1
|
Zheng Y, Yang Z, Luo J, Zhang Y, Jiang N, Khattak WA. Transcriptome analysis of sugar and acid metabolism in young tomato fruits under high temperature and nitrogen fertilizer influence. FRONTIERS IN PLANT SCIENCE 2023; 14:1197553. [PMID: 37538068 PMCID: PMC10394703 DOI: 10.3389/fpls.2023.1197553] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
Introduction Environmental temperature and nitrogen (N) fertilizer are two important factors affecting the sugar and organic acid content of tomato fruit. N is an essential nutrient element for plant growth and development, and plays a key role in regulating plant growth, fruit quality and stress response. However, the comparative effect of different N fertilizer levels on the accumulation of soluble sugar and organic acid in tomato young fruit under high temperature stress and its mechanism are still unknown. Methods Three N fertilizer levels (N1, N2, N3) combined with two temperatures (28/18°C, CK; 35/25°C, HT) were used to study the effects of N fertilizer, HT and their interaction on the soluble sugar and organic acid components, content, metabolic enzyme activity and the expression level of key genes in tomato young fruit, revealing how N fertilizer affects the sugar and organic acid metabolism of tomato young fruit under HT at physiological and molecular levels. Results The content of soluble sugar and organic acid in tomato young fruit under HT exposure was increased by appropriate N fertilizer (N1) treatment, which was due to the accumulation of glucose, fructose, citric acid and malic acid. High N (N3) and HT exposure had a negative impact on soluble sugar and reduce sugar accumulation. Further studies showed that due to the up-regulation of the expression of sucrose metabolizing enzyme genes (CWINV2, HK2, SPS, PK) and sucrose transporter (SUT1, SUT4, SWEETs) in tomato, N fertilizer increased the accumulation of soluble sugar by improving the sucrose metabolism, absorption intensity and sucrose transport of fruit under HT exposure. Due to the increase of PEPC gene expression, N fertilizer increased the accumulation of citric acid and malic acid by improving the TCA cycle of fruit under HT exposure. Discussion Nitrogen fertilizer can improve the heat tolerance of tomato young fruits by improving sugar metabolism under HT exposure. The results can provide theoretical support for the correct application of N fertilizer to improve the quality of tomato fruit under HT exposure.
Collapse
Affiliation(s)
- Yanjiao Zheng
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Zaiqiang Yang
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Jing Luo
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Yao Zhang
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Nan Jiang
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Wajid Ali Khattak
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Zhang X, Zhang X, Wang T, Li C. Metabolic response of soybean leaves induced by short-term exposure of ozone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112033. [PMID: 33582415 DOI: 10.1016/j.ecoenv.2021.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/31/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The ever-increasing ozone (O3) concentration has led to reduced production and altered quality of soybean. Abundant reports have explored the damage mechanisms of O3 on soybean. However, how the elevated O3 affects metabolite profiling of soybean remains to be poorly understood. Here, we compare the metabolic profile of soybean leaves under charcoal filtered air (CF, <20 ppb) and short-term elevated O3 concentration (EO, 100 ppb). High level of O3 affects metabolites for the tricarbonic acid (TCA) cycle, reactive oxygen species, cell wall composition and amino acids. Significantly, jasmonic acid-related metabolite promoting stomata closure is highly induced with 125-fold change. Furthermore, O3 fumigation alters the expression of genes contributing to the biosynthesis of certain metabolites in TCA cycle. Together, these findings identify a wide range of changed metabolites in response to O3 pollution. Our results pave the way for the genetic improvement of soybean to adapt to O3 pollution to maintain stable yields.
Collapse
Affiliation(s)
- Xinxin Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Xiaofan Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Caihong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Allosteric Mutant IDH1 Inhibitors Reveal Mechanisms for IDH1 Mutant and Isoform Selectivity. Structure 2017; 25:506-513. [PMID: 28132785 DOI: 10.1016/j.str.2016.12.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/08/2016] [Accepted: 12/30/2016] [Indexed: 01/25/2023]
Abstract
Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1R132H mutation destabilizes an IDH1 "regulatory segment," which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.
Collapse
|
4
|
The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Biol 2014; 15:749-60. [PMID: 25269475 DOI: 10.1038/nrm3884] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteins that bind both DNA and RNA typify the ability of a single gene product to perform multiple functions. Such DNA- and RNA-binding proteins (DRBPs) have unique functional characteristics that stem from their specific structural features; these developed early in evolution and are widely conserved. Proteins that bind RNA have typically been considered as functionally distinct from proteins that bind DNA and studied independently. This practice is becoming outdated, in partly owing to the discovery of long non-coding RNAs (lncRNAs) that target DNA-binding proteins. Consequently, DRBPs were found to regulate many cellular processes, including transcription, translation, gene silencing, microRNA biogenesis and telomere maintenance.
