262. [PMID: 36193329 PMCID: PMC9526611 DOI: 10.1155/2022/8902262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
A new mechanistic approach to overcome the neurodegenerative disorders caused by oxidative stress in Alzheimer's disease (AD) is highly stressed in this article. Thus, a newly formulated drug (zinc ortho-methyl carbonodithioate (ZOMEC)) was investigated for five weeks on seven-week-old BALB/c male mice. ZOMEC 30 mg/kg was postadministered intraperitoneally during the third week of pentylenetetrazole (PTZ) injection. The brain homogenates of the mice were evaluated for their antioxidant potential for ZOMEC. The results including catalase (CAT), glutathione S transferase (GST), and lipid peroxidation (LPO) demonstrated that ZOMEC significantly reverted the oxidative stress stimulated by PTZ in the mouse brain. ZOMEC upregulated p-Akt/Nrf-2 pathways (also supported by molecular docking methods) to revoke PTZ-induced apoptotic protein markers. ZOMEC reversed PTZ-induced neuronal synapse deficits, improved oxidative stress-aided memory impairment, and inhibited the amyloidogenic pathway in mouse brains. The results suggested the potential of ZOMEC as a new, safe, and neurotherapeutic agent to cure neurodegenerative disorders by decreasing AD-like neuropathology in the animal PTZ model.
Collapse
|
26
|
da Rosa MM, de Amorim LC, Alves JVDO, Aguiar IFDS, Oliveira FGDS, da Silva MV, dos Santos MTC. The promising role of natural products in Alzheimer's disease. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
27
|
Rana M, Cho HJ, Arya H, Bhatt TK, Bhar K, Bhatt S, Mirica LM, Sharma AK. Azo-Stilbene and Pyridine-Amine Hybrid Multifunctional Molecules to Target Metal-Mediated Neurotoxicity and Amyloid-β Aggregation in Alzheimer's Disease. Inorg Chem 2022; 61:10294-10309. [PMID: 35768324 DOI: 10.1021/acs.inorgchem.2c00502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) are associated with progressive neuronal cell death, and they are commonly correlated with aberrant protein misfolding and aggregation of Aβ peptides. Transition metal ions (Cu, Fe, and Zn) have been shown to promote aggregation and oxidative stress through formation of Aβ-metal complexes. In this context, integrating molecular scaffolds rationally is used here to generate multifunctional molecules as modulators for metal-induced abnormalities. This work encompasses two azo-stilbene (AS)-derived compounds (AS-HL1 and AS-HL2), the rationale behind the design, their synthesis, characterization, and metal chelation ability [Cu(II) and Zn(II)]. The molecular frameworks of the designed compounds consist of stilbene as an Aβ-interacting moiety, whereas N,N,O and N,N,N,O donor atoms are linked to generate the metal chelation moiety. Furthermore, we went on exploring their multifunctionality with respect to (w.r.t.) (i) their metal chelating capacities and (ii) their utility to modulate the aggregation pathways of both metal-free and metal-bound amyloid-β, (iii) scavenge free radicals, and (iv) inhibit the activity of acetylcholinesterase and (v) cytotoxicity. Moreover, the compounds were able to sequester Cu2+ from the Aβ-Cu complex as studied by the UV-visible spectroscopic assay. Molecular docking studies were also performed with Aβ and acetylcholinesterase enzyme. Overall, the studies presented here qualify these molecules as promising candidates for further investigation in the quest for finding a treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Hong-Jun Cho
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Kishalay Bhar
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Surabhi Bhatt
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Anuj Kumar Sharma
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| |
Collapse
|
28
|
Abstract
Amyloid-β (Aβ) peptides are involved in Alzheimer's disease (AD) development. The interactions of these peptides with copper and zinc ions also seem to be crucial for this pathology. Although Cu(II) and Zn(II) ions binding by Aβ peptides has been scrupulously investigated, surprisingly, this phenomenon has not been so thoroughly elucidated for N-truncated Aβ4-x-probably the most common version of this biomolecule. This negligence also applies to mixed Cu-Zn complexes. From the structural in silico analysis presented in this work, it appears that there are two possible mixed Cu-Zn(Aβ4-x) complexes with different stoichiometries and, consequently, distinct properties. The Cu-Zn(Aβ4-x) complex with 1:1:1 stoichiometry may have a neuroprotective superoxide dismutase-like activity. On the other hand, another mixed 2:1:2 Cu-Zn(Aβ4-x) complex is perhaps a seed for toxic oligomers. Hence, this work proposes a novel research direction for our better understanding of AD development.
