1
|
McQuaid K, Pipier A, Cardin C, Monchaud D. Interactions of small molecules with DNA junctions. Nucleic Acids Res 2022; 50:12636-12656. [PMID: 36382400 PMCID: PMC9825177 DOI: 10.1093/nar/gkac1043] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
The four natural DNA bases (A, T, G and C) associate in base pairs (A=T and G≡C), allowing the attached DNA strands to assemble into the canonical double helix of DNA (or duplex-DNA, also known as B-DNA). The intrinsic supramolecular properties of nucleobases make other associations possible (such as base triplets or quartets), which thus translates into a diversity of DNA structures beyond B-DNA. To date, the alphabet of DNA structures is ripe with approximately 20 letters (from A- to Z-DNA); however, only a few of them are being considered as key players in cell biology and, by extension, valuable targets for chemical biology intervention. In the present review, we summarise what is known about alternative DNA structures (what are they? When, where and how do they fold?) and proceed to discuss further about those considered nowadays as valuable therapeutic targets. We discuss in more detail the molecular tools (ligands) that have been recently developed to target these structures, particularly the three- and four-way DNA junctions, in order to intervene in the biological processes where they are involved. This new and stimulating chemical biology playground allows for devising innovative strategies to fight against genetic diseases.
Collapse
Affiliation(s)
- Kane T McQuaid
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Angélique Pipier
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - David Monchaud
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| |
Collapse
|
2
|
Nagano M, Nakano S, Yoshimoto K. Evaluation of G-quartet-forming deoxyguanines in antiparallel G-quadruplexes using optical spectroscopy and deoxyguanine-to-deoxythymidine scanning. Anal Biochem 2022; 658:114903. [PMID: 36162449 DOI: 10.1016/j.ab.2022.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Due to the dynamic conformations of G-quadruplex structures (G4), determining the guanines that form G4 in a guanine-rich sequence is elusive. Here, we report a method for identifying deoxyguanines (dGs) forming antiparallel G4 by optical spectroscopy. The method, referred to as dG-to-deoxythymidine (dT) scanning, compares the spectra between a wild type and a single nucleobase dG-to-dT mutant at all dG positions. The most strongly involved dGs to form antiparallel G4 in the two model sequences were estimated using dG-to-dT scanning by circular dichroism (CD) and UV-Vis melting curve. This simple and robust method will facilitate understanding de novo antiparallel G4.
Collapse
Affiliation(s)
- Masanobu Nagano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Sosuke Nakano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
3
|
Zhao L, Ahmed F, Xiong H. An excimer ‘ON OFF’ switch based on telomeric G-quadruplex and rGO for trace thrombin detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Carvalho J, Cruz C. Forster resonance energy transfer for studying nucleic acids denaturation: A chemical and biological sciences laboratory experiment. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 48:329-336. [PMID: 32268010 DOI: 10.1002/bmb.21353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/25/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The Förster resonance energy transfer (FRET) melting assay intends to evaluate the unfolding, denaturation process of DNA secondary structures, and its stabilization using compounds known as DNA binders, some of which are highly specific for G-quadruplex DNAs versus duplex DNAs. First, students determined the melting temperature (Tm ) of DNA sequences double labeled with 5'-FAM (fluorescein) and 3'-TAMRA (tetramethylrhodamine) in the absence of DNA binders. Second, they determined the melting temperature of the DNAs in the presence of DNA binders by monitoring fluorescence. After completing this experiment, students understood that this method allows a semiquantitative analysis to test a variety of DNA binders against DNA secondary structures, and it can be used to rapidly identify the most promising drug candidates in the drug development stages at the basic research level.
Collapse
Affiliation(s)
- Josué Carvalho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
5
|
Parasitic Protozoa: Unusual Roles for G-Quadruplexes in Early-Diverging Eukaryotes. Molecules 2019; 24:molecules24071339. [PMID: 30959737 PMCID: PMC6480360 DOI: 10.3390/molecules24071339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022] Open
Abstract
Guanine-quadruplex (G4) motifs, at both the DNA and RNA levels, have assumed an important place in our understanding of the biology of eukaryotes, bacteria and viruses. However, it is generally little known that their very first description, as well as the foundational work on G4s, was performed on protozoans: unicellular life forms that are often parasitic. In this review, we provide a historical perspective on the discovery of G4s, intertwined with their biological significance across the protozoan kingdom. This is a history in three parts: first, a period of discovery including the first characterisation of a G4 motif at the DNA level in ciliates (environmental protozoa); second, a period less dense in publications concerning protozoa, during which DNA G4s were discovered in both humans and viruses; and third, a period of renewed interest in protozoa, including more mechanistic work in ciliates but also in pathogenic protozoa. This last period has opened an exciting prospect of finding new anti-parasitic drugs to interfere with parasite biology, thus adding new compounds to the therapeutic arsenal.
Collapse
|
6
|
Kankia B. Monomolecular tetrahelix of polyguanine with a strictly defined folding pattern. Sci Rep 2018; 8:10115. [PMID: 29973629 PMCID: PMC6031693 DOI: 10.1038/s41598-018-28572-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/25/2018] [Indexed: 11/10/2022] Open
Abstract
The G3TG3TG3TG3 (G3T) sequence folds into a monomolecular quadruplex with all-parallel G3 segments connected to each other by chain-reversal loops. The homopolymer consisting of n number of G3T domains directly conjugated to each other folds into an uninterrupted and unusually stable polymer, tetrahelical monomolecular DNA (tmDNA). It was demonstrated that the tmDNA architecture has strong potential in nanotechnologies as highly programmable building material, high affinity coupler and the driving force for endergonic reactions. Here, we explore capability of analogous DNA sequences (i.e., monomolecular quadruplexes with G2 or G4 segments) to construct tmDNA architecture. The study demonstrates that tmDNA can have only one building pattern based on a quadruplex domain with three G-tetrads and single-nucleotide loops, G3N (N = G, A, C and T); all other domains demonstrate antiparallel topologies unsuitable for tmDNA. The present study also suggests that polyguanine is capable of tmDNA formation with strictly defined building pattern; G3 segments connected to each other by chain-reversal G-loops. These findings can have significant impact on (i) DNA nanotechnologies; (ii) structure prediction of G-rich sequences of genome; and (iii) modeling of abiogenesis.
Collapse
Affiliation(s)
- Besik Kankia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Yu Q, Wu Y, Liu Z, Lei S, Li G, Ye B. Novel electrochemical biosensor based on cationic peptide modified hemin/G-quadruples enhanced peroxidase-like activity. Biosens Bioelectron 2018; 107:178-183. [PMID: 29455028 DOI: 10.1016/j.bios.2018.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022]
Abstract
This work designed an artificial substrate peptide to synthesize peptide-hemin/G-quadruplex (peptide-DNAzyme) conjugates. In addition to enhancing catalytic activity of hemin/G-quadruplex, the peptide could also be induced and cleaved by prostate specific antigen (PSA). It was the first report on peptide-DNAzyme conjugates in application of the peptide biosensor. The polyethyleneimine-reduced graphene oxide@hollow platinum nanotubes (PEI-rGO@PtNTs) nanocomposites were cast on the glassy carbon electrode in order to form the interface of biocompatibility and huge surface area for bioprobes immobilization. In absence of PSA, the peptide-DNAzyme conjugates retained intact on the surface of the electrode to produce a strong response signal. But in presence of PSA, the peptide-DNAzyme conjugates were destroyed to release electron mediators, resulting in dramatical decrease of the electrochemicl signal. Therefore, the method had high sensitivity and super selectivity with the limit of detection calculated as 2.0 fg/mL. Furthermore, the strategy would be promising to apply for other proteases by transforming the synthetic peptide module of target.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongmei Wu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Sheng Lei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
8
|
Lomidze L, Kelley S, Gogichaishvili S, Metreveli N, Musier-Forsyth K, Kankia B. Sr(2+) induces unusually stable d(GGGTGGGTGGGTGGG) quadruplex dimers. Biopolymers 2017; 105:811-8. [PMID: 27416320 DOI: 10.1002/bip.22916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 02/03/2023]
Abstract
Guanine-rich sequences are able to form quadruplexes consisting of G-quartet structural units. Quadruplexes play an important role in the regulation of gene expression and have therapeutic and biotechnological potential. The HIV-1 integrase inhibitor, (GGGT)4 , and its variants demonstrate unusually high thermal stability. This property has been exploited in the use of quadruplex formation to drive various endergonic reactions of nucleic acids such as isothermal DNA amplification. Quadruplex stability is mainly determined by cations, which specifically bind into the inner core of the structure. In the present work, we report a systematic study of a variant of the HIV-1 integrase inhibitor, GGGTGGGTGGGTGGG (G3T), in the presence of alkali and alkaline-earth cations. We show that Sr(2+) -G3T is characterized by the highest thermal stability and that quadruplex formation requires only one Sr(2+) ion that binds with low micromolar affinity. These concentrations are sufficient to drive robust isothermal quadruplex priming DNA amplification reaction. The Sr(2+) -quadruplexes are also able to form unusually stable dimers through end-to-end stacking. The multimerization can be induced by a combination of quadruplex forming cations (i.e., K(+) or Sr(2+) ) and non-specific Mg(2+) .