Collapse
|
5
|
Holz-Schietinger C, Reich NO. RNA modulation of the human DNA methyltransferase 3A. Nucleic Acids Res 2012; 40:8550-7. [PMID: 22730298 PMCID: PMC3458530 DOI: 10.1093/nar/gks537] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 04/30/2012] [Accepted: 05/11/2012] [Indexed: 12/19/2022] Open
Abstract
DNA methyltransferase 3A (DNMT3A) is one of two human de novo DNA methyltransferases essential for transcription regulation during cellular development and differentiation. There is increasing evidence that RNA plays a role in directing DNA methylation to specific genomic locations within mammalian cells. Here, we describe two modes of RNA regulation of DNMT3A in vitro. We show a single-stranded RNA molecule that is antisense to the E-cadherin promoter binds tightly to the catalytic domain in a structurally dependent fashion causing potent inhibition of DNMT3A activity. Two other RNA molecules bind DNMT3A at an allosteric site outside the catalytic domain, causing no change in catalysis. Our observation of the potent and specific in vitro modulation of DNMT3A activity by RNA supports in vivo data that RNA interacts with DNMT3A to regulate transcription.
Collapse
Affiliation(s)
- Celeste Holz-Schietinger
- Interdepartmental Program in Biomolecular Science and Engineering and Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | - Norbert O. Reich
- Interdepartmental Program in Biomolecular Science and Engineering and Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| |
Collapse
|
6
|
Oliveira AP, Sauer U. The importance of post-translational modifications in regulating Saccharomyces cerevisiae metabolism. FEMS Yeast Res 2011; 12:104-17. [DOI: 10.1111/j.1567-1364.2011.00765.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ana Paula Oliveira
- Institute of Molecular Systems Biology; Department of Biology; ETH Zurich; Zurich; Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology; Department of Biology; ETH Zurich; Zurich; Switzerland
| |
Collapse
|
7
|
Spitale RC, Tsai MC, Chang HY. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics 2011; 6:539-43. [PMID: 21393997 DOI: 10.4161/epi.6.5.15221] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular pathways must be synergized, controlled and organized to manage homeostasis. To achieve high selectivity within the crowded cellular milieu the cell utilizes scaffolding complexes whose role is to bring molecules in proximity thereby controlling and enhancing intermolecular interactions and signaling events. To date, scaffolds have been shown to be composed of proteinaceous units; however, recent evidence has supported the idea that non-coding RNAs may also play a similar role. In this point of view article we discuss recent data on ncRNA scaffolds, with particular focus on ncRNA HOTAIR. Using our current knowledge of signaling networks we discuss the role that RNA may play in writing and regulating histone modifications and the information needed for correct gene expression. Further, we speculate on additional, yet undiscovered roles that ncRNAs may be playing as molecular scaffolds.
Collapse
Affiliation(s)
- Robert C Spitale
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
8
|
Hentze MW, Preiss T. The REM phase of gene regulation. Trends Biochem Sci 2010; 35:423-6. [DOI: 10.1016/j.tibs.2010.05.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 01/17/2023]
|
9
|
Frank RAW, Price AJ, Northrop FD, Perham RN, Luisi BF. Crystal structure of the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase multienzyme complex. J Mol Biol 2007; 368:639-51. [PMID: 17367808 PMCID: PMC7611002 DOI: 10.1016/j.jmb.2007.01.080] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 11/28/2022]
Abstract
The thiamine-dependent E1o component (EC 1.2.4.2) of the 2-oxoglutarate dehydrogenase complex catalyses a rate-limiting step of the tricarboxylic acid cycle (TCA) of aerobically respiring organisms. We describe the crystal structure of Escherichia coli E1o in its apo and holo forms at 2.6 A and 3.5 A resolution, respectively. The structures reveal the characteristic fold that binds thiamine diphosphate and resemble closely the alpha(2)beta(2) hetero-tetrameric E1 components of other 2-oxo acid dehydrogenase complexes, except that in E1o, the alpha and beta subunits are fused as a single polypeptide. The extended segment that links the alpha-like and beta-like domains forms a pocket occupied by AMP, which is recognised specifically. Also distinctive to E1o are N-terminal extensions to the core fold, and which may mediate interactions with other components of the 2-oxoglutarate dehydrogenase multienzyme complex. The active site pocket contains a group of three histidine residues and one serine that appear to confer substrate specificity and the capacity to accommodate the TCA metabolite oxaloacetate. Oxaloacetate inhibits E1o activity at physiological concentrations, and we suggest that the inhibition may allow coordinated activity within the TCA cycle. We discuss the implications for metabolic control in facultative anaerobes, and for energy homeostasis of the mammalian brain.