Collapse
|
29
|
Li D, Liu C. Conformational strains of pathogenic amyloid proteins in neurodegenerative diseases. Nat Rev Neurosci 2022; 23:523-534. [DOI: 10.1038/s41583-022-00603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
|
30
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
31
|
La Penna G, Morante S. Aggregates Sealed by Ions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2340:309-341. [PMID: 35167080 DOI: 10.1007/978-1-0716-1546-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The chapter draws a line connecting some recent results where the role of ions is found essential in sealing more or less pre-organized assemblies of macromolecules. We draw some dots along the line that starts from the effect of the ionic atmosphere and ends with the chemical bonds formed by multivalent ions acting as bridges between macromolecules. Many of these dots involve structurally disordered peptides and disordered regions of proteins. A broad perspective of the role of multivalent ions in assisting the assembly process, shifting population in polymorphic states, and sealing protein aggregates, is suggested.
Collapse
Affiliation(s)
- Giovanni La Penna
- Institute for Chemistry of Organo-Metallic Compounds, National Research Council of Italy, Florence, Italy.
| | - Silvia Morante
- Department of Physics, University of Roma Tor Vergata, Roma, Italy
| |
Collapse
|
32
|
Vang J, Pustovalova Y, Korzhnev DM, Gorbatyuk O, Keeler C, Hodsdon ME, Hoch JC. Architecture of the Two Metal Binding Sites in Prolactin. Biophys J 2022; 121:1312-1321. [PMID: 35192840 PMCID: PMC9034190 DOI: 10.1016/j.bpj.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Metal binding by members of the growth hormone (GH) family of hematopoietic cytokines has been a subject of considerable interest. However, beyond appreciation of its role in reversible packing of GH proteins in secretory granules, the molecular mechanisms of metal binding and granule formation remain poorly understood. Here, we investigate metal binding by a GH family member prolactin (PRL) using paramagnetic metal titration and chelation experiments. Cu2+-mediated paramagnetic relaxation enhancement measurements identified two partial metal-binding sites on the opposite faces of PRL composed of residues H30/H180 and E93/H97, respectively. Coordination of metal ions by these two sites causes formation of inter-molecular bridges between the PRL protomers and enables formation of reversible higher aggregates. These findings in vitro suggest a model for reversible packaging of PRL in secretory granules. The proposed mechanism of metal-promoted PRL aggregation lends insight and support to the previously suggested role of metal coordination in secretory granule formation by GH proteins.
Collapse
Affiliation(s)
- Janus Vang
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut
| | - Yulia Pustovalova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut
| | - Oksana Gorbatyuk
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut
| | - Camille Keeler
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut
| | - Michael E Hodsdon
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut
| | - Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut.
| |
Collapse
|
33
|
Orjuela AL, Núñez-Zarur F, Alí-Torres J. A computational protocol for the calculation of the standard reduction potential of iron complexes: application to Fe 2+/3+-Aβ model systems relevant to Alzheimer's disease. RSC Adv 2022; 12:24077-24087. [PMID: 36200023 PMCID: PMC9451132 DOI: 10.1039/d2ra03907a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
Iron complexes play a key role in several biological processes, and they are also related to the development of neurological disorders, such as Alzheimer's and Parkinson's diseases. One of the main properties involved in these processes is the standard reduction potential (SRP) of iron complexes. However, the calculation of this property is challenging, mainly due to problems in the electronic structure description, solvent effects and the thermodynamic cycles used for its calculation. In this work, we proposed a computational protocol for the calculation of SRPs of iron complexes by evaluating a wide range of density functionals for the electronic structure description, two implicit solvent models with varying radii and two thermodynamic cycles. Results show that the M06L density functional in combination with the SMD solvation model and the isodesmic method provides good results compared with SRP experimental values for a set of iron complexes. Finally, this protocol was applied to three Fe2+/3+-Aβ model systems involved in the development of Alzheimer's disease and the obtained SRP values are in good agreement with those reported previously by means of MP2 calculations. Iron complexes play a key role in the development of neurological disorders, such as Alzheimer's disease. We provide a computational protocol based on DFT for the calculation of standard reduction potentials of iron complexes relevant to Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Adrián L. Orjuela
- Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 111321, Colombia
| | - Francisco Núñez-Zarur
- Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, 050026 Medellín, Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 111321, Colombia
| |
Collapse
|
34
|
Vu KHP, Lee MC, Blankenburg GH, Chang YJ, Chu ML, Erbe A, Lesser-Rojas L, Chen YR, Chou CF. Time-Evolved SERS Signatures of DEP-Trapped Aβ and Zn 2+Aβ Peptides Revealed by a Sub-10 nm Electrode Nanogap. Anal Chem 2021; 93:16320-16329. [PMID: 34817990 DOI: 10.1021/acs.analchem.1c01521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) has become highly relevant in aging societies, yet the fundamental molecular basis for AD is still poorly understood. New tools to study the undergoing structural conformation changes of amyloid beta (Aβ) peptides, the pathogenic hallmark of AD, could play a crucial role in the understanding of the underlying mechanisms of misfolding and cytotoxicity of this peptide. It has been recently reported that Zn2+ interacts with Aβ and changes its aggregation pathway away from less harmful fibrillar forms to more toxic species. Here, we present a versatile platform based on a set of sub-10 nm nanogap electrodes for the manipulation and sensing of biomolecules in the physiological condition at a low copy number, where molecules are trapped via dielectrophoresis (DEP) across the nanogap, which also serves as a surface-enhanced Raman spectroscopy hotspot. In this study, we demonstrate that our electrode nanogap platform can be used to study the structural difference between Aβ40 and ZnAβ40 peptides at different aggregation stages in the physiologically relevant concentration and in solution phase. The Raman spectroscopic signatures of the DEP-captured neuropeptides prove the device to be attractive as a label-free bioanalytical tool.
Collapse
Affiliation(s)
- Katrin H P Vu
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.,Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Ming-Che Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Gerhard H Blankenburg
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Department of Physics, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Yu-Jen Chang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Ming-Lee Chu
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Andreas Erbe
- Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Leonardo Lesser-Rojas
- Research Center for Atomic, Nuclear and Molecular Sciences, San Pedro de Montes de Oca, San Jose 11501, Costa Rica.,School of Physics, University of Costa Rica, San Pedro de Montes de Oca, San Jose 11501, Costa Rica
| | - Yun-Ru Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Chia-Fu Chou
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| |
Collapse
|
35
|
Investigation of bovine serum albumin aggregation upon exposure to silver(i) and copper(ii) metal ions using Zetasizer. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Depending upon the metal coordination capacity and the binding sites of proteins, interaction between metal and proteins leads to a number of changes in the protein molecule which may include the change in conformation, unfolding, overall charge, and aggregation in some cases. In this study, Cu(ii) and Ag(i) metal ions were selected to investigate aggregation of bovine serum albumin (BSA) molecule upon interaction by measuring the size and charge of the aggregates using nano-Zetasizer instrument. Two concentrations of metal ions were made to interact with a specific concentration of BSA and the size and zeta potential of BSA aggregates were measured from 0 min upto 18 h. The Cu(ii) and Ag(i) metal ions showed almost similar behavior in inducing the BSA aggregation and the intensity of peak corresponding to the normal-sized protein decreased with time, whereas the peak corresponding to the protein aggregate increased. However, the effect on zeta potential of the aggregates was observed to be different with both metal ions. The aggregation of protein due to interaction of different metal ions is important to study as it gives insight to the pathogenesis of many neurological disorders and would result in developing effective ways to limit their exposure.