Collapse
Affiliation(s)
- Levan Lomidze
- Institute of Biophysics, Ilia State University, Tbilisi, 0162, Republic of Georgia
| | - Sean Kelley
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| | - Shota Gogichaishvili
- Institute of Biophysics, Ilia State University, Tbilisi, 0162, Republic of Georgia
| | - Nunu Metreveli
- Institute of Biophysics, Ilia State University, Tbilisi, 0162, Republic of Georgia
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| | - Besik Kankia
- Institute of Biophysics, Ilia State University, Tbilisi, 0162, Republic of Georgia.,Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
9
|
Liu Y, Cheng D, Ge M, Lin W. The Truncated Human Telomeric Sequence forms a Hybrid-Type Intramolecular Mixed Parallel/antiparallel G-quadruplex Structure in K(+) Solution. Chem Biol Drug Des 2016; 88:122-8. [PMID: 26867976 DOI: 10.1111/cbdd.12740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/03/2015] [Accepted: 01/16/2016] [Indexed: 12/24/2022]
Abstract
In 80-90% tumor cells, telomerase becomes active and stabilizes the length of telomeres. The formation and stabilization of G-quadruplexes formed from human telomeric sequences have been proved able to inhibit the activity of telomerase, thus human telomeric G-quadruplex structure has become a potential target for the development of cancer therapy. Hence, structure of G-quadruplex formed in K(+) solution has been an attractive hotspot for further studies. However, the exact structure of human telomeric G-quadruplex in K(+) is extremely controversial, this study provides information for the understanding of different G-quadruplexes. Here, we report that 22nt and 24nt human telomeric sequences form unimolecular hybrid-type mixed parallel/antiparallel G-quadruplex in K(+) solution elucidated utilizing Circular Dichroism, Differential Scanning Calorimetry, and gel electrophoresis. Moreover, individual configuration of these two sequences was speculated in this study. The detailed structure information of the G-quadruplex formed under physiologically relevant condition is necessary for structure-based rational drug design.
Collapse
Affiliation(s)
- Yuxia Liu
- Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jialuo Road, Shanghai, 201800, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Min Ge
- Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jialuo Road, Shanghai, 201800, China
| | - Weizhen Lin
- Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jialuo Road, Shanghai, 201800, China
| |
Collapse
|
10
|
Gogichaishvili S, Johnson J, Gvarjaladze D, Lomidze L, Kankia B. Isothermal amplification of DNA using quadruplex primers with fluorescent pteridine base analogue 3-methyl isoxanthopterin. Biopolymers 2016; 101:583-90. [PMID: 24122726 DOI: 10.1002/bip.22421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/24/2013] [Indexed: 11/08/2022]
Abstract
We previously developed a method, known as quadruplex priming amplification (QPA), which greatly simplifies DNA amplification and quantification assays. QPA employs specific primers based on GGGTGGGTGGGTGGG (G3T) sequence, which upon polymerase elongation spontaneously dissociates from the target and folds into a stable quadruplex. Fluorescent nucleotide analogs, when incorporated into these primers, emit light upon quadruplex formation and permit simple, specific, and sensitive quantification without the attachment of probe molecules. Here, we studied optical [fluorescence and circular dichroism (CD)] and thermodynamic properties of the G3T sequence and variants incorporating 3-methylisoxanthopterin (3MI), a highly fluorescent nucleotide analog suitable for QPA. CD studies demonstrate that the incorporation of 3MI does not change the overall tertiary structure of G3T; however, thermal unfolding experiments revealed that it significantly destabilizes the quadruplex. Enzymatic studies revealed that Taq and Bst are practically unable to incorporate any nucleotides opposite to template 3MI. Based on this knowledge, we designed QPA assays with truncated targets that demonstrate efficient amplification around 55°C. Overall, these studies suggest that 3MI-based QPA is a useful assay for DNA amplification and detection.
Collapse
Affiliation(s)
- Shota Gogichaishvili
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210; Andronikashvili Institute of Physics, Tbilisi, 0177, Republic of Georgia
| | | | | | | | | |
Collapse
|
11
|
Kejnovská I, Vorlíčková M, Brázdová M, Sagi J. Stability of human telomere quadruplexes at high DNA concentrations. Biopolymers 2016; 101:428-38. [PMID: 24037480 DOI: 10.1002/bip.22400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 01/22/2023]
Abstract
For mimicking macromolecular crowding of DNA quadruplexes, various crowding agents have been used, typically PEG, with quadruplexes of micromolar strand concentrations. Thermal and thermodynamic stabilities of these quadruplexes increased with the concentration of the agents, the rise depended on the crowder used. A different phenomenon was observed, and is presented in this article, when the crowder was the quadruplex itself. With DNA strand concentrations ranging from 3 µM to 9 mM, the thermostability did not change up to ∼2 mM, above which it increased, indicating that the unfolding quadruplex units were not monomolecular above ∼2 mM. The results are explained by self-association of the G-quadruplexes above this concentration. The ΔG(°) 37 values, evaluated only below 2 mM, did not become more negative, as with the non-DNA crowders, instead, slightly increased. Folding topology changed from antiparallel to hybrid above 2 mM, and then to parallel quadruplexes at high, 6-9 mM strand concentrations. In this range, the concentration of the DNA phosphate anions approached the concentration of the K(+) counterions used. Volume exclusion is assumed to promote the topological changes of quadruplexes toward the parallel, and the decreased screening of anions could affect their stability.
Collapse
Affiliation(s)
- Iva Kejnovská
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135,, CZ-612 65, Brno, Czech Republic
| | | | | | | |
Collapse
|
12
|
König SLB, Evans AC, Huppert JL. Seven essential questions on G-quadruplexes. Biomol Concepts 2015; 1:197-213. [PMID: 25961997 DOI: 10.1515/bmc.2010.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The helical duplex architecture of DNA was discovered by Francis Crick and James Watson in 1951 and is well known and understood. However, nucleic acids can also adopt alternative structural conformations that are less familiar, although no less biologically relevant, such as the G-quadruplex. G-quadruplexes continue to be the subject of a rapidly expanding area of research, owing to their significant potential as therapeutic targets and their unique biophysical properties. This review begins by focusing on G-quadruplex structure, elucidating the intermolecular and intramolecular interactions underlying its formation and highlighting several substructural variants. A variety of methods used to characterize these structures are also outlined. The current state of G-quadruplex research is then addressed by proffering seven pertinent questions for discussion. This review concludes with an overview of possible directions for future research trajectories in this exciting and relevant field.
