1
|
Paul JW, Muratcioğlu S, Kuriyan J. A fluorescence-based sensor for calibrated measurement of protein kinase stability in live cells. Protein Sci 2024; 33:e5023. [PMID: 38801214 PMCID: PMC11129626 DOI: 10.1002/pro.5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of signaling proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We determine the expression levels of protein kinases by monitoring the fluorescence of fluorescent proteins fused to those kinases, normalized to that of co-expressed reference fluorescent proteins. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 and Src-homology 3 domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.
Collapse
Affiliation(s)
- Joseph W. Paul
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative Bioscience (QB3)University of CaliforniaBerkeleyCaliforniaUSA
| | - Serena Muratcioğlu
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - John Kuriyan
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
2
|
Paul JW, Muratcioğlu S, Kuriyan J. A Fluorescence-Based Sensor for Calibrated Measurement of Protein Kinase Stability in Live Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570636. [PMID: 38106090 PMCID: PMC10723428 DOI: 10.1101/2023.12.07.570636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We monitor the fluorescence of kinases fused to a fluorescent protein relative to that of a co-expressed reference fluorescent protein. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 (SH2) and Src-homology 3 (SH3) domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.
Collapse
Affiliation(s)
- Joseph W. Paul
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720 USA
- California Institute for Quantitative Bioscience (QB3), University of California, Berkeley, CA, 94720 USA
| | - Serena Muratcioğlu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - John Kuriyan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240 USA
| |
Collapse
|
3
|
Zhao C, Peng C, Wang P, Fan S, Yan L, Qiu L. Identification of co-chaperone Cdc37 in Penaeus monodon: coordination with Hsp90 can reduce cadmium stress-induced lipid peroxidation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111800. [PMID: 33340955 DOI: 10.1016/j.ecoenv.2020.111800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Cell division cycle 37 (Cdc37) is an important cytoplasmic phosphoprotein, which usually functions as a complex with heat shock protein 90 (Hsp90), to effectively reduce the damage caused by heavy metals, such as cadmium (Cd), in aquatic animals. The high toxicity of Cd in aquatic systems generally has a deleterious effect on healthy farming of shrimps. In the present study, a novel Cdc37 gene from Penaeus monodon was identified and designated as PmCdc37. Following exposure to Cd stress, the expression levels of PmCdc37 were upregulated at the transcriptional level in both the hepatopancreas and hemolymph. RNA interference and recombinant protein injection experiments were carried out to determine the function of PmCdc37 in P. monodon following Cd exposure. To clarify the correlations between PmCdc37 and PmHsp90, the respective recombinant proteins were expressed in vitro, and the ATPase activity of PmHsp90, with or without PmCdc37, was assessed. Moreover, a pull-down assay was conducted to detect the correlation between PmCdc37 and PmHsp90. After analyzing the expression patterns of PmHsp90 following Cd challenge, whether PmHsp90 can promote the ability of PmCdc37 to resist Cd stress or not was investigated. The results showed that formation of a PmHsp90/PmCdc37 complex protected shrimp against Cd stress-induced damage. Moreover, we also confirmed that PmSOD is involved in Cd stress, and that the PmHsp90/PmCdc37 complex can regulate SOD enzymatic activity. PmSOD was involved in decreasing the MDA content in shrimp hemolymph caused by Cd stress. We concluded that during exposure to Cd, the PmHsp90/PmCdc37 complex increases SOD enzyme activity, and in turn decreases the MDA content, thereby protecting shrimp against the damage caused by Cd stress. The present studies contribute to understanding the molecular mechanism underlying resistance to Cd stress in shrimp.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Chao Peng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, China.
| |
Collapse
|
4
|
Nitration-induced ubiquitination and degradation control quality of ERK1. Biochem J 2019; 476:1911-1926. [PMID: 31196894 PMCID: PMC6604951 DOI: 10.1042/bcj20190240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
The mitogen-activated protein kinase ERK1/2 (ERKs, extracellular-regulated protein kinases) plays important roles in a wide spectrum of cellular processes and have been implicated in many disease states. The spatiotemporal regulation of ERK activity has been extensively studied. However, scarce information has been available regarding the quality control of the kinases to scavenge malfunctioning ERKs. Using site-specific mutagenesis and mass spectrometry, we found that the disruption of the conserved H-bond between Y210 and E237 of ERK1 through point mutation at or naturally occurring nitration on Y210 initiates a quality control program dependent on chaperon systems and CHIP (C-terminal of Hsp70-interacting protein)-mediated ubiquitination and degradation. The H-bond is also important for the quality control of ERK2, but through a distinct mechanism. These findings clearly demonstrate how malfunctioning ERKs are eliminated when cells are in certain stress conditions or unhealthy states, and could represent a general mechanism for scavenging malfunctioning kinases in stress conditions.
Collapse
|
5
|
Regulation of the Hsp90 system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:889-897. [PMID: 29563055 DOI: 10.1016/j.bbamcr.2018.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/01/2023]
Abstract
Hsp90 is a highly conserved and abundant chaperone. It participates in essential cellular activities by supporting the maturation process of its client proteins, many of which are protein kinases and steroid receptors. Client processing is achieved via extensive conformational changes within the dimeric chaperone. This requires an ATP hydrolysis activity that is controlled by auto-inhibitory mechanisms and several structurally diverse cofactors. Especially the client-specificity of Hsp90 depends on client-specific cofactors, which can adapt Hsp90's activities to the client requirements at different conditions and in different cell types. Additionally, post-translational modifications can influence almost every aspect of Hsp90's interactions and activities. In this review, we present these regulatory principles, discuss the factors that have an impact on Hsp90's function and elaborate the mechanisms that are responsible for regulating the Hsp90 machinery.
Collapse
|
6
|
Alternative approaches to Hsp90 modulation for the treatment of cancer. Future Med Chem 2015; 6:1587-605. [PMID: 25367392 DOI: 10.4155/fmc.14.89] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hsp90 is responsible for the conformational maturation of newly synthesized polypeptides (client proteins) and the re-maturation of denatured proteins via the Hsp90 chaperone cycle. Inhibition of the Hsp90 N-terminus has emerged as a clinically relevant strategy for anticancer chemotherapeutics due to the involvement of clients in a variety of oncogenic pathways. Several immunophilins, co-chaperones and partner proteins are also necessary for Hsp90 chaperoning activity. Alternative strategies to inhibit Hsp90 function include disruption of the C-terminal dimerization domain and the Hsp90 heteroprotein complex. C-terminal inhibitors and Hsp90 co-chaperone disruptors prevent cancer cell proliferation similar to N-terminal inhibitors and destabilize client proteins without induction of heat shock proteins. Herein, current Hsp90 inhibitors, the chaperone cycle, and regulation of this cycle will be discussed.
Collapse
|
7
|
Stivarou T, Patsavoudi E. Extracellular molecules involved in cancer cell invasion. Cancers (Basel) 2015; 7:238-65. [PMID: 25629807 PMCID: PMC4381257 DOI: 10.3390/cancers7010238] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 12/30/2014] [Accepted: 01/20/2015] [Indexed: 12/15/2022] Open
Abstract
Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.
Collapse
Affiliation(s)
- Theodora Stivarou
- Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521, Greece
| | | |
Collapse
|
8
|
Hall JA, Kusuma BR, Brandt GEL, Blagg BSJ. Cruentaren A binds F1F0 ATP synthase to modulate the Hsp90 protein folding machinery. ACS Chem Biol 2014; 9:976-85. [PMID: 24450340 PMCID: PMC4090037 DOI: 10.1021/cb400906e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
The molecular chaperone Hsp90 requires
the assistance of immunophilins,
co-chaperones, and partner proteins for the conformational maturation
of client proteins. Hsp90 inhibition represents a promising anticancer
strategy due to the dependence of numerous oncogenic signaling pathways
upon Hsp90 function. Historically, small molecules have been designed
to inhibit ATPase activity at the Hsp90 N-terminus; however, these
molecules also induce the pro-survival heat shock response (HSR).
Therefore, inhibitors that exhibit alternative mechanisms of action
that do not elicit the HSR are actively sought. Small molecules that
disrupt Hsp90-co-chaperone interactions can destabilize the Hsp90
complex without induction of the HSR, which leads to inhibition of
cell proliferation. In this article, selective inhibition of F1F0 ATP synthase by cruentaren A was shown to disrupt
the Hsp90-F1F0 ATP synthase interaction and
result in client protein degradation without induction of the HSR.