Collapse
|
36
|
Squitti R, Faller P, Hureau C, Granzotto A, White AR, Kepp KP. Copper Imbalance in Alzheimer's Disease and Its Link with the Amyloid Hypothesis: Towards a Combined Clinical, Chemical, and Genetic Etiology. J Alzheimers Dis 2021; 83:23-41. [PMID: 34219710 DOI: 10.3233/jad-201556] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cause of Alzheimer's disease (AD) is incompletely defined. To date, no mono-causal treatment has so far reached its primary clinical endpoints, probably due to the complexity and diverse neuropathology contributing to the neurodegenerative process. In the present paper, we describe the plausible etiological role of copper (Cu) imbalance in the disease. Cu imbalance is strongly associated with neurodegeneration in dementia, but a complete biochemical etiology consistent with the clinical, chemical, and genetic data is required to support a causative association, rather than just correlation with disease. We hypothesize that a Cu imbalance in the aging human brain evolves as a gradual shift from bound metal ion pools, associated with both loss of energy production and antioxidant function, to pools of loosely bound metal ions, involved in gain-of-function oxidative stress, a shift that may be aggravated by chemical aging. We explain how this may cause mitochondrial deficits, energy depletion of high-energy demanding neurons, and aggravated protein misfolding/oligomerization to produce different clinical consequences shaped by the severity of risk factors, additional comorbidities, and combinations with other types of pathology. Cu imbalance should be viewed and integrated with concomitant genetic risk factors, aging, metabolic abnormalities, energetic deficits, neuroinflammation, and the relation to tau, prion proteins, α-synuclein, TAR DNA binding protein-43 (TDP-43) as well as systemic comorbidity. Specifically, the Amyloid Hypothesis is strongly intertwined with Cu imbalance because amyloid-β protein precursor (AβPP)/Aβ are probable Cu/Zn binding proteins with a potential role as natural Cu/Zn buffering proteins (loss of function), and via the plausible pathogenic role of Cu-Aβ.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Alberto Granzotto
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences (DNISC), Laboratory of Molecular Neurology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Anthony R White
- Mental Health Program, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
37
|
Liu K, Li J, Raghunathan R, Zhao H, Li X, Wong STC. The Progress of Label-Free Optical Imaging in Alzheimer's Disease Screening and Diagnosis. Front Aging Neurosci 2021; 13:699024. [PMID: 34366828 PMCID: PMC8341907 DOI: 10.3389/fnagi.2021.699024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023] Open
Abstract
As the major neurodegenerative disease of dementia, Alzheimer's disease (AD) has caused an enormous social and economic burden on society. Currently, AD has neither clear pathogenesis nor effective treatments. Positron emission tomography (PET) and magnetic resonance imaging (MRI) have been verified as potential tools for diagnosing and monitoring Alzheimer's disease. However, the high costs, low spatial resolution, and long acquisition time limit their broad clinical utilization. The gold standard of AD diagnosis routinely used in research is imaging AD biomarkers with dyes or other reagents, which are unsuitable for in vivo studies owing to their potential toxicity and prolonged and costly process of the U.S. Food and Drug Administration (FDA) approval for human use. Furthermore, these exogenous reagents might bring unwarranted interference to mechanistic studies, causing unreliable results. Several label-free optical imaging techniques, such as infrared spectroscopic imaging (IRSI), Raman spectroscopic imaging (RSI), optical coherence tomography (OCT), autofluorescence imaging (AFI), optical harmonic generation imaging (OHGI), etc., have been developed to circumvent this issue and made it possible to offer an accurate and detailed analysis of AD biomarkers. In this review, we present the emerging label-free optical imaging techniques and their applications in AD, along with their potential and challenges in AD diagnosis.
Collapse
Affiliation(s)
- Kai Liu
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiasong Li
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Raksha Raghunathan
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Hong Zhao
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
| | - Xuping Li
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Stephen T. C. Wong
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
38
|
Rahman MS, Uddin MS, Rahman MA, Samsuzzaman M, Behl T, Hafeez A, Perveen A, Barreto GE, Ashraf GM. Exploring the Role of Monoamine Oxidase Activity in Aging and Alzheimer's Disease. Curr Pharm Des 2021; 27:4017-4029. [PMID: 34126892 DOI: 10.2174/1381612827666210612051713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
Monoamine oxidases (MAOs) are a family of flavin adenine dinucleotide-dependent enzymes that exert a crucial role in the metabolism of neurotransmitters of the central nervous system. The impaired function of MAOs is associated with copious brain diseases. The alteration of monoamine metabolism is a characteristics feature of aging. MAO plays a crucial role in the pathogenesis of Alzheimer's disease (AD) - a progressive neurodegenerative disorder associated with an excessive accumulation of amyloid-beta (Aβ) peptide and neurofibrillary tangles (NFTs). Activated MAO has played a critical role in the development of amyloid plaques from Aβ, as well as the formation of the NFTs. In the brain, MAO mediated metabolism of monoamines is the foremost source of reactive oxygen species formation. The elevated level of MAO-B expression in astroglia has been reported in the AD brains adjacent to amyloid plaques. Increased MAO-B activity in the cortical and hippocampal regions is associated with AD. This review describes the pathogenic mechanism of MAOs in aging as well as the development and propagation of Alzheimer's pathology.