Collapse
|
13
|
Pan L, Huang Y, Wen C, Zhao S. Label-free fluorescence probe based on structure-switching aptamer for the detection of interferon gamma. Analyst 2014; 138:6811-6. [PMID: 24058925 DOI: 10.1039/c3an01275a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel label-free fluorescence probe based on structure-switching aptamer was developed for the detection of interferon-gamma (IFN-γ). In this work, a single stranded DNA (ssDNA) with G-rich sequence (aptamer) was folded into secondary G-quadruplex structures in the presence of Na(+) and Mg(2+), thiazole orange (TO) was then intercalated into the G-quadruplex structures, resulting in a high fluorescence emission. The target combined with its aptamer, disrupts G-quadruplex structure and releases TO, resulting in a reduction of fluorescence. Using IFN-γ as the model target, the proposed fluorescence probe shows a linear range from 3.0 to 120 nM with a detection limit of 2.0 nM. The proposed strategy avoids complicated covalent modifications or chemical labeling, and thus offers advantages of simplicity and cost efficiency.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, 541004, China.
| | | | | | | |
Collapse
|
14
|
Zheng B, Cheng S, Dong H, Liang H, Liu J, Lam MHW. Label Free Determination of Potassium Ions Using Crystal Violet and Thrombin-Binding Aptamer. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.883520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
König SLB, Huppert JL, Sigel RKO, Evans AC. Distance-dependent duplex DNA destabilization proximal to G-quadruplex/i-motif sequences. Nucleic Acids Res 2013; 41:7453-61. [PMID: 23771141 PMCID: PMC3753619 DOI: 10.1093/nar/gkt476] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 05/04/2013] [Accepted: 05/08/2013] [Indexed: 01/29/2023] Open
Abstract
G-quadruplexes and i-motifs are complementary examples of non-canonical nucleic acid substructure conformations. G-quadruplex thermodynamic stability has been extensively studied for a variety of base sequences, but the degree of duplex destabilization that adjacent quadruplex structure formation can cause has yet to be fully addressed. Stable in vivo formation of these alternative nucleic acid structures is likely to be highly dependent on whether sufficient spacing exists between neighbouring duplex- and quadruplex-/i-motif-forming regions to accommodate quadruplexes or i-motifs without disrupting duplex stability. Prediction of putative G-quadruplex-forming regions is likely to be assisted by further understanding of what distance (number of base pairs) is required for duplexes to remain stable as quadruplexes or i-motifs form. Using oligonucleotide constructs derived from precedented G-quadruplexes and i-motif-forming bcl-2 P1 promoter region, initial biophysical stability studies indicate that the formation of G-quadruplex and i-motif conformations do destabilize proximal duplex regions. The undermining effect that quadruplex formation can have on duplex stability is mitigated with increased distance from the duplex region: a spacing of five base pairs or more is sufficient to maintain duplex stability proximal to predicted quadruplex/i-motif-forming regions.
Collapse
Affiliation(s)
- Sebastian L. B. König
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK, Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and University of Nice-Sophia Antipolis, UMR 7272 CNRS, Institut de 40 Chimie de Nice, 28 Avenue Valrose, 06108 Nice, France
| | - Julian L. Huppert
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK, Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and University of Nice-Sophia Antipolis, UMR 7272 CNRS, Institut de 40 Chimie de Nice, 28 Avenue Valrose, 06108 Nice, France
| | - Roland K. O. Sigel
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK, Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and University of Nice-Sophia Antipolis, UMR 7272 CNRS, Institut de 40 Chimie de Nice, 28 Avenue Valrose, 06108 Nice, France
| | - Amanda C. Evans
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK, Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and University of Nice-Sophia Antipolis, UMR 7272 CNRS, Institut de 40 Chimie de Nice, 28 Avenue Valrose, 06108 Nice, France
| |
Collapse
|
16
|
Yatsunyk LA, Piétrement O, Albrecht D, Tran PLT, Renčiuk D, Sugiyama H, Arbona JM, Aimé JP, Mergny JL. Guided assembly of tetramolecular G-quadruplexes. ACS NANO 2013; 7:5701-10. [PMID: 23763613 DOI: 10.1021/nn402321g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nucleic acids are finding applications in nanotechnology as nanomaterials, mechanical devices, templates, and biosensors. G-quadruplex DNA, formed by π-π stacking of guanine (G) quartets, is an attractive alternative to regular B-DNA because of the kinetic and thermodynamic stability of quadruplexes. However, they suffer from a fatal flaw: the rules of recognition, i.e., the formation of a G-quartet in which four identical bases are paired, prevent the controlled assembly between different strands, leading to complex mixtures. In this report, we present the solution to this recognition problem. The proposed design combines two DNA elements: parallel-stranded duplexes and a quadruplex core. Parallel-stranded duplexes direct controlled assembly of the quadruplex core, and their strands present convenient points of attachments for potential modifiers. The exceptional stability of the quadruplex core provides integrity to the entire structure, which could be used as a building block for nucleic acid-based nanomaterials. As a proof of principle for the design's versatility, we assembled quadruplex-based 1D structures and visualized them using atomic force and transmission electron microscopy. Our findings pave the way to broader utilization of G-quadruplex DNA in structural DNA nanomaterials.
Collapse
|
17
|
Shibata T, Dohno C, Nakatani K. G-quadruplex formation of entirely hydrophobic DNA in organic solvents. Chem Commun (Camb) 2013; 49:5501-3. [PMID: 23660830 DOI: 10.1039/c3cc42221f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report herein a novel hydrophobic G-quadruplex DNA consisting of dodecyl phosphotriester linkages. The 6-mer hydrophobic DNA having a TG4T sequence binds to monovalent cations to form a tetramolecular G-quadruplex in low polarity organic solvents.
Collapse
Affiliation(s)
- Tomonori Shibata
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki 567-0047, Japan
| | | | | |
Collapse
|
18
|
Pagano B, Randazzo A, Fotticchia I, Novellino E, Petraccone L, Giancola C. Differential scanning calorimetry to investigate G-quadruplexes structural stability. Methods 2013; 64:43-51. [PMID: 23500655 DOI: 10.1016/j.ymeth.2013.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/19/2013] [Accepted: 02/25/2013] [Indexed: 01/20/2023] Open
Abstract
Differential Scanning Calorimetry (DSC) is a straightforward methodology to characterize the energetics of thermally-induced transitions of DNA and other biological macromolecules. Therefore, DSC has been used to study the thermodynamic stability of several nucleic acids structures. G-quadruplexes are among the most important non-canonical nucleic acid architectures that are receiving great consideration. This article reports examples on the contribution of DSC to the knowledge of G-quadruplex structures. The selected case studies show the potential of this method in investigating the structure stability of G-quadruplex forming nucleic acids, and in providing information on their structural complexity. Indeed, DSC can determine thermodynamic parameters of G-quadruplex folding/unfolding processes, but it can also be useful to reveal the formation of multiple conformations or the presence of intermediate states along the unfolding pathway, and to evaluate the impact of chemical modifications on their structural stability. This article aims to show that DSC is an important complementary methodology to structural techniques, such as NMR and X-ray crystallography, in the study of G-quadruplex forming nucleic acids.
Collapse
Affiliation(s)
- Bruno Pagano
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Magbanua E, Zivkovic T, Hansen B, Beschorner N, Meyer C, Lorenzen I, Grötzinger J, Hauber J, Torda AE, Mayer G, Rose-John S, Hahn U. d(GGGT) 4 and r(GGGU) 4 are both HIV-1 inhibitors and interleukin-6 receptor aptamers. RNA Biol 2013; 10:216-27. [PMID: 23235494 PMCID: PMC3594281 DOI: 10.4161/rna.22951] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aptamers are oligonucleotides that bind targets with high specificity and affinity. They have become important tools for biosensing, target detection, drug delivery and therapy. We selected the quadruplex-forming 16-mer DNA aptamer AID-1 [d(GGGT) 4] with affinity for the interleukin-6 receptor (IL-6R) and identified single nucleotide variants that showed no significant loss of binding ability. The RNA counterpart of AID-1 [r(GGGU) 4] also bound IL-6R as quadruplex structure. AID-1 is identical to the well-known HIV inhibitor T30923, which inhibits both HIV infection and HIV-1 integrase. We also demonstrated that IL-6R specific RNA aptamers not only bind HIV-1 integrase and inhibit its 3' processing activity in vitro, but also are capable of preventing HIV de novo infection with the same efficacy as the established inhibitor T30175. All these aptamer target interactions are highly dependent on formation of quadruplex structure.