Collapse
Affiliation(s)
- Jessica A. Hall
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, Kansas 66045-7562, United States
| | - Bhaskar Reddy Kusuma
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, Kansas 66045-7562, United States
| | - Gary E. L. Brandt
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, Kansas 66045-7562, United States
| | - Brian S. J. Blagg
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, Kansas 66045-7562, United States
| |
Collapse
|
9
|
Hsp90-dependent assembly of the DBC2/RhoBTB2-Cullin3 E3-ligase complex. PLoS One 2014; 9:e90054. [PMID: 24608665 PMCID: PMC3946479 DOI: 10.1371/journal.pone.0090054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/27/2014] [Indexed: 12/21/2022] Open
Abstract
The expression of the wild-type tumor-suppressor gene DBC2 (Deleted-in-Breast Cancer 2, a.k.a RhoBTB2) is suppressed in many cancers, in addition to breast cancer. In a screen for Cdc37-associated proteins, DBC2 was identified to be a potential client protein of the 90 kDa heat shock protein (Hsp90) chaperone machine. Pull down assays of ectopically expressed DBC2 confirmed that DBC2 associated with Hsp90 and its co-chaperone components in reticulocyte lysate and MCF7 cells. Similar to other atypical Rho GTPases, DBC2 was found to have retained the capacity to bind GTP. The ability of DBC2 to bind GTP was modulated by the Hsp90 ATPase cycle, as demonstrated through the use of the Hsp90 chemical inhibitors, geldanamycin and molybdate. The binding of full length DBC2 to GTP was suppressed in the presence of geldanamycin, while it was enhanced in the presence of molybdate. Furthermore, assembly of DBC2-Cullin3-COP9 E3 ligase complexes was Hsp90-dependent. The data suggest a new paradigm for Hsp90-modulated assembly of a Cul3/DBC2 E3 ubiquitin ligase complex that may extend to other E3 ligase complexes.
Collapse
|
10
|
Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:71-87. [DOI: 10.1016/j.bbagrm.2013.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 12/31/2022]
|
11
|
Structural bioinformatics and protein docking analysis of the molecular chaperone-kinase interactions: towards allosteric inhibition of protein kinases by targeting the hsp90-cdc37 chaperone machinery. Pharmaceuticals (Basel) 2013; 6:1407-28. [PMID: 24287464 PMCID: PMC3854018 DOI: 10.3390/ph6111407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/05/2023] Open
Abstract
A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4) kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional "molecular brakes" that can lock (or unlock) kinase from the system during client loading (release) stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.
Collapse
|
12
|
Pare JM, LaPointe P, Hobman TC. Hsp90 cochaperones p23 and FKBP4 physically interact with hAgo2 and activate RNA interference-mediated silencing in mammalian cells. Mol Biol Cell 2013; 24:2303-10. [PMID: 23741051 PMCID: PMC3727923 DOI: 10.1091/mbc.e12-12-0892] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Argonaute proteins rely on the activity of Hsp90 to mediate their interaction with small RNAs. The activity of Hsp90 is modulated by proteins known as cochaperones. This study identifies p23 and FKBP4 as cochaperones that interact with hAgo2 and shows that they, along with Cdc37 and Aha1, are required for efficient RNAi. Argonaute proteins and small RNAs together form the RNA-induced silencing complex (RISC), the central effector of RNA interference (RNAi). The molecular chaperone Hsp90 is required for the critical step of loading small RNAs onto Argonaute proteins. Here we show that the Hsp90 cochaperones Cdc37, Aha1, FKBP4, and p23 are required for efficient RNAi. Whereas FKBP4 and p23 form a stable complex with hAgo2, the function of Cdc37 in RNAi appears to be indirect and may indicate that two or more Hsp90 complexes are involved. Our data also suggest that p23 and FKBP4 interact with hAgo2 before small RNA loading and that RISC loading takes place in the cytoplasm rather than in association with RNA granules. Given the requirement for p23 and FKBP4 for efficient RNAi and that these cochaperones bind to hAgo2, we predict that loading of hAgo2 is analogous to Hsp90-mediated steroid hormone receptor activation. To this end, we outline a model in which FKBP4, p23, and Aha1 cooperatively regulate the progression of hAgo2 through the chaperone cycle. Finally, we propose that hAgo2 and RNAi can serve as a robust model system for continued investigation into the Hsp90 chaperone cycle.
Collapse
Affiliation(s)
- Justin M Pare
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | | | | |
Collapse
|
13
|
The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci 2013; 38:253-62. [PMID: 23507089 DOI: 10.1016/j.tibs.2013.02.003] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 11/21/2022]
Abstract
The heat shock protein (Hsp)90 chaperone machinery regulates the activity of hundreds of client proteins in the eukaryotic cytosol. It undergoes large conformational changes between states that are similar in energy. These transitions are rate-limiting for the ATPase cycle. It has become evident that several of the many Hsp90 co-chaperones affect the conformational equilibrium by stabilizing specific intermediate states. Consequently, there is an ordered progression of different co-chaperones during the conformational cycle. Asymmetric complexes containing two different co-chaperones may be important for the processing of the client protein, although our understanding of this aspect, as well as the details of the interaction of Hsp90 with client proteins, is still in its infancy.
Collapse
|
14
|
Lu C, Liu D, Jin J, Deokar H, Zhang Y, Buolamwini JK, Yu X, Yan C, Chen X. Inhibition of gastric tumor growth by a novel Hsp90 inhibitor. Biochem Pharmacol 2013; 85:1246-56. [PMID: 23415900 DOI: 10.1016/j.bcp.2013.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 01/31/2023]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone engaging in multiple cellular signaling by stabilizing oncoproteins (e.g. Akt and c-Raf) in tumor cells. Whereas Hsp90 inhibitors such as 17-AAG exert promising antitumor effects in clinical trials, current efforts focus on developing agents targeting Hsp90 with improved efficacy and lower toxicity. Using a fluorescence polarization assay, we screened over a hundred of synthetic small molecules and identified a resorcinol derivative LD053 that bound the Hsp90 ATP-binding pocket. The binding of LD053 to Hsp90 dissociated the co-chaperone protein cdc37 from Hsp90, resulting in destabilization of Akt and c-Raf and subsequent inhibition of PI3K/Akt and c-Raf/Mek/Erk signaling in BGC823 gastric cancer cells. As a consequence, LD053 decreased cancer cell viability and induced apoptosis evidenced by increased subG0/G1 cell population and increased cleavage of caspase 3 and PARP. Interestingly, normal human cells appeared insensitive to LD053 treatments. Consistent with its in vitro anticancer activities, LD053 significantly inhibited growth of BGC823 xenografts in nude mice without apparent body weight loss. These results thus demonstrate that LD053 is a novel Hsp90 inhibitor and has potential to be used to treat gastric cancer.
Collapse
Affiliation(s)
- Chunwan Lu
- Department of Pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
El Hamidieh A, Grammatikakis N, Patsavoudi E. Cell surface Cdc37 participates in extracellular HSP90 mediated cancer cell invasion. PLoS One 2012; 7:e42722. [PMID: 22912728 PMCID: PMC3422348 DOI: 10.1371/journal.pone.0042722] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/10/2012] [Indexed: 01/05/2023] Open
Abstract
Cdc37 is a 50 kDa molecular chaperone which targets intrinsically unstable protein kinases to the molecular chaperone HSP90. It is also an over-expressed oncoprotein that mediates carcinogenesis and maintenance of the malignant phenotype by stabilizing the compromised structures of mutant and/or over-expressed oncogenic kinases. Here we report that Cdc37 is not restricted intracellularly but instead it is also present on the surface of MDA-MB-453 and MDA-MB-231 human breast cancer cells, where it is shown to participate in cancer cell motility processes. Furthermore, we demonstrate using an anti-Cdc37 cell impermeable antibody, that similarly to its intracellular counterpart, this surface pool of Cdc37 specifically interacts with HSP90 as well as the kinase receptors HER2 and EGFR on the cell surface, probably acting as a co-factor in HSP90's extracellular chaperoning activities. Finally, we show that functional inhibition of surface HSP90 using mAb 4C5, a cell impermeable monoclonal antibody against this protein, leads not only to disruption of the Cdc37/HSP90 complex but also to inhibition of the Cdc37/ErbB receptors complexes. These results support an essential role for surface Cdc37 in concert with HSP90 on the cell surface during cancer cell invasion processes and strengthen the therapeutic potential of mAb 4C5 for the treatment of cancer.
