1
|
Bacellar C, Kinschel D, Mancini GF, Ingle RA, Rouxel J, Cannelli O, Cirelli C, Knopp G, Szlachetko J, Lima FA, Menzi S, Pamfilidis G, Kubicek K, Khakhulin D, Gawelda W, Rodriguez-Fernandez A, Biednov M, Bressler C, Arrell CA, Johnson PJM, Milne CJ, Chergui M. Spin cascade and doming in ferric hemes: Femtosecond X-ray absorption and X-ray emission studies. Proc Natl Acad Sci U S A 2020; 117:21914-21920. [PMID: 32848065 PMCID: PMC7486745 DOI: 10.1073/pnas.2009490117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The structure-function relationship is at the heart of biology, and major protein deformations are correlated to specific functions. For ferrous heme proteins, doming is associated with the respiratory function in hemoglobin and myoglobins. Cytochrome c (Cyt c) has evolved to become an important electron-transfer protein in humans. In its ferrous form, it undergoes ligand release and doming upon photoexcitation, but its ferric form does not release the distal ligand, while the return to the ground state has been attributed to thermal relaxation. Here, by combining femtosecond Fe Kα and Kβ X-ray emission spectroscopy (XES) with Fe K-edge X-ray absorption near-edge structure (XANES), we demonstrate that the photocycle of ferric Cyt c is entirely due to a cascade among excited spin states of the iron ion, causing the ferric heme to undergo doming, which we identify. We also argue that this pattern is common to a wide diversity of ferric heme proteins, raising the question of the biological relevance of doming in such proteins.
Collapse
Affiliation(s)
- Camila Bacellar
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Dominik Kinschel
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giulia F Mancini
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Rebecca A Ingle
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jérémy Rouxel
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Oliviero Cannelli
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Claudio Cirelli
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Gregor Knopp
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
| | | | - Samuel Menzi
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Georgios Pamfilidis
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | | | | | - Wojciech Gawelda
- European X-ray Free Electron Laser, D-22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | | | - Mykola Biednov
- European X-ray Free Electron Laser, D-22869 Schenefeld, Germany
| | | | - Christopher A Arrell
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Philip J M Johnson
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Christopher J Milne
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
2
|
Lima FA, Penfold TJ, van der Veen RM, Reinhard M, Abela R, Tavernelli I, Rothlisberger U, Benfatto M, Milne CJ, Chergui M. Probing the electronic and geometric structure of ferric and ferrous myoglobins in physiological solutions by Fe K-edge absorption spectroscopy. Phys Chem Chem Phys 2014; 16:1617-31. [PMID: 24317683 DOI: 10.1039/c3cp53683a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an iron K-edge X-ray absorption study of carboxymyoglobin (MbCO), nitrosylmyoglobin (MbNO), oxymyoglobin (MbO2), cyanomyoglobin (MbCN), aquomet myoglobin (metMb) and unligated myoglobin (deoxyMb) in physiological media. The analysis of the XANES region is performed using the full-multiple scattering formalism, implemented within the MXAN package. This reveals trends within the heme structure, absent from previous crystallographic and X-ray absorption analysis. In particular, the iron-nitrogen bond lengths in the porphyrin ring converge to a common value of about 2 Å, except for deoxyMb whose bigger value is due to the doming of the heme. The trends of the Fe-Nε (His93) bond length is found to be consistent with the effect of ligand binding to the iron, with the exception of MbNO, which is explained in terms of the repulsive trans effect. We derive a high resolution description of the relative geometry of the ligands with respect to the heme and quantify the magnitude of the heme doming in the deoxyMb form. Finally, time-dependent density functional theory is used to simulate the pre-edge spectra and is found to be in good agreement with the experiment. The XAS spectra typically exhibit one pre-edge feature which arises from transitions into the unoccupied dσ and dπ - πligand* orbitals. 1s → dπ transitions contribute weakly for MbO2, metMb and deoxyMb. However, despite this strong Fe d contribution these transitions are found to be dominated by the dipole (1s → 4p) moment due to the low symmetry of the heme environment.
Collapse
Affiliation(s)
- Frederico A Lima
- École Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, CH, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Affiliation(s)
- Katarzyna Swiderek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology , Zeromskiego 116, 90-924 Lodz, Poland
| | | |
Collapse
|
4
|
Cryoradiolysis and cryospectroscopy for studies of heme-oxygen intermediates in cytochromes p450. Methods Mol Biol 2012; 875:375-91. [PMID: 22573452 DOI: 10.1007/978-1-61779-806-1_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cryogenic radiolytic reduction is one of the most straightforward and convenient methods of generation and stabilization of reactive iron-oxygen intermediates for mechanistic studies in chemistry and biochemistry. The method is based on one-electron reduction of the precursor complex in frozen solution via exposure to the ionizing radiation at cryogenic temperatures. Such approach allows for accumulation of the fleeting reactive complexes which otherwise could not be generated at sufficient amount for structural and mechanistic studies. Application of this method allowed for characterizing of peroxo-ferric and hydroperoxo-ferric intermediates, which are common for the oxygen activation mechanism in cytochromes P450, heme oxygenases, and nitric oxide synthases, as well as for the peroxide metabolism by peroxidases and catalases.