Collapse
Affiliation(s)
- Eileen Magbanua
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Tijana Zivkovic
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Björn Hansen
- Centre for Bioinformatics; Hamburg University; Hamburg, Germany
| | - Niklas Beschorner
- Heinrich Pette Institute; Leibnitz Institute for Experimental Virology; Hamburg, Germany
| | - Cindy Meyer
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Inken Lorenzen
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Joachim Hauber
- Heinrich Pette Institute; Leibnitz Institute for Experimental Virology; Hamburg, Germany
| | - Andrew E. Torda
- Centre for Bioinformatics; Hamburg University; Hamburg, Germany
| | - Günter Mayer
- Life and Medical Sciences Institute; University of Bonn; Bonn, Germany
| | - Stefan Rose-John
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Ulrich Hahn
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
- Correspondence to: Ulrich Hahn,
| |
Collapse
|
20
|
Fujimoto T, Nakano SI, Sugimoto N, Miyoshi D. Thermodynamics-hydration relationships within loops that affect G-quadruplexes under molecular crowding conditions. J Phys Chem B 2012; 117:963-72. [PMID: 23153339 DOI: 10.1021/jp308402v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We systematically investigated the effects of loop length on the conformation, thermodynamic stability, and hydration of DNA G-quadruplexes under dilute and molecular crowding conditions in the presence of Na(+). Structural analysis showed that molecular crowding induced conformational switches of oligonucleotides with the longer guanine stretch and the shorter thymine loop. Thermodynamic parameters further demonstrated that the thermodynamic stability of G-quadruplexes increased by increasing the loop length from two to four, whereas it decreased by increasing the loop length from four to six. Interestingly, we found by osmotic pressure analysis that the number of water molecules released from the G-quadruplex decreased with increasing thermodynamic stability. We assumed that base-stacking interactions within the loops not only stabilized the whole G-quadruplex structure but also created hydration sites by accumulating nucleotide functional groups. The molecular crowding effects on the stability of G-quadruplexes composed of abasic sites, which reduce the stacking interactions at the loops, further demonstrated that G-quadruplexes with fewer stacking interactions within the loops released a larger number of water molecules upon folding. These results showed that the stacking interactions within the loops determined the thermodynamic stability and hydration of the whole G-quadruplex.
Collapse
Affiliation(s)
- Takeshi Fujimoto
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
21
|
Johnson J, Okyere R, Joseph A, Musier-Forsyth K, Kankia B. Quadruplex formation as a molecular switch to turn on intrinsically fluorescent nucleotide analogs. Nucleic Acids Res 2012; 41:220-8. [PMID: 23093597 PMCID: PMC3592437 DOI: 10.1093/nar/gks975] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Quadruplexes are involved in the regulation of gene expression and are part of telomeres at the ends of chromosomes. In addition, they are useful in therapeutic and biotechnological applications, including nucleic acid diagnostics. In the presence of K+ ions, two 15-mer sequences d(GGTTGGTGTGGTTGG) (thrombin binding aptamer) and d(GGGTGGGTGGGTGGG) (G3T) fold into antiparallel and parallel quadruplexes, respectively. In the present study, we measured the fluorescence intensity of one or more 2-aminopurine or 6-methylisoxanthopterin base analogs incorporated at loop-positions of quadruplex forming sequences to develop a detection method for DNA sequences in solution. Before quadruplex formation, the fluorescence is efficiently quenched in all cases. Remarkably, G3T quadruplex formation results in emission of fluorescence equal to that of a free base in all three positions. In the case of thrombin binding aptamer, the emission intensity depends on the location of the fluorescent nucleotides. Circular dichroism studies demonstrate that the modifications do not change the overall secondary structure, whereas thermal unfolding experiments revealed that fluorescent analogs significantly destabilize the quadruplexes. Overall, these studies suggest that quadruplexes containing fluorescent nucleotide analogs are useful tools in the development of novel DNA detection methodologies.
Collapse
Affiliation(s)
- John Johnson
- Department of Chemistry and Biochemistry, Center for RNA Biology, the Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
22
|
Ji X, Sun H, Zhou H, Xiang J, Tang Y, Zhao C. The interaction of telomeric DNA and C-myc22 G-quadruplex with 11 natural alkaloids. Nucleic Acid Ther 2012; 22:127-36. [PMID: 22480315 DOI: 10.1089/nat.2012.0342] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomeric DNA and C-myc22 are DNA G-quadruplex (G4)-forming sequences associated with tumorigenesis. Ligands that can facilitate the formation and increase the stabilization of G4 can halt tumor cell proliferation and have been regarded as potential anti-cancer drugs. In the present study, we have investigated the interaction of 11 natural alkaloids with G4 formed by telomeric DNA and C-myc22 sequences. Our results indicated that sanguinarine (San), palmatine (Pal), and berberine (Beb) of the first series (S1) can induce the formation of G4 as well as increase the stabilization ability. Daurisoline (S2-1), O-methyldauricine (S2-2), O-diacetyldaurisoline (S2-3), daurinoline (S2-4), dauricinoline (S2-5), N,N'-dimethyldauricine iodide (S2-6), and N,N'-dimethyldaurisoline iodide (S2-7) of the second series (S2) showed similar stabilization ability. We found that unsaturated ring C, N(+) positively charged centers, and conjugated aromatic rings are key factors to increase the stabilization ability of S1, and we gave some advice on structure modification to S2 through structure-activity study. Besides, we found San and Pal to be cell cycle blocker in G(1). San was speculated to bind to G4 through intercalation or end stacking.
Collapse
Affiliation(s)
- Xiaohui Ji
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs and Biological Technology College of Life Science, Beijing Normal University, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Circular dichroism and guanine quadruplexes. Methods 2012; 57:64-75. [PMID: 22450044 DOI: 10.1016/j.ymeth.2012.03.011] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 11/22/2022] Open
Abstract
Circular dichroism (CD) is remarkably sensitive to the conformational states of nucleic acids; therefore, CD spectroscopy has been used to study most features of DNA and RNA structures. Quadruplexes are among the significant noncanonical nucleic acids architectures that have received special attentions recently. This article presents examples on the contribution of CD spectroscopy to our knowledge of quadruplex structures and their polymorphism. The examples were selected to demonstrate the potential of this simple method in the quadruplex field. As CD spectroscopy detects only the global feature of a macromolecule, it should preferably be used in combination with other techniques. On the other hand, CD spectroscopy, often as a pioneering approach, can reveal the formation of particular structural arrangements, to search for the conditions stabilizing the structures, to follow the transitions between various structural states, to explore kinetics of their appearance, to determine thermodynamic parameters and also detect formation of higher order structures. This article aims to show that CD spectroscopy is an important complementary technique to NMR spectroscopy and X-ray diffraction in quadruplex studies.
Collapse
|
24
|
Liu W, Zhu H, Zheng B, Cheng S, Fu Y, Li W, Lau TC, Liang H. Kinetics and mechanism of G-quadruplex formation and conformational switch in a G-quadruplex of PS2.M induced by Pb²⁺. Nucleic Acids Res 2012; 40:4229-36. [PMID: 22241774 PMCID: PMC3351173 DOI: 10.1093/nar/gkr1310] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
DNA sequences with guanine repeats can form G-quartets that adopt G-quadruplex structures in the presence of specific metal ions. Using circular dichroism (CD) and ultraviolet-visible (UV–Vis) spectroscopy, we determined the spectral characteristics and the overall conformation of a G-quadruplex of PS2.M with an oligonucleotide sequence, d(GTG3TAG3CG3TTG2). UV-melting curves demonstrate that the Pb2+-induced G-quadruplex formed unimolecularly and the highest melting temperature (Tm) is 72°C. The analysis of the UV titration results reveals that the binding stoichiometry of Pb2+ ions to PS2.M is two, suggesting that the Pb2+ ions coordinate between adjacent G-quartets. Binding of ions to G-rich DNA is a complex multiple-pathway process, which is strongly affected by the type of the cations. Kinetic studies suggest that the Pb2+-induced folding of PS2.M to G-quadruplex probably proceeds through a three-step pathway involving two intermediates. Structural transition occurs after adding Pb(NO3)2 to the Na+- or K+-induced G-quadruplexes, which may be attributed to the replacement of Na+ or K+ by Pb2+ ions and the generation of a more compact Pb2+–PS2.M structure. Comparison of the relaxation times shows that the Na+→Pb2+ exchange is more facile than the K+→Pb2+ exchange process, and the mechanisms for these processes are proposed.
