1
|
Avery NG, Young IR, Lu S, Vaughan JD, Korus PS, Richardson TN, Childers KC, Smirnov SL, Spiegel PC. Biophysical characterization of blood coagulation factor VIII binding to lipid nanodiscs that mimic activated platelet surfaces. J Thromb Haemost 2025; 23:513-524. [PMID: 39549835 PMCID: PMC11786986 DOI: 10.1016/j.jtha.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Following proteolytic activation, activated blood coagulation factor (F)VIII (FVIIIa) binds to activated platelet membranes, forming the intrinsic tenase complex with activated FIX (FIXa). Previous studies have identified the C1 and C2 domains as the membrane binding domains of FVIII through conserved arginine residues. A membrane binding model for the FVIII C domains proposes that surface-exposed hydrophobic and positively charged residues at each C domain interact with the membrane, yet a comprehensive thermodynamic and structural description of this interaction is lacking. OBJECTIVES To determine residues of interaction, thermodynamics, and membrane binding preference for FVIII membrane association. METHODS The binding of FVIII constructs to lipid nanodiscs was characterized by nuclear magnetic resonance, isothermal titration calorimetry, bio-layer interferometry, and X-ray crystallography. RESULTS The thermodynamics of FVIII membrane binding indicated that the C1 domain associates through an enthalpically driven process while the C2 domain is entropically driven. Alanine mutations to surface-exposed hydrophobic residues in the C2 domain revealed differential effects on membrane binding, highlighting important determinants at the residue level. The structure of a C2 double mutant, L2251A/L2252A, demonstrated that its decreased affinity is likely due to decreasing the surface area hydrophobicity. Nuclear magnetic resonance studies with the C2 domain identified residues of interaction with soluble O-phospho-L-serine as well as lipid nanodiscs. Lastly, increasing phosphatidylethanolamine and decreasing phosphatidylserine content decreased overall FVIII affinity for membrane surfaces. CONCLUSION This study provides further insight into the molecular basis for how FVIII interacts with platelets to form the intrinsic tenase complex.
Collapse
Affiliation(s)
- Nathan G Avery
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - Isabelle R Young
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - Selena Lu
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - Jordan D Vaughan
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - Patrick S Korus
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - Tera N Richardson
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - Kenneth C Childers
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - Serge L Smirnov
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - P Clint Spiegel
- Chemistry Department, Western Washington University, Bellingham, Washington, USA.
| |
Collapse
|
2
|
Protty MB, Tyrrell VJ, Allen-Redpath K, Soyama S, Hajeyah AA, Costa D, Choudhury A, Mitra R, Sharman A, Yaqoob P, Jenkins PV, Yousef Z, Collins PW, O’Donnell VB. Thrombin Generation Is Associated With Extracellular Vesicle and Leukocyte Lipid Membranes in Atherosclerotic Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2024; 44:2038-2052. [PMID: 39087349 PMCID: PMC11335086 DOI: 10.1161/atvbaha.124.320902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Clotting, leading to thrombosis, requires interactions of coagulation factors with the membrane aminophospholipids (aPLs) phosphatidylserine and phosphatidylethanolamine. Atherosclerotic cardiovascular disease (ASCVD) is associated with elevated thrombotic risk, which is not fully preventable using current therapies. Currently, the contribution of aPL to thrombotic risk in ASCVD is not known. Here, the aPL composition of circulating membranes in ASCVD of varying severity will be characterized along with the contribution of external facing aPL to plasma thrombin generation in patient samples. METHODS Thrombin generation was measured using a purified factor assay on platelet, leukocyte, and extracellular vesicles (EVs) from patients with acute coronary syndrome (n=24), stable coronary artery disease (n=18), and positive risk factor (n=23) and compared with healthy controls (n=24). aPL composition of resting/activated platelet and leukocytes and EV membranes was determined using lipidomics. RESULTS External facing aPLs were detected on EVs, platelets, and leukocytes, elevating significantly following cell activation. Thrombin generation was higher on the surface of EVs from patients with acute coronary syndrome than healthy controls, along with increased circulating EV counts. Thrombin generation correlated significantly with externalized EV phosphatidylserine, plasma EV counts, and total EV membrane surface area. In contrast, aPL levels and thrombin generation from leukocytes and platelets were not impacted by disease, although circulating leukocyte counts were higher in patients. CONCLUSIONS The aPL membrane of EV supports an elevated level of thrombin generation in patient plasma in ASCVD. Leukocytes may also play a role although the platelet membrane did not seem to contribute. Targeting EV formation/clearance and developing strategies to prevent the aPL surface of EV interacting with coagulation factors represents a novel antithrombotic target in ASCVD.