Collapse
|
5
|
Probing the local electronic and geometric properties of the heme iron center in a H-NOX domain. J Inorg Biochem 2011; 105:784-92. [PMID: 21497576 DOI: 10.1016/j.jinorgbio.2011.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 11/23/2022]
Abstract
Heme-Nitric oxide and/or OXygen binding (H-NOX) proteins are a family of diatomic gas binding hemoproteins that have attracted intense research interest. Here we employ X-ray absorption near-edge structure (XANES) spectroscopy to study the nitric oxide (NO) binding site of H-NOX. This is the first time this technique has been utilized to examine the NO/H-NOX signaling pathway. XANES spectra of wildtype and a point mutant (proline 115 to alanine, P115A) of the H-NOX domain from Thermoanaerobacter tengcongensis (Tt H-NOX) were obtained and analyzed for ferrous and ferric complexes of the protein. This work provides specific structural characterization of the solution state of several Tt H-NOX ferrous complexes (-unligated, -NO, and -CO) that were previously unavailable. Our iron K-edges indicate effective charge on the iron center in the various complexes and report on the electronic environment of heme iron. We analyzed the ligand field indicator ratio (LFIR), which is extracted from XANES spectra, for each complex, providing an understanding of ligand field strength, spin state of the central iron, movement of the iron atom upon ligation, and ligand binding properties. In particular, our LFIRs indicate that the heme iron is dramatically displaced towards the distal pocket during ligand binding. Based on these results, we propose that iron displacement towards the distal heme pocket is an essential step in signal initiation in H-NOX proteins. This provides a mechanistic link between ligand binding and the changes in heme and protein conformation that have been observed for H-NOX family members during signaling.
Collapse
|
6
|
Aziz EF, Ottosson N, Bonhommeau S, Bergmann N, Eberhardt W, Chergui M. Probing the electronic structure of the hemoglobin active center in physiological solutions. PHYSICAL REVIEW LETTERS 2009; 102:068103. [PMID: 19257637 DOI: 10.1103/physrevlett.102.068103] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Indexed: 05/27/2023]
Abstract
Soft-x-ray absorption spectroscopy at the L_{2,3} edge of the iron center in bovine hemoglobin and hemin under physiological conditions is reported for the first time. Spectra of the same compounds in solid form are presented for comparison. Striking differences in the electronic structure of the metalloporphyrin are observed between the liquid and solid compounds. We unambiguously show that hemoglobin and hemin are in a high-spin ferric state in solution, and that the 2p spin-orbit coupling decreases for hemin compared to the hemoglobin, while this is not the case in solids. The spectra were simulated using ligand field multiplet theory, in good agreement with the experiment, allowing quantification of the amount of charge transfer between the porphyrin and Fe3+ ion in hemoglobin and in hemin.
Collapse
Affiliation(s)
- Emad F Aziz
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Mak PJ, Kincaid JR. Resonance Raman spectroscopic studies of hydroperoxo derivatives of cobalt-substituted myoglobin. J Inorg Biochem 2008; 102:1952-7. [PMID: 18723225 DOI: 10.1016/j.jinorgbio.2008.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/11/2008] [Accepted: 07/14/2008] [Indexed: 11/15/2022]
Abstract
Recent progress in generating and stabilizing reactive heme protein enzymatic intermediates by cryoradiolytic reduction has prompted application of a range of spectroscopic approaches to effectively interrogate these species. The impressive potential of resonance Raman spectroscopy for characterizing such samples has been recently demonstrated in a number of studies of peroxo- and hydroperoxo-intermediates. While it is anticipated that this approach can be productively applied to the wide range of heme proteins whose reaction cycles naturally involve these peroxo- and hydroperoxo-intermediates, one limitation that sometimes arises is the lack of enhancement of the key intraligand nu(O-O) stretching mode in the native systems. The present work was undertaken to explore the utility of cobalt substitution to enhance both the nu(Co-O) and nu(O-O) modes of the CoOOH fragments of hydroperoxo forms of heme proteins bearing a trans-axial histidine linkage. Thus, having recently completed RR studies of hydroperoxo myoglobin, attention is now turned to its cobalt-substituted analogue. Spectra are acquired for samples prepared with (16)O(2) and (18)O(2) to reveal the nu(M-O) and nu(O-O) modes, the latter indeed being observed only for the cobalt-substituted proteins. In addition, spectra of samples prepared in deuterated solvents were also acquired, providing definitive evidence for the presence of the hydroperoxo-species.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Marquette University, Milwaukee, WI 53233, USA