Collapse
Affiliation(s)
- Wei Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P R China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
G-quadruplex ligands are potential anticancer agents as telomerase inhibitors and potential transcriptional regulators of oncogenes. The search for best-in-class drugs is addressed to identify small molecules able to promote and stabilize G-quadruplex structures. What features should the G-quadruplex ligands possess? They should have selective antiproliferative effects on cancer cells and induce telomerase inhibition or oncogene suppression. One of the main challenges in their design and synthesis is to make the ligands selective for G-quadruplex DNA. These features should be amplified by careful analyses of physico-chemical aspects of G-quadruplex-drug interactions. In particular, the study of the energetics of G-quadruplex-drug interactions can enhance drug design by providing thermodynamic parameters that give quantitative information on the biomolecular interactions important for binding. The main methodologies used to gain information on energetics of binding are based on spectroscopic or calorimetric principles. Spectroscopic techniques such as fluorescence and circular dichroism are rapid and cheap methods, but are not sufficient to characterize completely the thermodynamics of interaction. Calorimetric techniques such as isothermal titration calorimetry offer a direct measure of binding enthalpy, in addition to the stoichiometry and affinity constants. With the complete thermodynamic signature of drug-target interaction, dissecting the enthalpic and entropic components of binding is possible, which can be a useful aid to decision-making during drug optimization.
Collapse
Affiliation(s)
- Concetta Giancola
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, 80126, Napoli, Italy,
| | | |
Collapse
|
26
|
Stucki SR, Nyakas A, Schürch S. Tandem mass spectrometry of platinated quadruplex DNA. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:1288-1297. [PMID: 22223421 DOI: 10.1002/jms.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Quadruplexes are higher-order structures formed by G-rich DNA strands that are involved in various processes of cell cycle regulation, such as control of telomere length and participation in gene regulation. Because of these central biological functions, quadruplex DNA represents a promising target for cancer therapy, e.g. by applying organometallic drugs, such as cisplatin. High-resolution electrospray tandem mass spectrometry is evaluated as a technique for exploring structural features of unplatinated and platinated quadruplexes. Results of experiments on tetramolecular, bimolecular and monomolecular quadruplexes provide information about the extent of platination and the binding sites of the drug. The dissociation behavior of the different types of quadruplexes is compared. Tetramolecular quadruplexes were found to weave out a strand end in order to provide a platination site, and their fragmentation is characterized by the release of an unplatinated strand and the formation of a platinated triplex. Partial opening of the structure in combination with the loss of small fragments leads to truncated quadruplex ions. For the bimolecular quadruplexes studied, strand separation is the predominant dissociation pathway. Depending on the loop sequence, cross-linking of the loops by cisplatin is demonstrated. Distinct differences in the product ion spectra of unannealed and annealed monomolecular sequences provide proof of quadruplex formation and show that platination preferentially occurs at the terminal regions.
Collapse
Affiliation(s)
- Silvan R Stucki
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | | | | |
Collapse
|
27
|
Ji X, Chen J, Sun H, Zhou H, Xiang J, Peng A, Tang Y, Zhao C. The interaction of telomere DNA G-quadruplex with three bis-benzyltetrahydroisoquinoline alkaloids. Nucleic Acid Ther 2011; 21:415-22. [PMID: 22017543 DOI: 10.1089/nat.2011.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Telomeres are important multifunctional nucleoprotein structures located at the ends of eukaryotic chromosomes. Telomerase regulates telomere elongation, and its activity is associated with tumorigenesis. Because the activity of telomerase can be inhibited by G-quadruplex (G4) formation (a four-stranded DNA with stacks of G-quartets formed by four guanines in a planar structure), the role of G4 in cancer therapy has attracted many research interests. We studied the effects of three natural alkaloids-tetrandrine, fangchinoline, and berbamine-on the stability and formation of telomere DNA G4 with circular dichroism melting spectroscopy (melting-CD), variable temperature ultraviolet (melting-UV), proton nuclear magnetic resonance spectroscopy ((1)H NMR), and molecular docking, and examined the relationships among the alkaloid structure and their activities. We further investigated their cytotoxicity with the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and flow cytometry (FCM). The results demonstrated that alkaloids increased G4 stability and induced its formation, which added structure diversity of G4-ligands. The results showed that -OH at R(1), -OCH(3) at R(2), and [Formula: see text] at R(3) had higher stability than other substituent groups for these alkaloids. We also found a transition of antiparallel to parallel G4 as the temperature increased. The result indicated the possible advantage of parallel G4 in adversity. In addition, the alkaloids demonstrated a moderate cytotoxicity and proved to be cell cycle blocker in the G(1) phase. These alkaloids have revealed promising potentials to be the agents for antitumor therapy.
Collapse
Affiliation(s)
- Xiaohui Ji
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology College of Life Science, Beijing Normal University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu W, Fu Y, Zheng B, Cheng S, Li W, Lau TC, Liang H. Kinetics and mechanism of conformational changes in a G-quadruplex of thrombin-binding aptamer induced by Pb2+. J Phys Chem B 2011; 115:13051-6. [PMID: 21950308 DOI: 10.1021/jp2074489] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been shown that guanine-rich DNA can fold into a G-quadruplex with certain metal cations. The spectral characteristics, thermostability, and kinetics for the formation of a Pb(2+)-driven G-quadruplex of thrombin-binding aptamer (TBA) were measured in the current work using a combination of ultraviolet (UV) and circular dichroism (CD) spectroscopy along with stopped-flow technique. CD spectra demonstrated that TBA could fold into a unique G-quadruplex with a strong positive peak at 312 nm. Analysis of the titration data reveals that the binding stoichiometry is 1:1 for the titration of TBA with Pb(NO(3))(2), which is in accordance with the localization of the Pb(2+) ion between the adjacent G-quartets. Thermal denaturation profiles indicate that the Pb(2+)-induced intramolecular G-quadruplex is more stable than those driven by Na(+) or K(+) ions. Kinetic studies suggest that the Pb(2+)-induced folding G-quadruplex of TBA probably proceeds through the rapid formation of an intermediate Pb(2+)-TBA complex, which then isomerizes to the fully folded structure. Conformational changes transpire after the addition of Pb(NO(3))(2) to the Na(+)- or K(+)-induced G-quadruplexes, which may be attributed to the replacement of Na(+) or K(+) ions by Pb(2+) ions and the generation of a more compact structure of the Pb(2+)-TBA structure. The relaxation time, τ, of folding the G-quadruplex is reduced from 1.05 s in the presence of Pb(2+) ions alone to 0.34 s under the cooperation of initially added Na(+) ions, while τ is increased to 8.33 s under the competition of initially added K(+) ions.
Collapse
Affiliation(s)
- Wei Liu
- Hefei National Laboratory for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, P R China
| | | | | | | | | | | | | |
Collapse
|
29
|
Prislan I, Khutsishvili I, Marky LA. Interaction of minor groove ligands with G-quadruplexes: thermodynamic contributions of the number of quartets, T-U substitutions, and conformation. Biochimie 2011; 93:1341-50. [PMID: 21684318 DOI: 10.1016/j.biochi.2011.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
In the presence of specific metal ions, DNA oligonucleotides containing guanine repeat sequences can adopt G-quadruplex structures. In this work, we used a combination of spectroscopic and calorimetric techniques to investigate the conformation and unfolding thermodynamics of the K(+)-form of five G-quadruplexes with sequences: d(G(2)T(2)G(2)TGTG(2)T(2)G(2)), G2, d(G(3)T(2)G(3)TGTG(3)T(2)G(3)), G3, their analogs where T is replaced with U, G2-U and G3-U, and r(G(2)U(2)G(2)UGUG(2)U(2)G(2)), rG2. These G-quadruplexes show CD spectra characteristic of the "chair" conformation (G2 and G2-U), or "basket" conformation (rG2); or a mixture of these two conformers (G3 and G3-U). Thermodynamic profiles show that the favorable folding of each G-quadruplex results from the typical compensation of a favorable enthalpy and unfavorable entropy contributions. G-quadruplex stability increase in the following order (in ΔG°(20)): rG2 (-1.3 kcal/mol) < G2 < G2-U <G3-U (chair) < G3 (chair) <G3-U (basket) < G3 (basket) (-8.6 kcal/mol), due to favorable enthalpy contribution from the stacking of G-quartets. We used ITC to determine thermodynamic binding profiles for the interaction of the minor groove ligands, netropsin and distamycin, with each G-quadruplex. Both ligands bind with high exothermic enthalpies (~ -10.8 kcal/mol), 1:1 stoichiometries, and weak affinities (~8 × 10(4) M(-1)). The similarity of the binding thermodynamic profiles, together with the absence of induced Cotton effects, indicates a surface or outside binding mode. We speculate that the top and bottom surfaces of the G-quadruplex comprise the potential MGBL binding sites, where the ligand lies on the surface forming van der Waals interactions with the guanines of the G-quartets and loop nucleotides.