Collapse
Affiliation(s)
| | - Nicholas Grammatikakis
- Institute of Biology, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Evangelia Patsavoudi
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
- Department of Biomedical Instrumentation Technology, Technological Educational Institute of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
16
|
Characterization of the interaction of Aha1 with components of the Hsp90 chaperone machine and client proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1092-101. [DOI: 10.1016/j.bbamcr.2012.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/19/2012] [Accepted: 03/26/2012] [Indexed: 01/30/2023]
|
17
|
Charged linker sequence modulates eukaryotic heat shock protein 90 (Hsp90) chaperone activity. Proc Natl Acad Sci U S A 2012; 109:2937-42. [PMID: 22315411 DOI: 10.1073/pnas.1114414109] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hsp90 is an essential and highly conserved modular molecular chaperone whose N and middle domains are separated by a disordered region termed the charged linker. Although its importance has been previously disregarded, because a minimal linker length is sufficient for Hsp90 activity, the evolutionary persistence of extensive charged linkers of divergent sequence in Hsp90 proteins of most eukaryotes remains unexplained. To examine this question further, we introduced human and plasmodium native and length-matched artificial linkers into yeast Hsp90. After evaluating ATPase activity and biophysical characteristics in vitro, and chaperone function in vivo, we conclude that linker sequence affects Hsp90 function, cochaperone interaction, and conformation. We propose that the charged linker, in addition to providing the flexibility necessary for Hsp90 domain rearrangements--likely its original purpose--has evolved in eukaryotes to serve as a rheostat for the Hsp90 chaperone machine.
Collapse
|
18
|
Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, McCastlain K, Zhang J, Iyengar R, Jung CH, Suen DF, Steeves MA, Yang CY, Prater SM, Kim DH, Thompson CB, Youle RJ, Ney PA, Cleveland JL, Kundu M. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol Cell 2011; 43:572-85. [PMID: 21855797 DOI: 10.1016/j.molcel.2011.06.018] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 04/21/2011] [Accepted: 06/24/2011] [Indexed: 12/26/2022]
Abstract
Autophagy, the primary recycling pathway of cells, plays a critical role in mitochondrial quality control under normal growth conditions and in the response to cellular stress. The Hsp90-Cdc37 chaperone complex coordinately regulates the activity of select kinases to orchestrate many facets of the stress response. Although both maintain mitochondrial integrity, the relationship between Hsp90-Cdc37 and autophagy has not been well characterized. Ulk1, one of the mammalian homologs of yeast Atg1, is a serine-threonine kinase required for mitophagy. Here we show that the interaction between Ulk1 and Hsp90-Cdc37 stabilizes and activates Ulk1, which in turn is required for the phosphorylation and release of Atg13 from Ulk1, and for the recruitment of Atg13 to damaged mitochondria. Hsp90-Cdc37, Ulk1, and Atg13 phosphorylation are all required for efficient mitochondrial clearance. These findings establish a direct pathway that integrates Ulk1- and Atg13-directed mitophagy with the stress response coordinated by Hsp90 and Cdc37.
Collapse
Affiliation(s)
- Joung Hyuck Joo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The ubiquitous molecular chaperone Hsp90 makes up 1-2% of cytosolic proteins and is required for viability in eukaryotes. Hsp90 affects the folding and activation of a wide variety of substrate proteins including many involved in signaling and regulatory processes. Some of these substrates are implicated in cancer and other diseases, making Hsp90 an attractive drug target. Structural analyses have shown that Hsp90 is a highly dynamic and flexible molecule that can adopt a wide variety of structurally distinct states. One driving force for these rearrangements is the intrinsic ATPase activity of Hsp90, as seen with other chaperones. However, unlike other chaperones, studies have shown that the ATPase cycle of Hsp90 is not conformationally deterministic. That is, rather than dictating the conformational state, ATP binding and hydrolysis only shift the equilibria between a pre-existing set of conformational states. For bacterial, yeast and human Hsp90, there is a conserved three-state (apo-ATP-ADP) conformational cycle; however; the equilibria between states are species specific. In eukaryotes, cytosolic co-chaperones regulate the in vivo dynamic behavior of Hsp90 by shifting conformational equilibria and affecting the kinetics of structural changes and ATP hydrolysis. In this review, we discuss the structural and biochemical studies leading to our current understanding of the conformational dynamics of Hsp90, as well as the roles that nucleotide, co-chaperones, post-translational modification and substrates play. This view of Hsp90's conformational dynamics was enabled by the use of multiple complementary structural methods including, crystallography, small-angle X-ray scattering (SAXS), electron microscopy, Förster resonance energy transfer (FRET) and NMR. Finally, we discuss the effects of Hsp90 inhibitors on conformation and the potential for developing small molecules that inhibit Hsp90 by disrupting the conformational dynamics.
Collapse
Affiliation(s)
- Kristin A Krukenberg
- Department of Biochemistry and Biophysics, The Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
20
|
Meng Q, Chen X, Sun L, Zhao C, Sui G, Cai L. Carbamazepine promotes Her-2 protein degradation in breast cancer cells by modulating HDAC6 activity and acetylation of Hsp90. Mol Cell Biochem 2010; 348:165-71. [PMID: 21082217 DOI: 10.1007/s11010-010-0651-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
Histone deacetylase 6 (HDAC6) inhibition, recently, has been shown to promote the acetylation of heat-shock protein 90 (Hsp90) and disrupt its chaperone function. Her-2 oncoprotein is identified as a client protein of Hsp90. Therefore, in this study we examined the effect of carbamazepine, which could inhibit HDAC on Hsp90 acetylation and Her-2 stability. The results of this study demonstrate that while carbamazepine had no effect on the Her-2 mRNA level, it induced Her-2 protein degradation via the proteasome pathway by disrupting the chaperone function of Hsp90 in SK-BR-3 cells. Mechanistically, carbamazepine could enhance the acetylation of α-tubulin, indicating its inhibitory effect on HDAC6. Functionally, carbamazepine could synergize with trastuzumab or geldanamycin to promote Her-2 degradation and inhibit breast cancer cell proliferation. Thus, this study has potential clinical implications by providing a promising strategy to overcome the development of resistance against trastuzumab therapy for breast cancer.
Collapse
Affiliation(s)
- Qingwei Meng
- The Breast Department of the Third Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Brandt GEL, Blagg BSJ. Alternate strategies of Hsp90 modulation for the treatment of cancer and other diseases. Curr Top Med Chem 2010; 9:1447-61. [PMID: 19860731 DOI: 10.2174/156802609789895683] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/07/2009] [Indexed: 12/13/2022]
Abstract
The 90 kDa heat shock protein (Hsp90) has become a validated target for the development of anti-cancer agents. Several Hsp90 inhibitors are currently under clinical trial investigation for the treatment of cancer. All of these agents inhibit Hsp90's protein folding activity by binding to the N-terminal ATP binding site of the Hsp90 molecular chaperone. Administration of these investigational drugs elicits induction of the heat shock response, or the overexpression of several Hsps, which exhibit antiapoptotic and pro-survival effects that may complicate the application of these inhibitors. To circumvent this issue, alternate mechanisms for Hsp90 inhibition that do not elicit the heat shock response have been identified and pursued. After providing background on the structure, function, and mechanism of the Hsp90 protein folding machinery, this review describes several mechanisms of Hsp90 modulation via small molecules that do not induce the heat shock response.
Collapse
Affiliation(s)
- Gary E L Brandt
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, 66045-7582, USA
| | | |
Collapse
|
22
|
Zhang T, Li Y, Yu Y, Zou P, Jiang Y, Sun D. Characterization of celastrol to inhibit hsp90 and cdc37 interaction. J Biol Chem 2009; 284:35381-9. [PMID: 19858214 PMCID: PMC2790967 DOI: 10.1074/jbc.m109.051532] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/29/2009] [Indexed: 12/20/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is required for the stabilization and conformational maturation of various oncogenic proteins in cancer. The loading of protein kinases to Hsp90 is actively mediated by the cochaperone Cdc37. The crucial role of the Hsp90-Cdc37 complex has made it an exciting target for cancer treatment. In this study, we characterize Hsp90 and Cdc37 interaction and drug disruption using a reconstituted protein system. The GST pull-down assay and ELISA assay show that Cdc37 binds to ADP-bound/nucleotide-free Hsp90 but not ATP-bound Hsp90. Celastrol disrupts Hsp90-Cdc37 complex formation, whereas the classical Hsp90 inhibitors (e.g. geldanamycin) have no effect. Celastrol inhibits Hsp90 ATPase activity without blocking ATP binding. Proteolytic fingerprinting indicates celastrol binds to Hsp90 C-terminal domain to protect it from trypsin digestion. These data suggest that celastrol may represent a new class of Hsp90 inhibitor by modifying Hsp90 C terminus to allosterically regulate its chaperone activity and disrupt Hsp90-Cdc37 complex.