| | | |
Collapse
|
8
|
Nakayama S, Tani F, Matsu-ura M, Naruta Y. Cobalt “Single-coronet” Porphyrin Bearing Hydroxyl Groups in Its O2Binding Site as a New Model for Myoglobin and Hemoglobin: Observation of Unusually Low Frequency of ν(O-O) in Resonance Raman Spectrum. CHEM LETT 2002. [DOI: 10.1246/cl.2002.496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Tetreau C, Novikov E, Tourbez M, Lavalette D. Kinetic evidence for three photolyzable taxonomic conformational substates in oxymyoglobin. Biophys J 2002; 82:2148-55. [PMID: 11916870 PMCID: PMC1302008 DOI: 10.1016/s0006-3495(02)75561-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The kinetics of oxygen geminate binding with the taxonomic substates of MbO2 are reported. The maximum entropy method was used to analyze the rebinding kinetics of MbCO and MbO2 monitored in the Soret. The resulting rate distributions were found to consist of a small number of overlapping bands. A global parametric fit of a series of rate distributions recorded at several temperatures was performed using a Gaussian basis set to resolve the individual enthalpy distributions P(H). This approach was first validated by showing that the well-documented taxonomic substates of MbCO could be recovered. The method was then applied to MbO2. Three taxonomic substates were identified at pH 4.8, whereas only two of them contribute to oxygen geminate rebinding at pH 7.0. These findings show that, similarly to MbCO, MbO2 also exists as three photolyzable and kinetically different taxonomic substates and suggest reconsidering the issue of the photolysis quantum yield of MbO2.
Collapse
Affiliation(s)
- Catherine Tetreau
- Institut Curie-Recherche, INSERM U350, Bâtiment 112, Centre Universitaire, 91405 Orsay, France
| | | | | | | |
Collapse
|
10
|
Vojtechovský J, Chu K, Berendzen J, Sweet RM, Schlichting I. Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Biophys J 1999; 77:2153-74. [PMID: 10512835 PMCID: PMC1300496 DOI: 10.1016/s0006-3495(99)77056-6] [Citation(s) in RCA: 428] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We have used x-ray crystallography to determine the structures of sperm whale myoglobin (Mb) in four different ligation states (unligated, ferric aquomet, oxygenated, and carbonmonoxygenated) to a resolution of better than 1.2 A. Data collection and analysis were performed in as much the same way as possible to reduce model bias in differences between structures. The structural differences among the ligation states are much smaller than previously estimated, with differences of <0.25 A root-mean-square deviation among all atoms. One structural parameter previously thought to vary among the ligation states, the proximal histidine (His-93) azimuthal angle, is nearly identical in all the ferrous complexes, although the tilt of the proximal histidine is different in the unligated form. There are significant differences, however, in the heme geometry, in the position of the heme in the pocket, and in the distal histidine (His-64) conformations. In the CO complex the majority conformation of ligand is at an angle of 18 +/- 3 degrees with respect to the heme plane, with a geometry similar to that seen in encumbered model compounds; this angle is significantly smaller than reported previously by crystallographic studies on monoclinic Mb crystals, but still significantly larger than observed by photoselection. The distal histidine in unligated Mb and in the dioxygenated complex is best described as having two conformations. Two similar conformations are observed in MbCO, in addition to another conformation that has been seen previously in low-pH structures where His-64 is doubly protonated. We suggest that these conformations of the distal histidine correspond to the different conformational substates of MbCO and MbO(2) seen in vibrational spectra. Full-matrix refinement provides uncertainty estimates of important structural parameters. Anisotropic refinement yields information about correlated disorder of atoms; we find that the proximal (F) helix and heme move approximately as rigid bodies, but that the distal (E) helix does not.