Collapse
Affiliation(s)
- Majd B. Protty
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
| | - Victoria J. Tyrrell
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
| | - Keith Allen-Redpath
- Department of Nutritional Sciences, University of Reading, United Kingdom (K.A.-R., S.S., A.S., P.Y.)
| | - Shin Soyama
- Department of Nutritional Sciences, University of Reading, United Kingdom (K.A.-R., S.S., A.S., P.Y.)
| | - Ali A. Hajeyah
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
| | - Daniela Costa
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
| | - Anirban Choudhury
- Morriston Cardiac Centre, Swansea Bay University Health Board, United Kingdom (A.C.)
| | - Rito Mitra
- Department of Cardiology, University Hospital of Wales, Cardiff, United Kingdom (R.M., Z.Y.)
| | - Amal Sharman
- Department of Nutritional Sciences, University of Reading, United Kingdom (K.A.-R., S.S., A.S., P.Y.)
| | - Parveen Yaqoob
- Department of Nutritional Sciences, University of Reading, United Kingdom (K.A.-R., S.S., A.S., P.Y.)
| | - P. Vince Jenkins
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
- Cardiff and Vale University Health Board, Heath Park, Cardiff, United Kingdom (P.V.J.)
| | - Zaheer Yousef
- Department of Cardiology, University Hospital of Wales, Cardiff, United Kingdom (R.M., Z.Y.)
| | - Peter W. Collins
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
- Cardiff and Vale University Health Board, Heath Park, Cardiff, United Kingdom (P.V.J.)
- Department of Nutritional Sciences, University of Reading, United Kingdom (K.A.-R., S.S., A.S., P.Y.)
- Morriston Cardiac Centre, Swansea Bay University Health Board, United Kingdom (A.C.)
- Department of Cardiology, University Hospital of Wales, Cardiff, United Kingdom (R.M., Z.Y.)
| | - Valerie B. O’Donnell
- Systems Immunity University Institute, Cardiff University, United Kingdom (M.B.P., V.J.T., A.A.H., D.C., P.V.J., V.B.O.D.)
| |
Collapse
|
3
|
Heimerl S, Höring M, Kopczynski D, Sigruener A, Hart C, Burkhardt R, Black A, Ahrends R, Liebisch G. Quantification of bulk lipid species in human platelets and their thrombin-induced release. Sci Rep 2023; 13:6154. [PMID: 37061580 PMCID: PMC10105721 DOI: 10.1038/s41598-023-33076-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
Lipids play a central role in platelet physiology. Changes in the lipidome have already been described for basal and activated platelets. However, quantitative lipidomic data of platelet activation, including the released complex lipids, are unavailable. Here we describe an easy-to-use protocol based on flow-injection mass spectrometry for the quantitative analysis of bulk lipid species in basal and activated human platelets and their lipid release after thrombin activation. We provide lipid species concentrations of 12 healthy human donors, including cholesteryl ester (CE), ceramide (Cer), free cholesterol (FC), hexosylceramide (HexCer), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin (SM) and triglycerides (TG). The assay exhibited good technical repeatability (CVs < 5% for major lipid species in platelets). Except for CE and TG, the inter-donor variability of the majority of lipid species concentrations in platelets was < 30% CV. Balancing of concentrations revealed the generation of LPC and loss of TG. Changes in lipid species concentrations indicate phospholipase-mediated release of arachidonic acid mainly from PC, PI, and PE but not from PS. Thrombin induced lipid release was mainly composed of FC, PS, PC, LPC, CE, and TG. The similarity of the released lipidome with that of plasma implicates that lipid release may originate from the open-canalicular system (OCS). The repository of lipid species concentrations determined with this standardized platelet release assay contribute to elucidating the physiological role of platelet lipids and provide a basis for investigating the platelet lipidome in patients with hemorrhagic or thrombotic disorders.