Collapse
|
10
|
Anderson SL, Lin AP, McAlister-Henn L. Analysis of interactions with mitochondrial mRNA using mutant forms of yeast NAD(+)-specific isocitrate dehydrogenase. Biochemistry 2006; 44:16776-84. [PMID: 16342968 PMCID: PMC2560988 DOI: 10.1021/bi0515568] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an allosterically regulated tricarboxylic acid cycle enzyme that has been shown to bind specifically and with high affinity to 5'-untranslated regions of yeast mitochondrial mRNAs. The absence of IDH has been shown to result in reduced expression of mitochondrial translation products, leading to the suggestion that this macromolecular interaction may contribute to regulating rates of translation. The interaction with mitochondrial mRNAs also produces a dramatic inhibition of IDH catalytic activity that is specifically alleviated by AMP, the primary allosteric activator of IDH. Using mutant forms of IDH with defined catalytic or regulatory kinetic defects, we found that residue changes altering ligand binding in the catalytic site reduce the inhibitory effect of a transcript from the mitochondrial COX2 mRNA. In contrast, residue changes altering binding of allosteric regulators do not prevent inhibition by the COX2 RNA transcript but do prevent alleviation of inhibition by AMP. Results obtained using surface plasmon resonance methods suggest that the mRNA transcript may bind at the active site of IDH. Also, the presence of AMP has little effect on overall affinity but renders the binding of mRNA ineffective in catalytic inhibition of IDH. Finally, by expressing mutant forms of IDH in vivo, we determined that detrimental effects on levels of mitochondrial translation products correlate with a substantial reduction in catalytic activity. However, concomitant loss of IDH and of citrate synthase eliminates these effects, suggesting that any role of IDH in mitochondrial translation is indirect.
Collapse
Affiliation(s)
| | | | - Lee McAlister-Henn
- To whom correspondence should be addressed. Phone: (210) 567−3782. Fax: (210) 567−6595. E-mail:
| |
Collapse
|
11
|
Hodges M, Yikilmaz E, Patterson G, Kasvosve I, Rouault TA, Gordeuk VR, Loyevsky M. An iron regulatory-like protein expressed in Plasmodium falciparum displays aconitase activity. Mol Biochem Parasitol 2005; 143:29-38. [PMID: 15963579 DOI: 10.1016/j.molbiopara.2005.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 05/05/2005] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum iron regulatory-like protein (PfIRPa) has homology to both mammalian iron regulatory proteins and aconitases and is capable of binding RNA iron response elements. We examined the subcellular localization of PfIRPa and its enzymatic properties at low oxygen tension. Differential digitonin permeabilization of isolated trophozoites with subsequent Western blot analysis suggests that the localization of PfIRPa is predominantly in the membranous compartments of the parasite, such as the mitochondrion. Immunofluorescence analysis showed that PfIRPa colocalizes with heat shock protein 60 (Hsp60), a mitochondrial marker, and is also present in the parasitic cytosol/food vacuole. Under conditions favoring the formation of an iron-sulfur cluster, recombinant PfIRPa (rPfIRPa) had aconitase activity as detected by a colorimetric NADPH-MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. As assessed by the hydration of cis-aconitate spectrophotometrically at 240 nm, rPfIRPa had high affinity for cis-aconitate (Km=3.5 microM) but a low turnover number (Kcat= 3.3 s(-1)). The overall catalytic efficiency (Kcat/Km) of rPfIRPa was similar in magnitude to human cytosolic IRP1/aconitase and human mitochondrial aconitase. PfIRPa immunoprecipitated from parasite lysates also had aconitase activity, as assessed by an MTT-based assay. Our results provide evidence that PfIRPa localizes in the mitochondrion and in the cytosol/food vacuole and is able to demonstrate aconitase activity. Further understanding of the role of PfIRPa/aconitase in the regulation of P. falciparum homeostasis may contribute towards the development of novel antimalarial strategies against plasmodial species.