Collapse
Affiliation(s)
- Iztok Prislan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | | | | |
Collapse
|
30
|
Kelley S, Boroda S, Musier-Forsyth K, Kankia BI. HIV-integrase aptamer folds into a parallel quadruplex: a thermodynamic study. Biophys Chem 2011; 155:82-8. [PMID: 21435774 DOI: 10.1016/j.bpc.2011.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 11/29/2022]
Abstract
Short guanine-rich sequences have a tendency to form quadruplexes that are stabilized by G-quartets with specific cation coordination. Quadruplexes are part of telomeres at the ends of chromosomes and play an important role in the regulation of gene expression. In addition, there is a strong interest in the therapeutic and biotechnological potential of quadruplex oligonucleotides. The HIV-integrase aptamer, d(GGGT)(4), demonstrated unusually favorable van't Hoff thermodynamics, and based on NMR studies the aptamer was proposed to fold into an antiparallel structure. Here we probed an apparent discrepancy between the NMR structure and the quadruplex topology suggested by circular dichroism (CD). Systematic thermodynamic analyses of d(GGGT)(4) and variants containing sequence modifications or missing specific nucleotides are consistent with a parallel quadruplex fold. CD studies carried out over a wide concentration range did not support a possible structural transition upon increasing strand concentration. Taken together, both optical and thermodynamic studies performed here strongly support a parallel fold for the d(GGGT)(4) aptamer.
Collapse
Affiliation(s)
- Sean Kelley
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
31
|
Poniková S, Tlučková K, Antalík M, Víglaský V, Hianik T. The circular dichroism and differential scanning calorimetry study of the properties of DNA aptamer dimers. Biophys Chem 2011; 155:29-35. [PMID: 21396765 DOI: 10.1016/j.bpc.2011.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/04/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
We have applied circular dichroism (CD), temperature-gradient gel electrophoresis (TGGE) and differential scanning calorimetry (DSC) to study the properties of novel bioengineered DNA aptamer dimers sensitive to fibrinogen (F) and heparin (H) binding sites of thrombin and compared them with canonical single stranded aptamer sensitive to fibrinogen binding site of thrombin (Fibri). The homodimer (FF) and heterodimer (FH) aptamers were constructed based on hybridization of their supported parts. CD results showed that both FF and FH dimers form stable guanine quadruplexes in the presence of potassium ions like those in Fibri. The thermal stability of aptamer dimers was slightly lower compared to those of canonical aptamers, but sufficient for practical applications. Both FF and FH aptamer dimers exhibited a potassium-dependent inhibitory effect on thrombin-mediated fibrin gel formation, which was on average two-fold higher than those of canonical single stranded Fibri aptamers.
Collapse
Affiliation(s)
- Slavomíra Poniková
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
32
|
Prislan I, Lah J, Milanic M, Vesnaver G. Kinetically governed polymorphism of d(G₄T₄G₃) quadruplexes in K+ solutions. Nucleic Acids Res 2010; 39:1933-42. [PMID: 21113023 PMCID: PMC3061076 DOI: 10.1093/nar/gkq867] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been generally recognized that understanding the molecular basis of some important cellular processes is hampered by the lack of knowledge of forces that drive spontaneous formation/disruption of G-quadruplex structures in guanine-rich DNA sequences. According to numerous biophysical and structural studies G-quadruplexes may occur in the presence of K(+) and Na(+) ions as polymorphic structures formed in kinetically governed processes. The reported kinetic models suggested to describe this polymorphism should be considered inappropriate since, as a rule, they include bimolecular single-step associations characterized by negative activation energies. In contrast, our approach in studying polymorphic behavior of G-quadruplexes is based on model mechanisms that involve only elementary folding/unfolding transitions and structural conversion steps that are characterized by positive activation energies. Here, we are investigating a complex polymorphism of d(G(4)T(4)G(3)) quadruplexes in K(+) solutions. On the basis of DSC, circular dichroism and UV spectroscopy and polyacrylamide gel electrophoresis experiments we propose a kinetic model that successfully describes the observed thermally induced conformational transitions of d(G(4)T(4)G(3)) quadruplexes in terms of single-step reactions that involve besides single strands also one tetramolecular and three bimolecular quadruplex structures.
Collapse
Affiliation(s)
- Iztok Prislan
- Faculty of Chemistry and Chemical Technology, Physical Chemistry, University of Ljubljana, Askerceva, Slovenia
| | | | | | | |
Collapse
|
33
|
Holm AIS, Kohler B, Hoffmann SV, Brøndsted Nielsen S. Synchrotron radiation circular dichroism of various G-quadruplex structures. Biopolymers 2010; 93:429-33. [PMID: 19937757 DOI: 10.1002/bip.21354] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Here we report synchrotron radiation circular dichroism spectra of various G-quadruplexes from 179 to 350 nm, and a number of bands in the vacuum ultraviolet (VUV) are reported for the first time. For a tetramolecular parallel structure, the strongest band in the spectrum is a negative band in the VUV at 182 nm; for a bimolecular antiparallel structure with diagonal loops, a new strong positive band is found at 190 nm; for a bimolecular parallel structure with edgewise loops, a strong positive band at 189 nm is observed; and for a self-folded chair-type structure, the strongest band in the spectrum is a positive band at 187 nm. For the tetramolecular parallel structure, the CD signals at all wavelengths are dominated by contributions from quartets of G bases, and the signal strength is approximately proportional to the number of quartets. Our experiments on well-characterized G-quadruplex structures lead us to question past attributions of CD signals to helix handedness and G quartet polarity. Although differences can be observed in the VUV region for the various quadruplex types, there do not appear to be clear-cut spectral features that can be used to identify specific topological features. It is suggested that this is because a dominant positive band in the VUV seen near 190 nm in all quadruplex structures is due to intrastrand guanine-guanine base stacking. However, our spectra can serve as reference spectra for the G-quadruplex structures investigated and, not least, to benchmark theoretical calculations and empirical models.
Collapse
Affiliation(s)
- Anne I S Holm
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
34
|
Abe K, Sode K, Ikebukuro K. Constructing an improved pyrroloquinoline quinone glucose dehydrogenase binding aptamer for enzyme labeling. Biotechnol Lett 2010; 32:1293-8. [PMID: 20458520 DOI: 10.1007/s10529-010-0292-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/26/2010] [Indexed: 11/29/2022]
Abstract
Motif analysis of PGa4 indicated that eight consecutive guanine residues were most important for pyrroloquinoline quinine glucose dehydrogenase (PQQGDH) recognition. Because the truncated mutants minimized unexpected interactions between PGa4 and the target-binding aptamer, they will now facilitate the construction of a highly sensitive detection system using a PQQGDH-labeled diagnostic marker-binding aptamer.