Collapse
Affiliation(s)
- Susanne Heimerl
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Dominik Kopczynski
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Alexander Sigruener
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Christina Hart
- Department of Hematology and Oncology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Anne Black
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany.
| |
Collapse
|
4
|
Saraswat M, Przybyla B, Joenvaara S, Tohmola T, Strandin T, Puhka M, Jouppila A, Lassila R, Renkonen R. Urinary extracellular vesicles carry multiple activators and regulators of coagulation. Front Cell Dev Biol 2022; 10:967482. [PMID: 36158187 PMCID: PMC9489905 DOI: 10.3389/fcell.2022.967482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cells shape their extracellular milieu by secreting intracellular products into the environment including extracellular vesicles which are lipid-bilayer limited membrane particles. These vesicles carry out a range of functions, including regulation of coagulation, via multiple contributor mechanisms. Urinary extracellular vesicles are secreted by various cells, lining the urinary space, including the nephron and bladder. They are known to have procoagulant properties, however, the details of this function, beyond tissue factor are not well known. The aim of the study was to access the role of urinary extracellular vesicles in impacting coagulation upon supplementation to plasma. This could indicate their physiological function upon kidney injury or pathology. Supplementation to standard human plasma and plasmas deficient in various coagulation factors was used for this purpose, and calibrated automated thrombogram (CAT®) was the major technique applied. We found that these vesicles contain multiple coagulation-related factors, and their lipid composition affects coagulation activities of plasma upon supplementation. Remarkably, these vesicles can restore thrombin generation in FVII, FVIII, FIX and FXI -deficient plasmas. This study explores the multiple roles of urinary extracellular vesicles in coagulation in in vitro blood coagulation and implies their importance in its regulation by several mechanisms.
Collapse
Affiliation(s)
- Mayank Saraswat
- Transplantation Laboratory, University of Helsinki, Helsinki, Finland
- *Correspondence: Mayank Saraswat,
| | - Beata Przybyla
- Coagulation Unit, Helsinki University Central Hospital, Helsinki, Finland
| | - Sakari Joenvaara
- Transplantation Laboratory, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Tiialotta Tohmola
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Medicum, Univeristy of Helsinki, Helsinki, Finland
| | - Maija Puhka
- EV Core and Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Annukka Jouppila
- Helsinki University Hospital Research Institute, Helsinki, Finland
| | - Riitta Lassila
- Research Program Unit in Systems Oncology, Coagulation Disorders Unit, Hematology and Cancer Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Risto Renkonen
- Transplantation Laboratory, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
5
|
Nagdas SK, Wallace S, Eaford D, Baker R, Carr K, Raychoudhuri SS. Fibrinogen-related protein, FGL2, of hamster cauda epididymal fluid: Purification, kinetic analysis of its prothrombinase activity, and its role in segregation of nonviable spermatozoa. Mol Reprod Dev 2020; 87:1206-1218. [PMID: 33216420 DOI: 10.1002/mrd.23438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 11/02/2020] [Indexed: 11/11/2022]
Abstract
Although the epididymal environment promotes the maturation and survival of spermatozoa, not all spermatozoa remain viable during passage through the epididymis. Does the epididymis has a protective mechanism(s) to segregate the viable sperm from defective spermatozoa? Previously, we identified 260/280 kDa oligomers (termed eFGL-Epididymal Fibrinogen-Like oligomer) are composed of two disulfide-linked subunits: a 64 kDa polypeptide identified as fibrinogen-like protein-2 (FGL2) and a 33 kDa polypeptide identified as fibrinogen-like protein-1 (FGL1). Our morphological studies demonstrated that the eFGL, secreted from the principal cells of the cauda epididymis, is polymerized into a death cocoon-like complex (DCF), masking defective luminal spermatozoa but, not the viable sperm population. In the present study, we purified FGL2 from hamster cauda epididymal fluid toward homogeneity and its prothrombinase catalytic activity was examined. Time-course conversion studies revealed that all prothrombin was converted to thrombin by purified hamster FGL2. Our biochemical studies demonstrate that FGL2 is a lipid-activated serine protease and functions as a lectin by binding specific carbohydrate residues. Co-immunoprecipitation analysis demonstrated that FGL2 of cauda epididymal fluid is ubiquitinated but not the FGL1. We propose that FGL2/FGL1 oligomers represent a novel and unique mechanism to shield the viable sperm population from degenerating spermatozoa contained within the tubule lumen.