Collapse
Affiliation(s)
- Md Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul. Korea
| | - Md Samsuzzaman
- Department of Food and Life Science, Pukyong National University, Busan 48513. Korea
| | - Tapan Behl
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick. Ireland
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah. Saudi Arabia
| |
Collapse
|
39
|
Beuning CN, Zocchi LJ, Malikidogo KP, Esmieu C, Dorlet P, Crans DC, Hureau C. Measurement of Interpeptidic Cu II Exchange Rate Constants of Cu II-Amyloid-β Complexes to Small Peptide Motifs by Tryptophan Fluorescence Quenching. Inorg Chem 2021; 60:7650-7659. [PMID: 33983723 DOI: 10.1021/acs.inorgchem.0c03555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The interpeptidic CuII exchange rate constants were measured for two Cu amyloid-β complexes, Cu(Aβ1-16) and Cu(Aβ1-28), to fluorescent peptides GHW and DAHW using a quantitative tryptophan fluorescence quenching methodology. The second-order rate constants were determined at three pH values (6.8, 7.4, and 8.7) important to the two Cu(Aβ) coordination complexes, components Cu(Aβ)I and Cu(Aβ)II. The interpeptidic CuII exchange rate constant is approximately 104 M-1 s-1 but varies in magnitude depending on many variables. These include pH, length of the Aβ peptide, location of the anchoring histidine ligand in the fluorescent peptide, number of amide deprotonations required in the tryptophan peptide to coordinate CuII, and interconversion between Cu(Aβ)I and Cu(Aβ)II. We also present EPR data probing the CuII exchange between peptides and the formation of ternary species between Cu(Aβ) and GHW. As the nonfluorescent GHK and DAHK peptides are important motifs found in the blood and serum, their ability to sequester CuII ions from Cu(Aβ) complexes may be relevant for the metal homeostasis and its implication in Alzheimer's disease. Thus, their kinetic CuII interpeptidic exchange rate constants are important chemical rate constants that can help elucidate the complex CuII trafficking puzzle in the synaptic cleft.
Collapse
Affiliation(s)
- Cheryle N Beuning
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Luca J Zocchi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | | | | - Pierre Dorlet
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, IMM, 13400 Marseille, France
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
40
|
Singhal S, Khanna P, Misra N, Khanna L. Multitarget Diallyl Disulfides (DADS) against Aβ Aggregation: Screening through Molecular Docking with Aβ
42
& Zn
II
‐Aβ
16
, ADME, DFT & Synthetic Strategy. ChemistrySelect 2021. [DOI: 10.1002/slct.202004635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- Sugandha Singhal
- University School of Basic and Applied Sciences Guru Gobind Singh Indraprastha University, Sector 16-C New Delhi 110078 India
| | - Pankaj Khanna
- Department of Chemistry Acharya Narendra Dev College University of Delhi, Kalkaji New Delhi 110019 India
| | - Neeti Misra
- Department of Chemistry Acharya Narendra Dev College University of Delhi, Kalkaji New Delhi 110019 India
| | - Leena Khanna
- University School of Basic and Applied Sciences Guru Gobind Singh Indraprastha University, Sector 16-C New Delhi 110078 India
| |
Collapse
|
41
|
Gomes GN, Levine ZA. Defining the Neuropathological Aggresome across in Silico, in Vitro, and ex Vivo Experiments. J Phys Chem B 2021; 125:1974-1996. [PMID: 33464098 PMCID: PMC8362740 DOI: 10.1021/acs.jpcb.0c09193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
42
|
Li D, Liu C. Hierarchical chemical determination of amyloid polymorphs in neurodegenerative disease. Nat Chem Biol 2021; 17:237-245. [PMID: 33432239 DOI: 10.1038/s41589-020-00708-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023]
Abstract
Amyloid aggregation, which disrupts protein homeostasis, is a common pathological event occurring in human neurodegenerative diseases (NDs). Numerous evidences have shown that the structural diversity, so-called polymorphism, is decisive to the amyloid pathology and is closely associated with the onset, progression, and phenotype of ND. But how could one protein form so many stable structures? Recently, atomic structural evidence has been rapidly mounting to depict the involvement of chemical modifications in the amyloid fibril formation. In this Perspective, we aim to present a hierarchical regulation of chemical modifications including covalent post-translational modifications (PTMs) and noncovalent cofactor binding in governing the polymorphic amyloid formation, based mainly on the latest α-synuclein and Tau fibril structures. We hope to emphasize the determinant role of chemical modifications in amyloid assembly and pathology and to evoke chemical biological approaches to lead the fundamental and therapeutic research on protein amyloid state and the associated NDs.