Collapse
Affiliation(s)
- J Vojtechovský
- Max Planck Institut für Molekulare Physiologie, Abteilung Physikalische Biochemie, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
11
|
Wang H, Peng G, Miller LM, Scheuring EM, George SJ, Chance MR, Cramer SP. Iron L-Edge X-ray Absorption Spectroscopy of Myoglobin Complexes and Photolysis Products. J Am Chem Soc 1997. [DOI: 10.1021/ja961446b] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongxin Wang
- Contribution from the Energy and Environment Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Applied Science, University of California, Davis, California 95616, and Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Gang Peng
- Contribution from the Energy and Environment Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Applied Science, University of California, Davis, California 95616, and Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Lisa M. Miller
- Contribution from the Energy and Environment Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Applied Science, University of California, Davis, California 95616, and Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Eva M. Scheuring
- Contribution from the Energy and Environment Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Applied Science, University of California, Davis, California 95616, and Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - S. J. George
- Contribution from the Energy and Environment Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Applied Science, University of California, Davis, California 95616, and Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Mark R. Chance
- Contribution from the Energy and Environment Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Applied Science, University of California, Davis, California 95616, and Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Stephen P. Cramer
- Contribution from the Energy and Environment Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Applied Science, University of California, Davis, California 95616, and Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| |
Collapse
|
12
|
Proniewicz LM, Kincaid JR. Vibrational coupling effects in the resonance Raman spectra of O2 adducts of heme proteins and model compounds. Coord Chem Rev 1997. [DOI: 10.1016/s0010-8545(97)90133-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Chance MR, Miller LM, Fischetti RF, Scheuring E, Huang WX, Sclavi B, Hai Y, Sullivan M. Global mapping of structural solutions provided by the extended X-ray absorption fine structure ab initio code FEFF 6.01: structure of the cryogenic photoproduct of the myoglobin-carbon monoxide complex. Biochemistry 1996; 35:9014-23. [PMID: 8703904 DOI: 10.1021/bi9605503] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
X-ray methods based on synchrotron technology have the promise of providing time-resolved structural data based on the high flux and brightness of the X-ray beams. One of the most closely examined problems in this area of time-resolved structure determination has been the examination of intermediates in ligand binding to myoglobin. Recent crystallographic experiments using synchrotron radiation have identified the protein tertiary and heme structural changes that occur upon photolysis of the myoglobin--carbon monoxide complex at cryogenic temperatures [Schlichting, I., Berendzen, J., Phillips, G., & Sweet, R. (1994) Nature 371, 808--812]. However, the precision of protein crystallographic data (approximately 0.2 A) is insufficient to provide precise metrical details of the iron--ligand bond lengths. Since bond length changes on this scale can trigger reactivity changes of several orders of magnitude, such detail is critical to a full understanding of metalloprotein structure--function relationships. Extended X-ray absorption fine structure (EXAFS) spectroscopy has the potential for analyzing bond distances to a precision of 0.02 A but is hampered by its relative insensitivity to the geometry of the backscattering atoms. Thus, it is often unable to provide a unique solution to the structure without ancillary structural information. We have developed a suite of computer programs that incorporate this ancillary structural information and compute the expected experimental spectra for a wide ranging series of Cartesian coordinate sets (global mapping). The programs systematically increment the distance of the metal to various coordinating ligands (along with their associated higher shells). Then, utilizing the ab initio EXAFS code FEFF 6.01, simulated spectra are generated and compared to the actual experimental spectra, and the differences are computed. Finally, the results for hundreds of simulations can be displayed (and compared) in a single plot. The power of this approach is demonstrated in the examination of high signal to noise EXAFS data from a photolyzed solution sample of the myoglobin--carbon monoxide complex at 10 K. Evaluation of these data using our global mapping procedures placed the iron to pyrrole nitrogen average distances close to the value for deoxymyoglobin (2.05 +/- 0.01 A), while the distance from iron to the proximal histidine nitrogen is seen to be 2.20 +/- 0.04 A. It is also shown that one cannot uniquely position the CO ligand on the basis of the EXAFS data alone, as a number of reasonable minima (from the perspective of the EXAFS) are observed. This provides a reasonable explanation for the multiplicity of solutions that have been previously reported. The results presented here are seen to be in complete agreement with the crystallographic results of Schlichting et al. (1994) within the respective errors of the two techniques; however, the extended X-ray absorption fine structure data allow the iron--ligand bond lengths to be precisely defined. An examination of the available spectroscopic data, including EXAFS, shows that the crystallographic results of Schlichting et al. (1994) are highly relevant to the physiological solution state and must be taken into account in any attempt to understand the incomplete relaxation process of the heme iron for the Mb*CO photoproduct at low temperature.
Collapse
Affiliation(s)
- M R Chance
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
McKelvy ML, Britt TR, Davis BL, Gillie JK, Lentz LA, Leugers A, Nyquist RA, Putzig CL. Infrared Spectroscopy. Anal Chem 1996. [DOI: 10.1021/a1960003c] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marianne L. McKelvy
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - Thomas R. Britt
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - Bradley L. Davis
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - J. Kevin Gillie
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - L. Alice Lentz
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - Anne Leugers
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - Richard A. Nyquist
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| | - Curtis L. Putzig
- Analytical Sciences Laboratory, The Dow Chemical Company, Michigan Division, Midland, Michigan 48667
| |
Collapse
|
15
|
Miller LM, Patel M, Chance MR. Identification of Conformational Substates in Oxymyoglobin through the pH-Dependence of the Low-Temperature Photoproduct Yield. J Am Chem Soc 1996. [DOI: 10.1021/ja952534j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lisa M. Miller
- Contribution from the Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Mehul Patel
- Contribution from the Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Mark R. Chance
- Contribution from the Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| |
Collapse
|