Collapse
Affiliation(s)
- Subir K Nagdas
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Shamar Wallace
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Don Eaford
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Rashad Baker
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Ky'ara Carr
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Samir S Raychoudhuri
- Department of Biology, Chemistry and Environmental Health Science, Benedict College, Columbia, South Carolina, USA
| |
Collapse
|
6
|
Phospholipid membranes drive abdominal aortic aneurysm development through stimulating coagulation factor activity. Proc Natl Acad Sci U S A 2019; 116:8038-8047. [PMID: 30944221 PMCID: PMC6475397 DOI: 10.1073/pnas.1814409116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a disease of the abdominal aorta where inflammation causes damage and can ultimately lead to rupture. When this happens, uncontrolled internal bleeding can lead to death within minutes. Many aneurysms are not detected until they rupture, and for those that are, treatments to stop them progressing are limited. Here we used biophysics and genetically modified mice to show that a new family of lipids (fats) made by circulating blood cells promote AAA formation in the vessel wall because they directly regulate blood clotting. An approach that prevents AAA development was identified, based on intravenous administration of lipids. The studies provide insights into how AAA develops and may lead to novel therapies for this disease. Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high mortality and limited treatment options. How blood lipids regulate AAA development is unknown. Here lipidomics and genetic models demonstrate a central role for procoagulant enzymatically oxidized phospholipids (eoxPL) in regulating AAA. Specifically, through activating coagulation, eoxPL either promoted or inhibited AAA depending on tissue localization. Ang II administration to ApoE−/− mice increased intravascular coagulation during AAA development. Lipidomics revealed large numbers of eoxPL formed within mouse and human AAA lesions. Deletion of eoxPL-generating enzymes (Alox12 or Alox15) or administration of the factor Xa inhibitor rivaroxaban significantly reduced AAA. Alox-deficient mice displayed constitutively dysregulated hemostasis, including a consumptive coagulopathy, characterized by compensatory increase in prothrombotic aminophospholipids (aPL) in circulating cell membranes. Intravenously administered procoagulant PL caused clotting factor activation and depletion, induced a bleeding defect, and significantly reduced AAA development. These data suggest that Alox deletion reduces AAA through diverting coagulation away from the vessel wall due to eoxPL deficiency, instead activating clotting factor consumption and depletion in the circulation. In mouse whole blood, ∼44 eoxPL molecular species formed within minutes of clot initiation. These were significantly elevated with ApoE−/− deletion, and many were absent in Alox−/− mice, identifying specific eoxPL that modulate AAA. Correlation networks demonstrated eoxPL belonged to subfamilies defined by oxylipin composition. Thus, procoagulant PL regulate AAA development through complex interactions with clotting factors. Modulation of the delicate balance between bleeding and thrombosis within either the vessel wall or circulation was revealed that can either drive or prevent disease development.
Collapse
|
7
|
O'Donnell VB, Aldrovandi M, Murphy RC, Krönke G. Enzymatically oxidized phospholipids assume center stage as essential regulators of innate immunity and cell death. Sci Signal 2019; 12:12/574/eaau2293. [PMID: 30914483 DOI: 10.1126/scisignal.aau2293] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzymatically oxidized phospholipids (eoxPLs) are formed through regulated processes by which eicosanoids or prostaglandins are attached to phospholipids (PLs) in immune cells. These eoxPLs comprise structurally diverse families of biomolecules with potent bioactivities, and they have important immunoregulatory roles in both health and disease. The formation of oxPLs through enzymatic pathways and their signaling capabilities are emerging concepts. This paradigm is changing our understanding of eicosanoid, prostaglandin, and PL biology in health and disease. eoxPLs have roles in cellular events such as ferroptosis, apoptosis, and blood clotting and diseases such as arthritis, diabetes, and cardiovascular disease. They are increasingly recognized as endogenous bioactive mediators and potential targets for drug development. This review will describe recent evidence that places eoxPLs and their biosynthetic pathways center stage in immunoregulation.