Collapse
Affiliation(s)
- Tao Zhang
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
| | - Yanyan Li
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
| | - Yanke Yu
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
| | - Peng Zou
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
| | - Yiqun Jiang
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
| | - Duxin Sun
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
23
|
Tsutsumi S, Mollapour M, Graf C, Lee CT, Scroggins BT, Xu W, Haslerova L, Hessling M, Konstantinova AA, Trepel JB, Panaretou B, Buchner J, Mayer MP, Prodromou C, Neckers L. Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain. Nat Struct Mol Biol 2009; 16:1141-7. [PMID: 19838189 DOI: 10.1038/nsmb.1682] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 08/26/2009] [Indexed: 11/10/2022]
Abstract
Heat shock protein 90 (Hsp90) is an essential molecular chaperone in eukaryotes, as it regulates diverse signal transduction nodes that integrate numerous environmental cues to maintain cellular homeostasis. Hsp90 also is secreted from normal and transformed cells and regulates cell motility. Here, we have identified a conserved hydrophobic motif in a beta-strand at the boundary between the N domain and charged linker of Hsp90, whose mutation not only abrogated Hsp90 secretion but also inhibited its function. These Hsp90 mutants lacked chaperone activity in vitro and failed to support yeast viability. Notably, truncation of the charged linker reduced solvent accessibility of this beta-strand and restored chaperone activity to these mutants. These data underscore the importance of beta-strand 8 for Hsp90 function and demonstrate that the functional consequences of weakened hydrophobic contacts in this region are reversed by charged-linker truncation.
Collapse
Affiliation(s)
- Shinji Tsutsumi
- Urologic Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Taherian A, Krone PH, Ovsenek N. A comparison of Hsp90alpha and Hsp90beta interactions with cochaperones and substrates. Biochem Cell Biol 2009; 86:37-45. [PMID: 18364744 DOI: 10.1139/o07-154] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hsp90 chaperone complexes function in assembly, folding, and activation of numerous substrates. The 2 vertebrate homologues encoded by the genes hsp90a and hsp90b are differentially expressed in embryonic and adult tissues and during stress; however, it is not known whether they possess identical functional activities in chaperone complexes. This question was addressed by examining potential differences between the Hsp90 isoforms with respect to both cochaperone and substrate interactions. Epitope-tagged proteins were expressed in mammalian cells or Xenopus oocytes and subjected to immunoprecipitation with an array of co-chaperones. Both isoforms were shown to participate equally in multichaperone complexes, and no significant differences in cochaperone distribution were observed. The substrates Raf-1, HSF1, Cdc37, and MEK1 interacted with both Hsp90alpha and Hsp90beta, and the relative patterns of these interactions were not affected by heat shock. The substrate kinases c-Src, CKIIB, A-raf, and Erk interacted with both isoforms; however, significantly more Hsp90alpha was recovered after heat shock. The data demonstrate that Hsp90alpha and Hsp90beta exhibit similar interactions with co-chaperones, but significantly different behaviors with respect to substrate interactions under stress conditions. These results reveal both functional similarities and key functional differences in the individual members of this protein family.
Collapse
Affiliation(s)
- Aliakbar Taherian
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Rd., Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
25
|
Smith JR, Clarke PA, de Billy E, Workman P. Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Oncogene 2009; 28:157-69. [PMID: 18931700 PMCID: PMC2635547 DOI: 10.1038/onc.2008.380] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/21/2008] [Accepted: 09/05/2008] [Indexed: 01/12/2023]
Abstract
The cochaperone CDC37 promotes the association of HSP90 with the protein kinase subset of client proteins to maintain their stability and signalling functions. HSP90 inhibitors induce depletion of clients, which include several oncogenic kinases. We hypothesized that the targeting of CDC37 using siRNAs would compromise the maturation of these clients and increase the sensitivity of cancer cells to HSP90 inhibitors. Here, we show that silencing of CDC37 in human colon cancer cells diminished the association of kinase clients with HSP90 and reduced levels of the clients ERBB2, CRAF, CDK4 and CDK6, as well as phosphorylated AKT. CDC37 silencing promoted the proteasome-mediated degradation of kinase clients, suggesting a degradation pathway independent from HSP90 binding. Decreased cell signalling through kinase clients was also demonstrated by reduced phosphorylation of downstream substrates and colon cancer cell proliferation was subsequently reduced by the inhibition of the G1/S-phase transition. Furthermore, combining CDC37 silencing with the HSP90 inhibitor 17-AAG induced more extensive and sustained depletion of kinase clients and potentiated cell cycle arrest and apoptosis. These results support an essential role for CDC37 in concert with HSP90 in maintaining oncogenic protein kinase clients and endorse the therapeutic potential of targeting CDC37 in cancer.
Collapse
Affiliation(s)
- J R Smith
- Signal Transduction and Molecular Pharmacology Team, Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Surrey, UK
| | | | | | | |
Collapse
|
26
|
Felts SJ, Karnitz LM, Toft DO. Functioning of the Hsp90 machine in chaperoning checkpoint kinase I (Chk1) and the progesterone receptor (PR). Cell Stress Chaperones 2008; 12:353-63. [PMID: 18229454 DOI: 10.1379/csc-299.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hsp90 is an abundant and highly conserved chaperone that functions at later stages of protein folding to maintain and regulate the activity of client proteins. Using a recently described in vitro system to fold a functional model kinase Chk1, we performed a side-by-side comparison of the Hsp90-dependent chaperoning of Chk1 to that of the progesterone receptor (PR) and show that these distinct types of clients have different chaperoning requirements. The less stable PR required more total chaperone protein(s) and p23, whereas Chk1 folding was critically dependent on Cdc37. When the 2 clients were reconstituted under identical conditions, each client folding was dose dependent for Hsp90 protein levels and was inhibited by geldanamycin. Using this tractable system, we found that Chk1 kinase folding was more effective if we used a type II Hsp40 cochaperone, whereas PR is chaperoned equally well with a type I or type II Hsp40. Additional dissection of Chk1-chaperone complexes and the resulting kinase activity suggests that kinase folding, like that previously shown for PR, is a dynamic, multistep process. Importantly, the cochaperones Hop and Cdc37 cooperate as the kinase transitions from immature Hsp70- to mature Hsp90-predominant complexes.
Collapse
Affiliation(s)
- Sara J Felts
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
27
|
Te J, Jia L, Rogers J, Miller A, Hartson SD. Novel subunits of the mammalian Hsp90 signal transduction chaperone. J Proteome Res 2007; 6:1963-73. [PMID: 17348703 DOI: 10.1021/pr060595i] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As one of the major cellular chaperones, Hsp90 plays diverse roles in supporting and regulating wild-type and oncogenic signal transduction proteins. Hsp90 function itself is regulated by its various nonsubstrate subunits. To define Hsp90's predominant in vivo functions and the mechanisms for regulating this function, the human Hsp90 interactome was characterized using gel-based proteomics techniques. Results show that Hsp90's most prominent association is its previously described interaction with Hsp70, a primary chaperone capable of recognizing and binding hydrophobic peptide segments. Additionally, novel human proteins discovered in this study reveal that several newly described Hsp90 associations in yeast are conserved in the human cytoplasm. Additionally, other new Hsp90 subunits imply that a great deal of Hsp90 function may be directed to the assembly, regulation, or exploitation of the tubulin-based cytoskeleton network, particularly the mitotic spindle.