Collapse
Affiliation(s)
- Koichi Abe
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | | | | |
Collapse
|
35
|
Masiero S, Trotta R, Pieraccini S, De Tito S, Perone R, Randazzo A, Spada GP. A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures. Org Biomol Chem 2010; 8:2683-92. [PMID: 20440429 DOI: 10.1039/c003428b] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G-quadruplex DNA (G4-DNA) structures are four-stranded helical DNA (or RNA) structures, comprising stacks of G-tetrads, which are the outcome of planar association of four guanines in a cyclic Hoogsteen hydrogen-bonding arrangement. In the last decade the number of publications where CD spectroscopy has been used to study G4-DNAs, is extremely high. However, with very few exceptions, these investigations use an empirical interpretation of CD spectra. In this interpretation two basic types of CD spectra have been associated to a single specific difference in the features of the strand folding, i.e. the relative orientation of the strands, "parallel" (all strands have the same 5' to 3' orientation) or "antiparallel". Different examples taken from the literature where the empirical interpretation is not followed or is meaningless are presented and discussed. Furthermore, the case of quadruplexes formed by monomeric guanosine derivatives, where there is no strand connecting the adjacent quartets and the definition parallel/antiparallel strands cannot apply, will be discussed. The different spectral features observed for different G-quadruplexes is rationalised in terms of chromophores responsible for the electronic transitions. A simplified exciton coupling approach or more refined QM calculations allow to interpret the different CD features in terms of different stacking orientation (head-to-tail, head-to-head, tail-to-tail) between adjacent G-quartets irrespectively of the relative orientation of the stands (parallel/antiparallel).
Collapse
Affiliation(s)
- Stefano Masiero
- Alma Mater Studiorum-Università di Bologna, Dipartimento di Chimica Organica A. Mangini, via San Giacomo 11, I-40126, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Kime L, Jourdan SS, Stead JA, Hidalgo-Sastre A, McDowall KJ. Rapid cleavage of RNA by RNase E in the absence of 5' monophosphate stimulation. Mol Microbiol 2010; 76:590-604. [PMID: 19889093 PMCID: PMC2948425 DOI: 10.1111/j.1365-2958.2009.06935.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2009] [Indexed: 11/28/2022]
Abstract
The best characterized pathway for the initiation of mRNA degradation in Escherichia coli involves the removal of the 5'-terminal pyrophosphate to generate a monophosphate group that stimulates endonucleolytic cleavage by RNase E. We show here however, using well-characterized oligonucleotide substrates and mRNA transcripts, that RNase E can cleave certain RNAs rapidly without requiring a 5'-monophosphorylated end. Moreover, the minimum substrate requirement for this mode of cleavage, which can be categorized as 'direct' or 'internal' entry, appears to be multiple single-stranded segments in a conformational context that allows their simultaneous interaction with RNase E. While previous work has alluded to the existence of a 5' end-independent mechanism of mRNA degradation, the relative simplicity of the requirements identified here for direct entry suggests that it could represent a major means by which mRNA degradation is initiated in E. coli and other organisms that contain homologues of RNase E. Our results have implications for the interplay of translation and mRNA degradation and models of gene regulation by small non-coding RNAs.
Collapse
Affiliation(s)
| | | | - Jonathan A Stead
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLS2 9JT, England, UK
| | - Ana Hidalgo-Sastre
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLS2 9JT, England, UK
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLS2 9JT, England, UK
| |
Collapse
|
37
|
Olsen CM, Marky LA. Monitoring the temperature unfolding of G-quadruplexes by UV and circular dichroism spectroscopies and calorimetry techniques. Methods Mol Biol 2010; 608:147-58. [PMID: 20012421 DOI: 10.1007/978-1-59745-363-9_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA oligonucleotides containing guanine repeat sequences can adopt G-quadruplex (GQ) structures in the presence of specific metal ions. We report on how to use a combination of spectroscopic and calorimetric techniques to determine the spectral characteristics and thermodynamic parameters for the temperature-unfolding of GQs. Specifically, we investigated the unfolding of d(G(2)T(2)G(2)TGTG(2)T(2)G(2)), G2, and d(G(3)T(2)G(3)TGTG(3)T(2)G(3)), G3 by a combination of UV and circular dichroism (CD) spectroscopies, and differential scanning calorimetry (DSC).Analysis of the UV and CD spectra of these GQs at low (100% helix) and high (100% random coil) temperatures yielded the optimal wavelengths to determine the melting curves. In addition, the CD spectra yielded the particular conformation(s) that each GQ adopted at low temperature. DSC curves yielded complete thermodynamic profiles for the unfolding of each GQ. We use these profiles to determine the thermodynamic contributions for the formation of a G-quartet stack.
Collapse
Affiliation(s)
- Chris M Olsen
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | |
Collapse
|
38
|
Cheng X, Liu X, Bing T, Zhao R, Xiong S, Shangguan D. Specific DNA G-quadruplexes bind to ethanolamines. Biopolymers 2009; 91:874-83. [PMID: 19582835 DOI: 10.1002/bip.21272] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A significant number of G-quadruplex-forming sequences have been revealed in human genome by bioinformatic searches, implying that G-quadruplexes may be involved in important biological processes and may be new chemotherapeutic targets. Therefore, it is important to discover the potential interactions of G-quadruplexes with other molecules or groups. Here we describe a class of G-quadruplexes, which can bind to ethanolamine groups that widely exist in biomolecules and drug molecules. The specific interaction of these G-quadruplexes with ethanolamine groups was identified by high performance affinity chromatography (HPAC) using immobilized ethanolamine and diethanolamine as stationary phase reagents. The circular dichroism (CD) spectra and native polyacrylamide gel electrophoresis (PAGE) show that these ethanolamine binding quadruplexes adopt an intramolecularly parallel structure. The relationship of ethanolamine binding and G-quadruplexe structure provides new clues for the G-quadruplex-related studies as well as for the molecular designs of therapeutic reagents.
Collapse
Affiliation(s)
- Xiaohong Cheng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
39
|
Olsen CM, Marky LA. Energetic and hydration contributions of the removal of methyl groups from thymine to form uracil in G-quadruplexes. J Phys Chem B 2009; 113:9-11. [PMID: 19198041 DOI: 10.1021/jp808526d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A combination of spectroscopic and calorimetric techniques is used to investigate the unfolding of two G-quadruplexes: d(G2U2G2UGUG2U2G2), G2-U, and d(G2T2G2TGTG2T2G2), G2. The comparisons of their thermodynamic data allow us to elucidate the role of methylation on the energetic and hydration properties accompanying their stable formation. The favorable formation of each G-quadruplex results from the characteristic enthalpy-entropy compensation, uptake of ions, and release of water molecules. The loops of G2-U and G2 contribute favorably to their formation, and the absence of methyl groups stabilizes the G-quadruplex. The unfolding of G2-U produces a larger DeltaV, indicating a difference in the hydration states of the two oligonucleotides, while the opposite signs between DeltaDeltaG with the DeltaDeltaV suggest that the differential hydration reflects structural, or hydrophobic, water is involved in the unfolding of G-quadruplexes.
Collapse
|
40
|
Abu-Ghazalah RM, Macgregor RB. Structural polymorphism of the four-repeat Oxytricha nova telomeric DNA sequences. Biophys Chem 2009; 141:180-5. [PMID: 19243874 DOI: 10.1016/j.bpc.2009.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 11/25/2022]
Abstract
G-quadruplexes are four-stranded nucleic acid complexes that exhibit a great deal of polymorphism. Recently a group described the polymorphism exhibited by the four-repeat of the Oxytricha nova telomeric sequences (Lee, J.Y., Yoon, J., Kihm, H.W., Kim, D.S., Biochemistry 2008, 47, 3389-3396). In this study we evaluated the effects of G-tract and loop lengths on this behaviour using circular dichroism (CD) and gel electrophoresis. The largest changes were detected for oligonucleotides with different numbers of consecutive G residues. Furthermore, decreasing the number of residues between the G runs, the loops, from four to three only results in minor alteration in the polymorphism. However, the shortening of the G-tract from four to three guanine residues led to characteristically anti-parallel G-quadruplex CD spectra. Finally, we show that adenine bases in the loop sequences are less likely to form G-quadruplexes in the presence of Na(+) cations than those comprised of thymine residues. The results presented here are an addition to the modest information available for predicting the type of G-quadruplex to be formed from G-rich sequences in aqueous solutions containing sodium or potassium ions.