Collapse
Affiliation(s)
- Marcus Hodges
- The Center for Sickle Cell Disease, Howard University, Washington, DC 20059, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen D, Chen X. Cloning and activity analysis ofin vitro expression of plant NAD-IDH genes. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf02900314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
McCammon MT, McAlister-Henn L. Multiple cellular consequences of isocitrate dehydrogenase isozyme dysfunction. Arch Biochem Biophys 2004; 419:222-33. [PMID: 14592466 DOI: 10.1016/j.abb.2003.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To probe the functions of multiple forms of isocitrate dehydrogenase in Saccharomyces cerevisiae, mutants lacking three of the isozymes were constructed and analyzed. Results show that, while the mitochondrial NAD+-dependent enzyme, IDH (composed of Idh1p and Idh2p subunits) is not the major contributor to total isocitrate dehydrogenase activity under any growth condition, loss of IDH produces the most dramatic growth phenotypes. These include reduced growth in the absence of glutamate, as well as an increase in expression of Idp2p (the cytosolic NADP+-dependent enzyme) under some growth conditions. In this study, we have focused on another phenotype associated with loss of IDH, an elevated frequency of petite mutations indicating loss of functional mtDNA. Using mutant forms of IDH with altered active site residues, a correlation was observed between the high frequency of petite mutations and the loss of catalytic activity. Loss of Idp1p (the mitochondrial NADP+-dependent enzyme) and Idp2p contributes to the loss of functional mtDNA, but only in an IDH dysfunctional background. Surprisingly, overexpression of Idp1p, but not of Idp2p, was found to result in an elevated petite frequency independent of the functional state of IDH. This is the first phenotype associated with altered Idp1p. Finally, throughout this study we examined effects of loss of mitochondrial citrate synthase (Cit1p) on isocitrate dehydrogenase mutants, since defects in the CIT1 gene were previously shown to enhance growth of IDH dysfunctional strains on nonfermentable carbon sources. Loss of Cit1p was found to suppress the petite phenotype of strains lacking IDH, suggesting that these phenotypes may be linked.
Collapse
Affiliation(s)
- Mark T McCammon
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | |
Collapse
|
14
|
Bryan BA, McGrew E, Lu Y, Polymenis M. Evidence for control of nitrogen metabolism by a START-dependent mechanism in Saccharomyces cerevisiae. Mol Genet Genomics 2003; 271:72-81. [PMID: 14648201 DOI: 10.1007/s00438-003-0957-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022]
Abstract
It is generally thought that cell growth and metabolism regulate cell division and not vice versa. Here, we examined Saccharomyces cerevisiae cells growing under conditions of continuous culture in a chemostat. We found that loss of G1 cyclins, or inactivation of the cyclin-dependent kinase Cdc28p, reduced the activity of glutamate synthase (Glt1p), a key enzyme in nitrogen assimilation. We also present evidence indicating that the G1 cyclin-dependent control of Glt1p may involve Jem1p, a DnaJ-type chaperone. Our results suggest that completion of START may be linked to nitrogen metabolism.
Collapse
Affiliation(s)
- B A Bryan
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
15
|
McCammon MT, Epstein CB, Przybyla-Zawislak B, McAlister-Henn L, Butow RA. Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes. Mol Biol Cell 2003; 14:958-72. [PMID: 12631716 PMCID: PMC151572 DOI: 10.1091/mbc.e02-07-0422] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To understand the many roles of the Krebs tricarboxylic acid (TCA) cycle in cell function, we used DNA microarrays to examine gene expression in response to TCA cycle dysfunction. mRNA was analyzed from yeast strains harboring defects in each of 15 genes that encode subunits of the eight TCA cycle enzymes. The expression of >400 genes changed at least threefold in response to TCA cycle dysfunction. Many genes displayed a common response to TCA cycle dysfunction indicative of a shift away from oxidative metabolism. Another set of genes displayed a pairwise, alternating pattern of expression in response to contiguous TCA cycle enzyme defects: expression was elevated in aconitase and isocitrate dehydrogenase mutants, diminished in alpha-ketoglutarate dehydrogenase and succinyl-CoA ligase mutants, elevated again in succinate dehydrogenase and fumarase mutants, and diminished again in malate dehydrogenase and citrate synthase mutants. This pattern correlated with previously defined TCA cycle growth-enhancing mutations and suggested a novel metabolic signaling pathway monitoring TCA cycle function. Expression of hypoxic/anaerobic genes was elevated in alpha-ketoglutarate dehydrogenase mutants, whereas expression of oxidative genes was diminished, consistent with a heme signaling defect caused by inadequate levels of the heme precursor, succinyl-CoA. These studies have revealed extensive responses to changes in TCA cycle function and have uncovered new and unexpected metabolic networks that are wired into the TCA cycle.