Collapse
Affiliation(s)
- Jeannie Te
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA
| | | | | | | | | |
Collapse
|
28
|
Hawle P, Horst D, Bebelman JP, Yang XX, Siderius M, van der Vies SM. Cdc37p is required for stress-induced high-osmolarity glycerol and protein kinase C mitogen-activated protein kinase pathway functionality by interaction with Hog1p and Slt2p (Mpk1p). EUKARYOTIC CELL 2007; 6:521-32. [PMID: 17220467 PMCID: PMC1828922 DOI: 10.1128/ec.00343-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast Saccharomyces cerevisiae utilizes rapidly responding mitogen-activated protein kinase (MAPK) signaling cascades to adapt efficiently to a changing environment. Here we report that phosphorylation of Cdc37p, an Hsp90 cochaperone, by casein kinase 2 controls the functionality of two MAPK cascades in yeast. These pathways, the high-osmolarity glycerol (HOG) pathway and the cell integrity (protein kinase C) MAPK pathway, mediate adaptive responses to high osmotic and cell wall stresses, respectively. Mutation of the phosphorylation site Ser14 in Cdc37p renders cells sensitive to osmotic stress and cell wall perturbation by calcofluor white. We found that levels of the MAPKs Hog1p and Slt2p (Mpk1p) in cells are reduced in a cdc37-S14A mutant, and consequently downstream responses mediated by Hog1p and Slt2p are compromised. Furthermore, we present evidence that Hog1p and Slt2p both interact in a complex with Cdc37p in vivo, something that has not been reported previously. The interaction of Hsp90, Slt2p, and Hog1p with Cdc37p depends on the phosphorylation status of Cdc37p. In fact, our biochemical data show that the osmosensitive phenotype of the cdc37-S14A mutant is due to the loss of the interaction between Cdc37p, Hog1p, and Hsp90. Likewise, during cell wall stress, the interaction of Slt2p with Cdc37p and Hsp90 is crucial for Slt2p-dependent downstream responses, such as the activation of the transcription factor Rlm1p. Interestingly, phosphorylated Slt2p, but not phosphorylated Hog1p, has an increased affinity for Cdc37p. Together these observations suggest that Cdc37p acts as a regulator of MAPK signaling.
Collapse
Affiliation(s)
- Patricija Hawle
- Department of Biochemistry and Molecular Biology, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Yun BG, Matts RL. Hsp90 functions to balance the phosphorylation state of Akt during C2C12 myoblast differentiation. Cell Signal 2006; 17:1477-85. [PMID: 15935620 DOI: 10.1016/j.cellsig.2005.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 02/15/2005] [Accepted: 03/03/2005] [Indexed: 01/16/2023]
Abstract
The function of the 90-kDa heat shock protein (Hsp90) is essential for the regulation of a myriad of signal transduction cascades that control all facets of a cell's physiology. Akt (PKB) is an Hsp90-dependent serine-threonine kinase that plays critical roles in the regulation of muscle cell physiology, including roles in the regulation of muscle differentiation and anti-apoptotic responses that modulate cell survival. In this report, we have examined the role of Hsp90 in regulating the activity of Akt in differentiating C2C12 myoblasts. While long-term treatment of differentiating C2C12 cells with the Hsp90 inhibitor geldanamycin led to the depletion of cellular Akt levels, pulse-chase analysis indicated that geldanamycin primarily enhanced the turnover rate of newly synthesized Akt. Hsp90 maintained an interaction with mature Akt, while Cdc37, Hsp90's kinase-specific co-chaperone, was lost from the chaperone complex upon Akt maturation. Geldanamycin partially disrupted the interaction of Cdc37 with Akt, but had a much less significant effect on the interaction of Hsp90 with Akt. Surprisingly, short-term treatment of differentiating C2C12 with geldanamycin increased the phosphorylation of Akt on Ser473, an effect mimicked by treatment of C2C12 cells with okadaic acid or the Hsp90 inhibitor novobiocin. Furthermore, Akt was found to interact directly with catalytic subunit of protein phosphatase 2A (PP2Ac) in C2C12 cells, and this interaction was not disrupted by geldanamycin. Thus, our findings indicate that Hsp90 functions to balance the phosphorylation state of Akt by modulating the ability of Akt to be dephosphorylated by PP2Ac during C2C12 myoblast differentiation.
Collapse
Affiliation(s)
- Bo-Geon Yun
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078-3035, United States
| | | |
Collapse
|
30
|
Terasawa K, Shinozaki F, Minami M, Minami Y. Client binding of Cdc37 is regulated intramolecularly and intermolecularly. Biosci Biotechnol Biochem 2006; 70:1542-6. [PMID: 16794345 DOI: 10.1271/bbb.60201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recently we showed that the glycine-rich loop in the N-terminal portion of protein kinases and the client-binding site of Cdc37 are both necessary for interaction between Cdc37 and protein kinases. We demonstrate here that the N-terminal portion of Cdc37, distinct from its client-binding site, interacts with the C-terminal portion of Raf-1. This interaction might expose the client-binding site of Cdc37. In addition, we provide evidence indicating that Cdc37 is monomeric in its physiological state, and that it becomes a dimer only when it is complexed with both Hsp90 and protein kinases.
Collapse
Affiliation(s)
- Kazuya Terasawa
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo
| | | | | | | |
Collapse
|
31
|
Catlett MG, Kaplan KB. Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J Biol Chem 2006; 281:33739-48. [PMID: 16945921 DOI: 10.1074/jbc.m603847200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sgt1p is a conserved, essential protein required for kinetochore assembly in both yeast and animal cells. Sgt1p has homology to both TPR and p23 domains, sequences often found in proteins that interact with and regulate the molecular chaperone, Hsp90. The presence of these domains and the recent findings that Sgt1p interacts with Hsp90 has led to the speculation that Sgt1p and Hsp90 form a co-chaperone complex. To test this possibility, we have used purified recombinant proteins to characterize the in vitro interactions between yeast Sgt1p and Hsp82p (an Hsp90 homologue in yeast). We show that Sgt1p interacts directly with Hsp82p via its p23 homology region in a nucleotide-dependent manner. However, Sgt1p binding does not alter the enzymatic activity of Hsp82p, suggesting that it is distinct from other co-chaperones. We find that Sgt1p can form a ternary chaperone complex with Hsp82p and Sti1p, a well characterized Hsp90 co-chaperone. Sgt1p interacts with its binding partner Skp1p through its TPR domains and links Skp1p to the core Hsp82p-Sti1p co-chaperone complex. The multidomain nature of Sgt1p and its ability to bridge the interaction between Skp1p and Hsp82p argue that Sgt1p acts as a "client adaptor" recruiting specific clients to Hsp82p co-chaperone complexes.
Collapse
Affiliation(s)
- Michael G Catlett
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
32
|
Harst A, Lin H, Obermann W. Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation. Biochem J 2006; 387:789-96. [PMID: 15584899 PMCID: PMC1135010 DOI: 10.1042/bj20041283] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ATP-dependent molecular chaperone Hsp90 (heat-shock protein 90) is essential for the maturation of hormone receptors and protein kinases. During the process of client protein activation, Hsp90 co-operates with cofactors/co-chaperones of unique sequence, e.g. Aha1 (activator of Hsp90 ATPase 1), p23 or p50, and with cofactors containing TPR (tetratricopeptide repeat) domains, e.g. Hop, immunophilins or cyclophilins. Although the binding sites for these different types of cofactors are distributed along the three domains of Hsp90, sterical overlap and competition for binding sites restrict the combinations of cofactors that can bind to Hsp90 at the same time. The recently discovered cofactor Aha1 associates with the middle domain of Hsp90, but its relationship to other cofactors of the molecular chaperone is poorly understood. Therefore we analysed whether complexes of Aha1, p23, p50, Hop and a cyclophilin with Hsp90 are disrupted by the other four cofactors by gel permeation chromatography using purified proteins. It turned out that Aha1 competes with the early cofactors Hop and p50, but can bind to Hsp90 in the presence of cyclophilins, suggesting that Aha1 acts as a late cofactor of Hsp90. In contrast with p50, which can bind to Hop, Aha1 does not interact directly with any of the other four cofactors. In vivo studies in yeast and in mammalian cells revealed that Aha1 is not specific for kinase activation, but also contributes to maturation of hormone receptors, proposing a general role for this cofactor in the activation of Hsp90-dependent client proteins.