Collapse
Affiliation(s)
- Dan Li
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
43
|
Wang J, Liu J, Du G, An Y, Zhao C, Zeng B. The Influence of Ca 2+ and Zn 2+ on the Amyloid Fibril Formation by β-Casein. Protein Pept Lett 2021; 27:915-922. [PMID: 32186269 DOI: 10.2174/0929866527666200318143533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The amyloid fibril formation in different tissues or organs is related to amyloidosis. The Ca2+, Zn2+ and heparan sulfate (HS) are important elements and compositions in human body, which play a key role in regulating various physiological activities. Recently, there are increasing evidence suggest that they are closely linked to the amyloid fibril formation. OBJECTIVE The effect of Ca2+ and Zn2+ on the amyloid fibril formation by β-casein was investigated in the absence and presence of HS, which was significantly to explore the relationship between the concentration changes of Ca2+ and Zn2+ and amyloid fibril formation. METHODS In this work, the influence of Ca2+ and Zn2+ on the β-casein fibril formation in the absence and presence of HS was investigated by various methods of Thioflavin T fluorescence assay, transmission electron microscopy and intrinsic fluorescence measure. RESULTS The results demonstrated that Ca2+ and Zn2+ promoted the β-casein fibril formation. The effect of Ca2+ was greater than that of Zn2+. Meanwhile, the both metal ions had stronger effects when β-casein was incubated with HS together. In addition, it was also observed that the microenvironment of β-casein was changed because the intrinsic fluorescence peaks were red-shifted on the influence of Ca2+ and Zn2+. CONCLUSION Ca2+ and Zn2+ were capable of promoting the β-casein fibril formation in the both absence and presence of HS. This work set up the foundation for further researching of the amyloidosis pathogenesis and provided new insight for us to understand relationship between the inflammation and amyloidosis.
Collapse
Affiliation(s)
- Jia Wang
- Pharmacy College, Jilin University, Changchun, China
| | - Jihua Liu
- Pharmacy College, Jilin University, Changchun, China
| | - Guangguang Du
- Pharmacy College, Jilin University, Changchun, China
| | - Yang An
- Pharmacy College, Jilin University, Changchun, China
| | - Chunfang Zhao
- Pharmacy College, Jilin University, Changchun, China
| | - Baohua Zeng
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
44
|
Zhou X, Wang S, Zhang C, Lin Y, Lv J, Hu S, Zhang S, Li M. Colorimetric determination of amyloid-β peptide using MOF-derived nanozyme based on porous ZnO-Co 3O 4 nanocages. Mikrochim Acta 2021; 188:56. [PMID: 33502585 DOI: 10.1007/s00604-021-04705-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022]
Abstract
A sensitive and rapid colorimetric biosensor has been developed for determination of amyloid-β peptide (Aβ) and study of amyloidogenesis based on the high peroxidase-like activity of porous bimetallic ZnO-Co3O4 nanocages (NCs). Due to the high binding ability of Aβ monomer to ZnO-Co3O4 NCs, the catalytic activity of ZnO-Co3O4 NCs can be significantly suppressed by Aβ monomer. This finding forms the basis for a colorimetric assay for Aβ monomer detection. The detection limit for Aβ monomer is 3.5 nM with a linear range of 5 to 150 nM (R2 = 0.997). The system was successfully applied to the determination of Aβ monomer in rat cerebrospinal fluid. Critically, the different inhibition effects of monomeric and aggregated Aβ species on the catalytic activity of ZnO-Co3O4 NCs enabled the sensor to be used for tracking the dynamic progress of Aβ aggregation and screening Aβ inhibitors. Compared with the commonly used thioflavin T fluorescence assay, this method provided higher sensitivity to the formation of Aβ oligomer at the very early assembly stage. Our assay shows potential application in early diagnosis and therapy of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Xi Zhou
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuangling Wang
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Cong Zhang
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Yulong Lin
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Lv
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuyang Hu
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shanshan Zhang
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Meng Li
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
45
|