Collapse
Affiliation(s)
- Mark T McCammon
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 78229-3900, USA.
| | | | | | | | | |
Collapse
|
16
|
Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics 2002; 1:323-33. [PMID: 12096114 DOI: 10.1074/mcp.m200001-mcp200] [Citation(s) in RCA: 538] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using an integrated genomic and proteomic approach, we have investigated the effects of carbon source perturbation on steady-state gene expression in the yeast Saccharomyces cerevisiae growing on either galactose or ethanol. For many genes, significant differences between the abundance ratio of the messenger RNA transcript and the corresponding protein product were observed. Insights into the perturbative effects on genes involved in respiration, energy generation, and protein synthesis were obtained that would not have been apparent from measurements made at either the messenger RNA or protein level alone, illustrating the power of integrating different types of data obtained from the same sample for the comprehensive characterization of biological systems and processes.
Collapse
|
17
|
Hoffmann M, Kuhn J, Däschner K, Binder S. The RNA world of plant mitochondria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:119-54. [PMID: 11642360 DOI: 10.1016/s0079-6603(01)70015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mitochondria are well known as the cellular power factory. Much less is known about these organelles as a genetic system. This is particularly true for mitochondria of plants, which subsist with respect to attention by the scientific community in the shadow of the chloroplasts. Nevertheless the mitochondrial genetic system is essential for the function of mitochondria and thus for the survival of the plant. In plant mitochondria the pathway from the genetic information encoded in the DNA to the functional protein leads through a very diverse RNA world. How the RNA is generated and what kinds of regulation and control mechanisms are operative in transcription are current topics in research. Furthermore, the modes of posttranscriptional alterations and their consequences for RNA stability and thus for gene expression in plant mitochondria are currently objects of intensive investigations. In this article current results obtained in the examination of plant mitochondrial transcription, RNA processing, and RNA stability are illustrated. Recent developments in the characterization of promoter structure and the respective transcription apparatus as well as new aspects of RNA processing steps including mRNA 3' processing and stability, mRNA polyadenylation, RNA editing, and tRNA maturation are presented. We also consider new suggestions concerning the endosymbiont hypothesis and evolution of mitochondria. These novel considerations may yield important clues for the further analysis of the plant mitochondrial genetic system. Conversely, an increasing knowledge about the mechanisms and components of the organellar genetic system might reveal new aspects of the evolutionary history of mitochondria.
Collapse
Affiliation(s)
- M Hoffmann
- Molekulare Botanik, Universität Ulm, Germany
| | | | | | | |
Collapse
|
18
|
de Jong L, Elzinga SD, McCammon MT, Grivell LA, van der Spek H. Increased synthesis and decreased stability of mitochondrial translation products in yeast as a result of loss of mitochondrial (NAD(+))-dependent isocitrate dehydrogenase. FEBS Lett 2000; 483:62-6. [PMID: 11033357 DOI: 10.1016/s0014-5793(00)02086-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously demonstrated that the yeast Krebs cycle enzyme NAD(+)-dependent isocitrate dehydrogenase (Idh) binds specifically and with high affinity to the 5'-untranslated leader sequences of mitochondrial mRNAs in vitro and have proposed a role for the enzyme in the regulation of mitochondrial translation [Elzinga, S.D.J. et al. (2000) Curr. Genet., in press]. Although our studies initially failed to reveal any consistent correlation between idh disruption and mitochondrial translational activity, it is now apparent that compensatory extragenic suppressor mutations readily accumulate in idh disruption strains thereby masking mutant behaviour. Now, pulse-chase protein labelling of isolated mitochondria from an Idh disruption mutant lacking suppressor mutations reveals a strong (2-3-fold) increase in the synthesis of mitochondrial translation products. Strikingly, the newly synthesised proteins are more short-lived than in mitochondria from wild-type cells, their degradation occurring with a 2-3-fold reduced half-life. Enhanced degradation of translation products is also a feature of yeast mutants in which tethering/docking of mitochondrial mRNAs is disturbed. We therefore suggest that binding of Idh to mitochondrial mRNAs may suppress inappropriate translation of mitochondrial mRNAs.
Collapse
Affiliation(s)
- L de Jong
- Section for Molecular Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|