Collapse
Affiliation(s)
- Anja Harst
- Protein Folding Group, Institute for Genetics, University of Bonn, Römerstr. 164, D-53117 Bonn, Germany
| | - Hongying Lin
- Protein Folding Group, Institute for Genetics, University of Bonn, Römerstr. 164, D-53117 Bonn, Germany
| | - Wolfgang M. J. Obermann
- Protein Folding Group, Institute for Genetics, University of Bonn, Römerstr. 164, D-53117 Bonn, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Abstract
Hsp90 and its cochaperone Cdc37 cooperate to provide requisite support to numerous protein kinases involved in cellular signal transduction. In this report, we studied the interactions of Hsp90 and Cdc37 with the cyclin-dependent kinase, Cdk2. Treatment of K562 cells with the Hsp90 inhibitor, geldanamycin, caused a 75% reduction in Cdk2 levels and reduced the levels of its activating kinase, Cdk7, by more than 60%, suggesting that both of these kinases may be Hsp90 clients. Using classical pull-down assays and the Hsp90 inhibitory agents geldanamycin and molybdate, Cdk2 is shown to be a genuine client of the Hsp90 chaperone complex. Subsequently, pull-down assays directed at helix alphaC of Cdk2 are shown to disrupt Hsp90 and Cdc37 binding and explain the initial difficulties in demonstrating these interactions. Mutant constructs containing deletions of secondary structural elements from the N- and C-termini of Cdk2 were prepared and assayed for their ability to coadsorb Hsp90 and Cdc37 in a salt-stable high-affinity manner with and without the addition of molybdate. Consistent with similar work done with the cyclin-dependent kinase relative Cdk4, the presence of the G-box motif of Cdk2 was shown to be critical for Cdc37 binding, whereas consistent with work done with the Src-family tyrosine kinase Lck, the presence of helix alphaC and the stabilization of helix alphaE were shown to be needed for Hsp90 binding.
Collapse
Affiliation(s)
- Thomas Prince
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA
| | | | | |
Collapse
|
34
|
McLaughlin SH, Sobott F, Yao ZP, Zhang W, Nielsen PR, Grossmann JG, Laue ED, Robinson CV, Jackson SE. The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J Mol Biol 2005; 356:746-58. [PMID: 16403413 DOI: 10.1016/j.jmb.2005.11.085] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/25/2005] [Accepted: 11/28/2005] [Indexed: 12/25/2022]
Abstract
The action of the molecular chaperone Hsp90 is essential for the activation and assembly of an increasing number of client proteins. This function of Hsp90 has been proposed to be governed by conformational changes driven by ATP binding and hydrolysis. Association of co-chaperones and client proteins regulate the ATPase activity of Hsp90. Here, we have examined the inhibition of the ATPase activity of human Hsp90beta by one such co-chaperone, human p23. We demonstrate that human p23 interacts with Hsp90 in both the absence and presence of nucleotide with a higher affinity in the presence of the ATP analogue AMP-PNP. This is consistent with an analysis of the effect of p23 on the steady-state kinetics that revealed a mixed mechanism of inhibition. Mass spectrometry of the intact Hsp90.p23 complex determined the stoichiometry of binding to be one p23 to each subunit of the Hsp90 dimer. p23 was also shown to interact with a monomeric, truncated fragment of Hsp90, lacking the C-terminal homodimerisation domain, indicating dimerisation of Hsp90 is not a prerequisite for association with p23. Complex formation between Hsp90 and p23 increased the apparent affinity of Hsp90 for AMP-PNP and completely inhibited the ATPase activity. We propose a model where the role of p23 is to lock individual subunits of Hsp90 in an ATP-dependent conformational state that has a high affinity for client proteins.
Collapse
Affiliation(s)
- Stephen H McLaughlin
- Cambridge University, Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Arlander SJH, Felts SJ, Wagner JM, Stensgard B, Toft DO, Karnitz LM. Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J Biol Chem 2005; 281:2989-98. [PMID: 16330544 DOI: 10.1074/jbc.m508687200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Checkpoint kinase 1 (Chk1), a serine/threonine kinase that regulates DNA damage checkpoints, is destabilized when heat shock protein 90 (Hsp90) is inhibited, suggesting that Chk1 is an Hsp90 client. In the present work we examined the interplay between Chk1 and Hsp90 in intact cells, identified a source of unchaperoned Chk1, and report the in vitro chaperoning of Chk1 in reticulocyte lysates and with purified chaperones and co-chaperones. We find that bacterially expressed Chk1 is post-translationally chaperoned to an active kinase. This reaction minimally requires Hsp90, Hsp70, Hsp40, Cdc37, and the protein kinase CK2. The co-chaperone Hop, although not essential for the activation of Chk1 in vitro, enhanced the chaperoning process, whereas the co-chaperone p23 did not stimulate the chaperoning reaction. Additionally, we found that the C-terminal regulatory domain of Chk1 affects the association of Chk1 with Hsp90. Collectively these results provide new insights into Hsp90-dependent chaperoning of a client kinase and identify a novel, biochemically tractable model system that will be useful to further dissect the Hsp90-dependent chaperoning of this important and ubiquitous class of Hsp90 clients.
Collapse
Affiliation(s)
- Sonnet J H Arlander
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School
| | | | | | | | | | | |
Collapse
|
36
|
Prince T, Matts RL. Exposure of protein kinase motifs that trigger binding of Hsp90 and Cdc37. Biochem Biophys Res Commun 2005; 338:1447-54. [PMID: 16269130 DOI: 10.1016/j.bbrc.2005.10.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2005] [Accepted: 10/18/2005] [Indexed: 01/05/2023]
Abstract
Hsp90 and its co-chaperone Cdc37 are required for the activity of numerous eukaryotic protein kinases. c-Jun N-terminal kinases (JNKs) appear to be Hsp90-independent kinases, as their activity is unaffected by Hsp90 inhibition. It is currently unknown why some protein kinases are Hsp90- and Cdc37-dependent for their function, while others are not. Therefore, we investigated what structural motifs within JNKs confer or defer Hsp90 and Cdc37 interaction. Both Hsp90 and Cdc37 recognized structural features that were exposed or destabilized upon deletion of JNK1alpha1's N-terminal non-catalytic structural motif, while only Hsp90 bound JNK when its C-terminal non-catalytic structural motif was deleted. Mutations in JNK's activation loop that are known to constitutively activate or inactivate its kinase activity had no effect on JNK's lack of interaction with Hsp90 and Cdc37. Our findings suggest a model in which Hsp90 and Cdc37 each recognize distinct features within the catalytic domains of kinases.
Collapse
Affiliation(s)
- Thomas Prince
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078-3035, USA
| | | |
Collapse
|
37
|
Turnbull EL, Martin IV, Fantes PA. Cdc37 maintains cellular viability in Schizosaccharomyces pombe independently of interactions with heat-shock protein 90. FEBS J 2005; 272:4129-40. [PMID: 16098195 DOI: 10.1111/j.1742-4658.2005.04825.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cdc37 is a molecular chaperone that interacts with a range of clients and co-chaperones, forming various high molecular mass complexes. Cdc37 sequence homology among species is low. High homology between yeast and metazoan proteins is restricted to the extreme N-terminal region, which is known to bind clients that are predominantly protein kinases. We show that despite the low homology, both Saccharomyces cerevisiae and human Cdc37 are able to substitute for the Schizosaccharomyces pombe protein in a strain deleted for the endogenous cdc37 gene. Expression of a construct consisting of only the N-terminal domain of S. pombe Cdc37, lacking the postulated heat-shock protein (Hsp) 90-binding and homodimerization domains, can also sustain cellular viability, indicating that Cdc37 dimerization and interactions with the cochaperone Hsp90 may not be essential for Cdc37 function in S. pombe. Biochemical investigations showed that a small proportion of total cellular Cdc37 occurs in a high molecular mass complex that also contains Hsp90. These data indicate that the N-terminal domain of Cdc37 carries out essential functions independently of the Hsp90-binding domain and dimerization of the chaperone itself.
Collapse
Affiliation(s)
- Emma L Turnbull
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, UK
| | | | | |
Collapse
|
38
|
Abstract
The molecular chaperone Hsp90 is distinct from Hsp70 and chaperonin in that client proteins are apparently restricted to a subset of proteins categorized as cellular signaling molecules. Among these, many specific protein kinases require the assistance of Hsp90 and its co-chaperone Cdc37/p50 for their biogenesis. A series of Cdc37 deletion mutants revealed that all mutants capable of binding Raf-1 possess amino acid residues between 181 and 200. The 20-residue region is sufficient and, in particular, a five-residue segment (residue 191-195) is essential for binding to Raf-1. These five residues are present in one alpha helix (residues 184-199) in the middle of Cdc37, which is unexpectedly nested within the Hsp90-interacting domain of Cdc37, which was recently determined by crystallography, but does not seem to contribute to direct contact with Hsp90. Furthermore, an N-terminally truncated mutant of Cdc37 composed of residues 181-378 was shown to bind the N-terminal portion of Raf-1 (subdomains I-IV). This mutant can bind not only other Hsp90 client protein kinases, Akt1, Aurora B and Cdk4, but also Cdc2 and Cdk2, which to date have not been shown to physically interact with Cdc37. These results suggest that a region of Cdc37 other than the client-binding site may be responsible for discriminating client protein kinases from others.