Collapse
Affiliation(s)
- Valerie B O'Donnell
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK.
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU) 91054, Erlangen, Germany
| |
Collapse
|
8
|
Slatter DA, Percy CL, Allen-Redpath K, Gajsiewicz JM, Brooks NJ, Clayton A, Tyrrell VJ, Rosas M, Lauder SN, Watson A, Dul M, Garcia-Diaz Y, Aldrovandi M, Heurich M, Hall J, Morrissey JH, Lacroix-Desmazes S, Delignat S, Jenkins PV, Collins PW, O'Donnell VB. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies. JCI Insight 2018; 3:98459. [PMID: 29563336 PMCID: PMC5926910 DOI: 10.1172/jci.insight.98459] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
Hemostatic defects are treated using coagulation factors; however, clot formation also requires a procoagulant phospholipid (PL) surface. Here, we show that innate immune cell–derived enzymatically oxidized phospholipids (eoxPL) termed hydroxyeicosatetraenoic acid–phospholipids (HETE-PLs) restore hemostasis in human and murine conditions of pathological bleeding. HETE-PLs abolished blood loss in murine hemophilia A and enhanced coagulation in factor VIII- (FVIII-), FIX-, and FX-deficient human plasma . HETE-PLs were decreased in platelets from patients after cardiopulmonary bypass (CPB). To explore molecular mechanisms, the ability of eoxPL to stimulate individual isolated coagulation factor/cofactor complexes was tested in vitro. Extrinsic tenase (FVIIa/tissue factor [TF]), intrinsic tenase (FVIIIa/FIXa), and prothrombinase (FVa/FXa) all were enhanced by both HETE-PEs and HETE-PCs, suggesting a common mechanism involving the fatty acid moiety. In plasma, 9-, 15-, and 12-HETE-PLs were more effective than 5-, 11-, or 8-HETE-PLs, indicating positional isomer specificity. Coagulation was enhanced at lower lipid/factor ratios, consistent with a more concentrated area for protein binding. Surface plasmon resonance confirmed binding of FII and FX to HETE-PEs. HETE-PEs increased membrane curvature and thickness, but not surface charge or homogeneity, possibly suggesting increased accessibility to cations/factors. In summary, innate immune-derived eoxPL enhance calcium-dependent coagulation factor function, and their potential utility in bleeding disorders is proposed. Innate immune-derived enzymatically oxidized phospholipids enhance calcium-dependent coagulation factor function.
Collapse
Affiliation(s)
- David A Slatter
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Charles L Percy
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Keith Allen-Redpath
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Joshua M Gajsiewicz
- Departments of Biological Chemistry and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nick J Brooks
- Faculty of Natural Science, Department of Chemistry, Imperial College London, London, United Kingdom
| | - Aled Clayton
- Institute of Cancer and Genetics, Velindre Cancer Centre, School of Medicine, and
| | - Victoria J Tyrrell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Marcela Rosas
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Sarah N Lauder
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Andrew Watson
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Maria Dul
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Yoel Garcia-Diaz
- School of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Maceler Aldrovandi
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Meike Heurich
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Judith Hall
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - James H Morrissey
- Departments of Biological Chemistry and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | - P Vincent Jenkins
- Haematology Department, University Hospital of Wales, Cardiff, United Kingdom
| | - Peter W Collins
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Stark K, Schubert I, Joshi U, Kilani B, Hoseinpour P, Thakur M, Grünauer P, Pfeiler S, Schmidergall T, Stockhausen S, Bäumer M, Chandraratne S, von Brühl ML, Lorenz M, Coletti R, Reese S, Laitinen I, Wörmann SM, Algül H, Bruns CJ, Ware J, Mackman N, Engelmann B, Massberg S. Distinct Pathogenesis of Pancreatic Cancer Microvesicle-Associated Venous Thrombosis Identifies New Antithrombotic Targets In Vivo. Arterioscler Thromb Vasc Biol 2018; 38:772-786. [PMID: 29419408 DOI: 10.1161/atvbaha.117.310262] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Cancer patients are at high risk of developing deep venous thrombosis (DVT) and venous thromboembolism, a leading cause of mortality in this population. However, it is largely unclear how malignant tumors drive the prothrombotic cascade culminating in DVT. APPROACH AND RESULTS Here, we addressed the pathophysiology of malignant DVT compared with nonmalignant DVT and focused on the role of