Collapse
Affiliation(s)
- Rashid M Abu-Ghazalah
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | | |
Collapse
|
41
|
Murat P, Cressend D, Spinelli N, Van der Heyden A, Labbé P, Dumy P, Defrancq E. A novel conformationally constrained parallel g quadruplex. Chembiochem 2009; 9:2588-91. [PMID: 18821555 DOI: 10.1002/cbic.200800457] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pierre Murat
- Département de Chimie Moléculaire UMR CNRS 5250, Université Joseph Fourier BP 53, 38041 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
42
|
UEHARA S, SAKURAGI M, SAKURAI K. Polycation-Supported Helical G-Wire Formation from Dilute Guanosin 5′-Monophosphate Aqueous Solutions. KOBUNSHI RONBUNSHU 2009. [DOI: 10.1295/koron.66.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Olsen CM, Lee HT, Marky LA. Unfolding Thermodynamics of Intramolecular G-Quadruplexes: Base Sequence Contributions of the Loops. J Phys Chem B 2008; 113:2587-95. [DOI: 10.1021/jp806853n] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chris M. Olsen
- Department of Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, and Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025
| | - Hui-Ting Lee
- Department of Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, and Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025
| | - Luis A. Marky
- Department of Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, and Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025
| |
Collapse
|
44
|
Quadruplex-forming properties of FRAXA (CGG) repeats interrupted by (AGG) triplets. Biochimie 2008; 91:416-22. [PMID: 19028545 DOI: 10.1016/j.biochi.2008.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/31/2008] [Indexed: 11/22/2022]
Abstract
The (CGG) repeats associated with X-chromosome fragility are generally believed to form quadruplexes. This notion has persisted although it had been shown that only very short (CGG)(n) sequences form quadruplexes and that this quadruplex formation occurs in conditions far from physiological. We have now studied, using CD and absorption spectroscopies, quadruplex formation of (CGG)(n) (n=4, 7, 8, or 16) and their analogs interrupted by (AGG) triplets under various solvent conditions. In healthy individuals, (AGG) triplets are interspersed throughout the (CGG) repeat regions and appear to hinder (CGG)(n) motif expansion. Here we show that (CGG) repeats do not form quadruplexes under physiological conditions in aqueous solution but, interestingly, quadruplexes are readily formed in water-ethanol solutions. The presence of (AGG) triplets markedly stabilized quadruplex formation. Quadruplexes may thus hinder rather than support (CGG)(n) motif expansion.
Collapse
|
45
|
Snoussi K, Halle B. Internal sodium ions and water molecules in guanine quadruplexes: magnetic relaxation dispersion studies of [d(G3T4G3)]2 and [d(G4T4G4)]2. Biochemistry 2008; 47:12219-29. [PMID: 18950191 DOI: 10.1021/bi801657s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The structural stability of guanine quadruplexes depends critically on an unusual configuration of dehydrated Na (+) or K (+) ions, closely spaced along the central axis of the quadruplex. Crystallography and NMR spectroscopy indicate that these internal ions can be located between the G-quartet planes as well as in the thymine loops, but the precise ion coordination has been firmly established in only a few cases. Here, we examine the bimolecular diagonal-looped foldback quadruplexes [d(G 3T 4G 3)] 2 (Q3) and [d(G 4T 4G 4)] 2 (Q4) by (2)H, (17)O, and (23)Na magnetic relaxation dispersion (MRD). The MRD data indicate that both quadruplexes contain Na (+) ions between the T 4 loops and the terminal G-quartets and that these ions have one water ligand. These ions exchange with external ions on a time scale of 10-60 mus at 27 degrees C, while their highly ordered water ligands have residence times in the range 10 (-8)-10 (-6) s. The MRD data indicate that Q4 contains three Na (+) ions in the stem sites, in agreement with previous solid-state (23)Na NMR findings but contrary to the only crystal structure of this quadruplex. For Q3, the MRD data suggest a less symmetric coordination of the two stem ions. In both quadruplexes, the stem ions have residence times of 0.6-1.0 ms at 27 degrees C. The equilibrium constant for Na (+) --> K (+) exchange is approximately 4 for both loop and stem sites in Q3, in agreement with previous (1)H NMR findings.
Collapse
Affiliation(s)
- Karim Snoussi
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden.
| | | |
Collapse
|
46
|
Prislan I, Lah J, Vesnaver G. Diverse Polymorphism of G-Quadruplexes as a Kinetic Phenomenon. J Am Chem Soc 2008; 130:14161-9. [DOI: 10.1021/ja8026604] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iztok Prislan
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Jurij Lah
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Gorazd Vesnaver
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Aškerčeva 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
47
|
Tomasko M, Vorlícková M, Sagi J. Substitution of adenine for guanine in the quadruplex-forming human telomere DNA sequence G(3)(T(2)AG(3))(3). Biochimie 2008; 91:171-9. [PMID: 18852018 DOI: 10.1016/j.biochi.2008.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
Abstract
We have studied the formation and structural properties of quadruplexes of the human telomeric DNA sequence G(3)(T(2)AG(3))(3) and related sequences in which each guanine base was replaced by an adenine base. None of these single base substitutions hindered the formation of antiparallel quadruplexes, as shown by circular dichroism, gel electrophoresis, and UV thermal stability measurements in NaCl solutions. Effect of substitution did differ, however, depending on the position of the substituted base. The A-for-G substitution in the middle quartet of the antiparallel basket scaffold led to the most distorted and least stable structures and these sequences preferred to form bimolecular quadruplexes. Unlike G(3)(T(2)AG(3))(3), no structural transitions were observed for the A-containing analogs of G(3)(T(2)AG(3))(3) when sodium ions were replaced by potassium ions. The basic quadruplex topology remained the same for all sequences studied in both salts. As in vivo misincorporation of A for a G in the telomeric sequence is possible and potassium is a physiological salt, these findings may have biological relevance.
Collapse
Affiliation(s)
- Martin Tomasko
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|
48
|
Gray DM, Wen JD, Gray CW, Repges R, Repges C, Raabe G, Fleischhauer J. Measured and calculated CD spectra of G-quartets stacked with the same or opposite polarities. Chirality 2008; 20:431-40. [PMID: 17853398 DOI: 10.1002/chir.20455] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Circular dichroism (CD) spectroscopy is widely used to characterize the structures of DNA G-quadruplexes. CD bands at 200-300 nm have been empirically related to G-quadruplexes having parallel or antiparallel sugar-phosphate backbones. We propose that a more fundamental interpretation of the origin of the CD bands is in the stacking interactions of neighboring G-quartets, which can have the same or opposing polarities of hydrogen bond acceptors and donors. From an empirical summation of CD spectra of the d(G)5 G-quadruplex and of the thrombin binding aptamer that have neighboring G-quartets with the same and opposite polarities, respectively, the spectra of aptamers selected by the Ff gene 5 protein (g5p) appear to arise from a combination of the two types of polarities of neighboring G-quartets. The aptamer CD spectra resemble the spectrum of d(G3T4G3), in which two adjacent quartets have the same and two have opposite polarities. Quantum-chemical spectral calculations were performed using a matrix method, based on guanine chromophores oriented as in d(G3T4G3). The calculations show that the two types of G-quartet stacks have CD spectra with features resembling experimental spectra of the corresponding types of G-quadruplexes.
Collapse
Affiliation(s)
- Donald M Gray
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Esposito V, Galeone A, Mayol L, Randazzo A, Virgilio A, Virno A. A mini-library of TBA analogues containing 3'-3' and 5'-5' inversion of polarity sites. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:1145-9. [PMID: 18058554 DOI: 10.1080/15257770701526978] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Several researches have been devoted to structure-activity relationship and to post-SELEX modifications of the thrombin binding aptamer (TBA), one of the first aptamers discovered by the SELEX methodology. However, no studies on TBA dealing with the effects of introduction of inversion of polarity sites have been reported yet. In this frame, we have undertaken the synthesis and the study of a mini-library composed of several TBA analogues containing a 3'-3' or a 5'-5' inversion of polarity site at different positions into the sequence. Particularly, in this article, we present preliminary results about their structural and biological properties.
Collapse
Affiliation(s)
- V Esposito
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Huang CC, Chang HT. Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine. Chem Commun (Camb) 2008:1461-3. [PMID: 18338056 DOI: 10.1039/b718752a] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We unveil a new homogeneous assay-using OliGreen and an ATP-binding aptamer-for the highly selective and sensitive detection of potassium ions.
Collapse
Affiliation(s)
- Chih-Ching Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | | |
Collapse
|