Collapse
Affiliation(s)
- Kazuya Terasawa
- Department of Biophysics and Biochemistry, and Undergraduate Program for Bioinformatics and Systems Biology, Graduate School of Science, University of Tokyo, Japan
| | | |
Collapse
|
39
|
Roiniotis J, Masendycz P, Ho S, Scholz GM. Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37. Biochemistry 2005; 44:6662-9. [PMID: 15850399 DOI: 10.1021/bi047406z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hsp90 is a highly conserved molecular chaperone that acts in concert with Hsp70 and a cohort of cochaperones to mediate the folding of client proteins into functional conformations. The novel Hsp90 cochaperone Harc was identified previously on the basis of its amino acid sequence similarity to Cdc37. Although the biochemical role of Harc has not been established, the structural similarities between Harc and Cdc37 suggest that it too may function to regulate the binding of client proteins to Hsp90. We report here that Harc forms dimers in vitro. Functional dissection of Harc revealed that both the N-terminal and middle domains contributed to its dimerization. Notably, dimerization of the middle domain of Harc was required for the binding of Hsp90, suggesting that dimerized Harc binds to Hsp90 dimers. The N-terminal domain of Harc made an important contribution to the dimerization of Harc by facilitating the interaction of Hsp70 with Harc-Hsp90 heterocomplexes. Harc was also found to heterodimerize with Cdc37 in vitro. Titration experiments revealed that Harc homodimerization was favored over heterodimerization with Cdc37 when both cochaperones were at similar levels. However, formation of Harc homodimers and heterodimers of Harc and Cdc37 was comparable when the level of Cdc37 was approximately 10-fold above that of Harc. Furthermore, homo- and heterodimerization of Harc and Cdc37 was a dynamic process. Thus Harc could potentially contribute to the regulation of the Hsp90-mediated folding of Cdc37-dependent protein kinases into functional conformations via dimerization with Cdc37.
Collapse
Affiliation(s)
- John Roiniotis
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Victoria 3050, Australia
| | | | | | | |
Collapse
|
40
|
Prince T, Shao J, Matts RL, Hartson SD. Evidence for chaperone heterocomplexes containing both Hsp90 and VCP. Biochem Biophys Res Commun 2005; 331:1331-7. [PMID: 15883021 DOI: 10.1016/j.bbrc.2005.04.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Indexed: 12/27/2022]
Abstract
With assistance from co-chaperone partner proteins, Hsp90 plays an essential positive role in supporting the structure and function of numerous client proteins in vivo. Hsp90's co-chaperone partnerships are believed to regulate and/or target its function. Here we describe associations between Hsp90 chaperone machinery and another chaperone, the 97-kDa valosin-containing protein VCP. Coimmunoadsorption assays indicate that VCP occurs in one or more native heterocomplexes containing Hsp90 and the Hsp90 partner proteins Cdc37, FKBP52, and p23. Functional characterizations indicate that VCP is not an Hsp90 substrate, but rather demonstrate the biochemical hallmarks of an Hsp90 co-chaperone. Potential roles for a collaboration between for Hsp90 and VCP are discussed.
Collapse
Affiliation(s)
- Thomas Prince
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078-3035, USA
| | | | | | | |
Collapse
|
41
|
Abstract
The Hsp90 molecular chaperone system is involved in the activation of an important set of cell regulatory proteins, including many whose disregulation drives cancer. Recruitment of protein kinases to the Hsp90 system is mediated by the co-chaperone adaptor Cdc37 -- an essential protein whose overexpression is itself, oncogenic. Current structural, biochemical and biological studies of Cdc37 are beginning to unravel the nature of its interactions with Hsp90 and protein kinase clients, and implicate it as a key permissive factor in cell transformation by disregulated protein kinases. The central role of the Hsp90-Cdc37 chaperone complex makes it an important target for future anti-cancer drug development.
Collapse
Affiliation(s)
- Laurence H Pearl
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK.
| |
Collapse
|
42
|
Riggs DL, Cox MB, Cheung-Flynn J, Prapapanich V, Carrigan PE, Smith DF. Functional specificity of co-chaperone interactions with Hsp90 client proteins. Crit Rev Biochem Mol Biol 2005; 39:279-95. [PMID: 15763706 DOI: 10.1080/10409230490892513] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A wide array of proteins in signal transduction pathways depend on Hsp90 and other chaperone components for functional maturation, regulation, and stability. Among these Hsp90 client proteins are steroid receptors, members from other classes of transcription factors, and representatives of both serine/threonine and tyrosine kinase families. Typically, dynamic complexes form on the client protein, and these consist of Hsp90- plus bound co-chaperones that often have enzymatic activities. In addition to its direct influence on client folding, Hsp90 locally concentrates co-chaperone activity within the client complex, and dynamic exchange of co-chaperones on Hsp90 facilitates sampling of co-chaperone activities that may, or may not, act on the client protein. We are just beginning to understand the nature of biochemical and molecular interactions between co-chaperone and Hsp90-bound client. This review focuses on the differential effects of Hsp90 co-chaperones toward client protein function and on the specificity that allows co-chaperones to discriminate between even closely related clients.
Collapse
Affiliation(s)
- Daniel L Riggs
- Department of Biochemistry and Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, AZ 85259, USA
| | | | | | | | | | | |
Collapse
|
43
|
Yun BG, Matts RL. Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Exp Cell Res 2005; 307:212-23. [PMID: 15922741 DOI: 10.1016/j.yexcr.2005.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Revised: 02/25/2005] [Accepted: 03/01/2005] [Indexed: 12/27/2022]
Abstract
As derivatives of the Hsp90-inhibitor and tumoricidal agent geldanamycin move into phase II clinical trials, its potential for triggering adverse effects in non-tumor cell populations requires closer examination. In this report, the effect of geldanamycin on the differentiation and survival of C2C12 myoblasts was investigated. Treatment of differentiating C2C12 myoblasts with geldanamycin blocked myogenin expression, inhibited myotubule formation, and led to the depletion of three Hsp90-dependent protein kinases, ErbB2, Fyn, and Akt, and induction of apoptosis. ErbB2 levels declined rapidly, while Fyn and Akt levels decreased at a slower rate. Geldanamycin blocked the interaction of Hsp90 and its "kinase-specific" co-chaperone Cdc37 with Fyn, indicating that Fyn is an Hsp90-dependent kinase. Pulse-chase experiments indicated that geldanamycin caused newly synthesized Akt and Fyn to be degraded rapidly, but geldanamycin had little effect on the turnover rate of mature Fyn and Akt. Curiously, total cellular Src (c-Src) protein levels and the turnover rate of newly synthesized c-Src were unaffected by geldanamycin. While, geldanamycin had no effect on the levels of the putative Hsp90 client protein MyoD expressed in C2C12 cells, geldanamycin disrupted the interaction of Cdc37 with MyoD. Thus, inhibition of Hsp90 caused C2C12 cells to become depleted of multiple signal transduction proteins whose functions are essential for myoblast differentiation, and muscle cell survival, suggesting that geldanamycin derivatives may have the prospective of adversely affecting the physiology of certain sensitive muscle cell populations in vivo.
Collapse
Affiliation(s)
- Bo-Geon Yun
- Department of Biochemistry and Molecular Biology, 246 NRC, Oklahoma State University, Stillwater, OK 74078-3035, USA
| | | |
Collapse
|
44
|
Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 2004; 5:781-91. [PMID: 15459659 DOI: 10.1038/nrm1492] [Citation(s) in RCA: 842] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cells are faced with the task of folding thousands of different polypeptides into a wide range of conformations. For many proteins, the folding process requires the action of molecular chaperones. In the cytosol of prokaryotic and eukaryotic cells, molecular chaperones of different structural classes form a network of pathways that can handle substrate polypeptides from the point of initial synthesis on ribosomes to the final stages of folding.