Abdelrahman S, Alghrably M, Lachowicz JI, Emwas AH, Hauser CAE, Jaremko M. "What Doesn't Kill You Makes You Stronger": Future Applications of Amyloid Aggregates in Biomedicine. Molecules 2020; 25:E5245. [PMID: 33187056 PMCID: PMC7696280 DOI: 10.3390/molecules25225245] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloid proteins are linked to the pathogenesis of several diseases including Alzheimer's disease, but at the same time a range of functional amyloids are physiologically important in humans. Although the disease pathogenies have been associated with protein aggregation, the mechanisms and factors that lead to protein aggregation are not completely understood. Paradoxically, unique characteristics of amyloids provide new opportunities for engineering innovative materials with biomedical applications. In this review, we discuss not only outstanding advances in biomedical applications of amyloid peptides, but also the mechanism of amyloid aggregation, factors affecting the process, and core sequences driving the aggregation. We aim with this review to provide a useful manual for those who engineer amyloids for innovative medicine solutions.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Policlinico Universitario, I-09042 Monserrato, Italy
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
46
|
Li J, Zhao Y, Zhou P, Hu X, Wang D, King SM, Rogers SE, Wang J, Lu JR, Xu H. Ordered Nanofibers Fabricated from Hierarchical Self-Assembling Processes of Designed α-Helical Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003945. [PMID: 33015967 DOI: 10.1002/smll.202003945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Peptide self-assembly is fast evolving into a powerful method for the development of bio-inspired nanomaterials with great potential for many applications, but it remains challenging to control the self-assembling processes and nanostrucutres because of the intricate interplay of various non-covalent interactions. A group of 28-residue α-helical peptides is designed including NN, NK, and HH that display distinct hierarchical events. The key of the design lies in the incorporation of two asparagine (Asn) or histidine (His) residues at the a positions of the second and fourth heptads, which allow one sequence to pack into homodimers with sticky ends through specific interhelical Asn-Asn or metal complexation interactions, followed by their longitudinal association into ordered nanofibers. This is in contrast to classical self-assembling helical peptide systems consisting of two complementary peptides. The collaborative roles played by the four main non-covalent interactions, including hydrogen-bonding, hydrophobic interactions, electrostatic interactions, and metal ion coordination, are well demonstrated during the hierarchical self-assembling processes of these peptides. Different nanostructures, for example, long and short nanofibers, thin and thick fibers, uniform metal ion-entrapped nanofibers, and polydisperse globular stacks, can be prepared by harnessing these interactions at different levels of hierarchy.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Peng Zhou
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xuzhi Hu
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Stephen M King
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot, Oxon, OX11 0QX, UK
| | - Sarah E Rogers
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot, Oxon, OX11 0QX, UK
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
47
|
Mahan B, Antonelli MA, Burckel P, Turner S, Chung R, Habekost M, Jørgensen AL, Moynier F. Longitudinal biometal accumulation and Ca isotope composition of the Göttingen minipig brain. Metallomics 2020; 12:1585-1598. [PMID: 33084720 DOI: 10.1039/d0mt00134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biometals play a critical role in both the healthy and diseased brain's functioning. They accumulate in the normal aging brain, and are inherent to neurodegenerative disorders and their associated pathologies. A prominent example of this is the brain accumulation of metals such as Ca, Fe and Cu (and more ambiguously, Zn) associated with Alzheimer's disease (AD). The natural stable isotope compositions of such metals have also shown utility in constraining biological mechanisms, and in differentiating between healthy and diseased states, sometimes prior to conventional methods. Here we have detailed the distribution of the biologically relevant elements Mg, P, K, Ca, Fe, Cu and Zn in brain regions of Göttingen minipigs ranging in age from three months to nearly six years, including control animals and both a single- and double-transgenic model of AD (PS1, APP/PS1). Moreover, we have characterized the Ca isotope composition of the brain for the first time. Concentration data track rises in brain biometals with age, namely for Fe and Cu, as observed in the normal ageing brain and in AD, and biometal data point to increased soluble amyloid beta (Aβ) load prior to AD plaque identification via brain imaging. Calcium isotope results define the brain as the isotopically lightest permanent reservoir in the body, indicating that brain Ca dyshomeostasis may induce measurable isotopic disturbances in accessible downstream reservoirs such as biofluids.
Collapse
Affiliation(s)
- Brandon Mahan
- Earth and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia. and Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Michael A Antonelli
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France and Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Pierre Burckel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France
| | - Simon Turner
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Roger Chung
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mette Habekost
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Frédéric Moynier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France
| |
Collapse
|
48
|
Roberts KF, Brue CR, Preston A, Baxter D, Herzog E, Varelas E, Meade TJ. Cobalt(III) Schiff base complexes stabilize non-fibrillar amyloid-β aggregates with reduced toxicity. J Inorg Biochem 2020; 213:111265. [PMID: 33059154 DOI: 10.1016/j.jinorgbio.2020.111265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
The aggregation of amyloid-β (Aβ) is believed to be foundational to the pathogenesis of Alzheimer's disease (AD). In vitro aggregation kinetics have been shown to correlate with rates of disease progression in both AD patients and animal models, thus proving to be a useful metric for testing Aβ-targeted therapeutics. Here we present evidence of cobalt(III) Schiff base complex ([Co(acetylacetonate)(NH3)2]Cl; Co(III)-sb) modulation of Aβ aggregation kinetics by a variety of complementary techniques. These include Thioflavin T (ThT) fluorescence, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). Our data was fitted to kinetic rate laws using a mathematical model developed by Knowles et al. in order to extract mechanistic information about the effect of Co(III)-sb on aggregation kinetics. Our analysis revealed that Co(III)-sb alters Aβ aggregation by decreasing the polymerization rate and increasing the nucleation rate, suggesting that Co(III)-sb causes Aβ to rapidly stabilize oligomeric species with reduced elongation into mature fibrils. This result was corroborated by TEM and AFM of Aβ aggregates in vitro. We also demonstrate that Aβ aggregate mixtures produced in the presence of Co(III)-sb exhibit decreased cytotoxicity compared to untreated samples.
Collapse
Affiliation(s)
- Kaleigh F Roberts
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL 60208, United States
| | - Christopher R Brue
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL 60208, United States
| | - Anna Preston
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL 60208, United States
| | - Damonick Baxter
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL 60208, United States
| | - Emma Herzog
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL 60208, United States
| | - Eleni Varelas
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL 60208, United States
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
49
|
The aroylhydrazone INHHQ prevents memory impairment induced by Alzheimer's-linked amyloid-β oligomers in mice. Behav Pharmacol 2020; 31:738-747. [PMID: 32773452 DOI: 10.1097/fbp.0000000000000578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Converging evidence indicates that neurotoxicity and memory impairment in Alzheimer's disease is induced by brain accumulation of soluble amyloid-β oligomers (AβOs). Physiological metals are poorly distributed and concentrated in the senile plaques typical of Alzheimer's disease, where they may be coordinated to the amyloid-β peptide (Aβ). Indeed, zinc and copper increase Aβ oligomerization and toxicity. Metal-protein attenuating compounds represent a class of agents proposed for Alzheimer's disease treatment, as they reduce abnormal interactions of metal ions with Aβ, inhibit Aβ oligomerization and prevent deleterious redox reactions in the brain. The present work investigates the protective action of an isoniazid-derived aroylhydrazone, INHHQ, on AβO-induced memory impairment. Systemic administration of a single dose of INHHQ (1 mg/kg) prevented both short-term and long-term memory impairment caused by AβOs in mice. In-vitro studies showed that INHHQ prevents Cu(Aβ)-catalyzed production of reactive oxygen species. Although the mechanism of protection by INHHQ is not yet fully understood at a molecular level, the results reported herein certainly point to the value of aroylhydrazones as promising neuroprotective agents in Alzheimer's disease and related disorders.
Collapse
|
50
|
Boopathi S, Dinh Quoc Huy P, Gonzalez W, Theodorakis PE, Li MS. Zinc binding promotes greater hydrophobicity inAlzheimer's Aβ42peptide than copper binding: Molecular dynamics and solvation thermodynamics studies. Proteins 2020; 88:1285-1302. [DOI: 10.1002/prot.25901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Subramanian Boopathi
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de IngenieríaUniversidad de Talca Talca Chile
| | | | - Wendy Gonzalez
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de IngenieríaUniversidad de Talca Talca Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD)Universidad de Talca Talca Chile
| | | | - Mai Suan Li
- Institute of PhysicsPolish Academy of Sciences Warsaw Poland
- Institute for Computational Science and Technology, Quang Trung Software City Tan Chanh Hiep Ward Ho Chi Minh City Vietnam
| |
Collapse
|