Collapse
Affiliation(s)
- Jason C Young
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
45
|
Siligardi G, Hu B, Panaretou B, Piper PW, Pearl LH, Prodromou C. Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J Biol Chem 2004; 279:51989-98. [PMID: 15466438 DOI: 10.1074/jbc.m410562200] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP hydrolysis by the Hsp90 molecular chaperone requires a connected set of conformational switches triggered by ATP binding to the N-terminal domain in the Hsp90 dimer. Central to this is a segment of the structure, which closes like a "lid" over bound ATP, promoting N-terminal dimerization and assembly of a competent active site. Hsp90 mutants that influence these conformational switches have strong effects on ATPase activity. ATPase activity is specifically regulated by Hsp90 co-chaperones, which directly influence the conformational switches. Here we have analyzed the effect of Hsp90 mutations on binding (using isothermal titration calorimetry and difference circular dichroism) and ATPase regulation by the co-chaperones Aha1, Sti1 (Hop), and Sba1 (p23). The ability of Sti1 to bind Hsp90 and arrest its ATPase activity was not affected by any of the mutants screened. Sba1 bound in the presence of AMPPNP to wild-type and ATPase hyperactive mutants with similar affinity but only very weakly to hypoactive mutants despite their wild-type ATP affinity. Unexpectedly, in all cases Sba1 bound to Hsp90 with a 1:2 molar stoichiometry. Aha1 binding to mutants was similar to wild-type, but the -fold activation of their ATPase varied substantially between mutants. Analysis of complex formation with co-chaperone mixtures showed Aha1 and p50cdc37 able to bind Hsp90 simultaneously but without direct interaction. Sba1 and p50cdc37 bound independently to Hsp90-AMPPNP but not together. These data indicated that Sba1 and Aha1 regulate Hsp90 by influencing the conformational state of the "ATP lid" and consequent N-terminal dimerization, whereas Sti1 does not.
Collapse
Affiliation(s)
- Giuliano Siligardi
- Pharmaceutical Optical Spectroscopy Centre and Division of Life Sciences, Department of Pharmacy, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Prince T, Matts RL. Definition of Protein Kinase Sequence Motifs That Trigger High Affinity Binding of Hsp90 and Cdc37. J Biol Chem 2004; 279:39975-81. [PMID: 15258137 DOI: 10.1074/jbc.m406882200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp90 cooperates with its co-chaperone Cdc37 to provide obligatory support to numerous protein kinases involved in the regulation of cellular signal transduction pathways. In this report, the crystal structure of the Src family tyrosine kinase Lck was used to guide the creation of kinase constructs to determine features recognized by Hsp90 and its "kinase-specific" co-chaperone Cdc37. Two parameters were assayed: the ability and extent to which the constructs bound to Hsp90 and Cdc37, and the ability of the constructs to trigger salt-resistant high affinity complexes with Hsp90 and Cdc37 independent of the presence of molybdate. Although Hsp90 interacted with both the N-terminal and C-terminal lobes (NL and CL, respectively) of the catalytic domains of the kinases, the lobes themselves were not sufficient to trigger the high affinity binding of Hsp90. Only constructs containing a complete N- or C-terminal lobe and part of the adjacent lobe bound to Hsp90 and Cdc37 in salt-stable complexes independent of molybdate. The two minimum constructs that bound Hsp90 and Cdc37 contained the alpha-C-helix and the beta4- and beta5-strands of the NL through to end of the CL and the NL through to the alpha-E-helix and the amino acids that cap the helix. Cdc37 interacted with only the NL and minimally required the alpha-C-helix and beta4- and beta5-strands of this lobe of Lck. The results indicate that the high affinity binding activity of Hsp90 is triggered through its interaction with adjacent subdomain structures of kinase catalytic domains. Furthermore, the alpha-C-helix and part of its adjoining loop connection to the beta4-strand appear to be the primary determinants recognized by Cdc37.
Collapse
Affiliation(s)
- Thomas Prince
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA
| | | |
Collapse
|
47
|
Zhang W, Hirshberg M, McLaughlin SH, Lazar GA, Grossmann JG, Nielsen PR, Sobott F, Robinson CV, Jackson SE, Laue ED. Biochemical and structural studies of the interaction of Cdc37 with Hsp90. J Mol Biol 2004; 340:891-907. [PMID: 15223329 DOI: 10.1016/j.jmb.2004.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 05/07/2004] [Accepted: 05/11/2004] [Indexed: 11/18/2022]
Abstract
The heat shock protein Hsp90 plays a key, but poorly understood role in the folding, assembly and activation of a large number of signal transduction molecules, in particular kinases and steroid hormone receptors. In carrying out these functions Hsp90 hydrolyses ATP as it cycles between ADP- and ATP-bound forms, and this ATPase activity is regulated by the transient association with a variety of co-chaperones. Cdc37 is one such co-chaperone protein that also has a role in client protein recognition, in that it is required for Hsp90-dependent folding and activation of a particular group of protein kinases. These include the cyclin-dependent kinases (Cdk) 4/6 and Cdk9, Raf-1, Akt and many others. Here, the biochemical details of the interaction of human Hsp90 beta and Cdc37 have been characterised. Small angle X-ray scattering (SAXS) was then used to study the solution structure of Hsp90 and its complexes with Cdc37. The results suggest a model for the interaction of Cdc37 with Hsp90, whereby a Cdc37 dimer binds the two N-terminal domain/linker regions in an Hsp90 dimer, fixing them in a single conformation that is presumably suitable for client protein recognition.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Miyata Y, Nishida E. CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol Cell Biol 2004; 24:4065-74. [PMID: 15082798 PMCID: PMC387775 DOI: 10.1128/mcb.24.9.4065-4074.2004] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cdc37 is a kinase-associated molecular chaperone whose function in concert with Hsp90 is essential for many signaling protein kinases. Here, we report that mammalian Cdc37 is a pivotal substrate of CK2 (casein kinase II). Purified Cdc37 was phosphorylated in vitro on a conserved serine residue, Ser13, by CK2. Moreover, Ser13 was the unique phosphorylation site of Cdc37 in vivo. Crucially, the CK2 phosphorylation of Cdc37 on Ser13 was essential for the optimal binding activity of Cdc37 toward various kinases examined, including Raf1, Akt, Aurora-B, Cdk4, Src, MOK, MAK, and MRK. In addition, nonphosphorylatable mutants of Cdc37 significantly suppressed the association of Hsp90 with protein kinases, while the Hsp90-binding activity of the mutants was unchanged. The treatment of cells with a specific CK2 inhibitor suppressed the phosphorylation of Cdc37 in vivo and reduced the levels of Cdc37 target kinases. These results unveil a regulatory mechanism of Cdc37, identify a novel molecular link between CK2 and many crucial protein kinases via Cdc37, and reveal the molecular basis for the ability of CK2 to regulate pleiotropic cellular functions.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | | |
Collapse
|
49
|
Abstract
Cdc37 is a relatively poorly conserved and yet essential molecular chaperone. It has long been thought to function primarily as an accessory factor for Hsp90, notably directing Hsp90 to kinases as substrates. More recent discoveries challenge this simplistic view. Cdc37 client proteins other than kinases have now been found, and Cdc37 displays a variety of Hsp90-independent activities both in vitro and in vivo. It can function as a molecular chaperone by itself, interact with other Hsp90 cochaperones in the absence of Hsp90, and even support yeast growth and protein folding without its Hsp90-binding domain. Thus, for many substrates, there may be many alternative chaperone pathways involving Cdc37, Hsp90, or both.
Collapse
Affiliation(s)
- Morag MacLean
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | | |
Collapse
|
50
|
Lee P, Shabbir A, Cardozo C, Caplan AJ. Sti1 and Cdc37 can stabilize Hsp90 in chaperone complexes with a protein kinase. Mol Biol Cell 2004; 15:1785-92. [PMID: 14742721 PMCID: PMC379275 DOI: 10.1091/mbc.e03-07-0480] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hsp90 functions in association with several cochaperones for folding of protein kinases and transcription factors, although the relative contribution of each to the overall reaction is unknown. We assayed the role of nine different cochaperones in the activation of Ste11, a Saccharomyces cerevisiae mitogen-activated protein kinase kinase kinase. Studies on signaling via this protein kinase pathway was measured by alpha-factor-stimulated induction of FIG1 or lacZ, and repression of HHF1. Several cochaperone mutants tested had reduced FIG1 induction or HHF1 repression, although to differing extents. The greatest defects were in cpr7Delta, sse1Delta, and ydj1Delta mutants. Assays of Ste11 kinase activity revealed a pattern of defects in the cochaperone mutant strains that were similar to the gene expression studies. Overexpression of CDC37, a chaperone required for protein kinase folding, suppressed defects the sti1Delta mutant back to wild-type levels. CDC37 overexpression also restored stable Hsp90 binding to the Ste11 protein kinase domain in the sti1Delta mutant strain. These data suggest that Cdc37 and Sti1 have functional overlap in stabilizing Hsp90:client complexes. Finally, we show that Cns1 functions in MAP kinase signaling in association with Cpr7.
Collapse
Affiliation(s)
- Paul Lee
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|