tumor microvesicles as potential targets to prevent cancer-associated DVT. We show that microvesicles released by pancreatic adenocarcinoma cells (pancreatic tumor-derived microvesicles [pcMV]) boost thrombus formation in a model of flow restriction of the mouse vena cava. This depends on the synergistic activation of coagulation by pcMV and host tissue factor. Unlike nonmalignant DVT, which is initiated and propagated by innate immune cells, thrombosis triggered by pcMV was largely independent of myeloid leukocytes or platelets. Instead, we identified externalization of the phospholipid phosphatidylethanolamine as a major mechanism controlling the prothrombotic activity of pcMV. Disrupting phosphatidylethanolamine-dependent activation of factor X suppressed pcMV-induced DVT without causing changes in hemostasis. CONCLUSIONS Together, we show here that the pathophysiology of pcMV-associated experimental DVT differs markedly from innate immune cell-promoted nonmalignant DVT and is therefore amenable to distinct antithrombotic strategies. Targeting phosphatidylethanolamine on tumor microvesicles could be a new strategy for prevention of cancer-associated DVT without causing bleeding complications.
Collapse
Affiliation(s)
- Konstantin Stark
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.).
| | - Irene Schubert
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Urjita Joshi
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Badr Kilani
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Parandis Hoseinpour
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Manovriti Thakur
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Petra Grünauer
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Susanne Pfeiler
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Tobias Schmidergall
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Sven Stockhausen
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Markus Bäumer
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Sue Chandraratne
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Marie-Luise von Brühl
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Michael Lorenz
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Raffaele Coletti
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Sven Reese
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Iina Laitinen
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Sonja Maria Wörmann
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Hana Algül
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Christiane J Bruns
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Jerry Ware
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Nigel Mackman
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Bernd Engelmann
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Steffen Massberg
- From the Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany (K.S., I.S., B.K., P.H., T.S., S.S., S.C., M.-L.v.B., M.L., R.C., S.M.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (K.S., S.M.); Institut für Laboratoriumsmedizin (U.J., M.T., P.G., S.P., M.B., B.E.) and Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Medicine (S.R.), Ludwig-Maximilians-Universität, Munich, Germany; Nuklearmedizinische Klinik und Poliklinik (I.L.) and II. Medizinische Klinik und Poliklinik (S.M.W., H.A.), Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Klinik und Poliklinik für Allgemein-, Viszeral- und Tumorchirurgie, Universitätsklinik Köln, Cologne, Germany (C.J.B.); Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.); and Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| |
Collapse
|
10
|
Lauder SN, Allen-Redpath K, Slatter DA, Aldrovandi M, O'Connor A, Farewell D, Percy CL, Molhoek JE, Rannikko S, Tyrrell VJ, Ferla S, Milne GL, Poole AW, Thomas CP, Obaji S, Taylor PR, Jones SA, de Groot PG, Urbanus RT, Hörkkö S, Uderhardt S, Ackermann J, Vince Jenkins P, Brancale A, Krönke G, Collins PW, O'Donnell VB. Networks of enzymatically oxidized membrane lipids support calcium-dependent coagulation factor binding to maintain hemostasis. Sci Signal 2017; 10:10/507/eaan2787. [PMID: 29184033 DOI: 10.1126/scisignal.aan2787] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood coagulation functions as part of the innate immune system by preventing bacterial invasion, and it is critical to stopping blood loss (hemostasis). Coagulation involves the external membrane surface of activated platelets and leukocytes. Using lipidomic, genetic, biochemical, and mathematical modeling approaches, we found that enzymatically oxidized phospholipids (eoxPLs) generated by the activity of leukocyte or platelet lipoxygenases (LOXs) were required for normal hemostasis and promoted coagulation factor activities in a Ca2+- and phosphatidylserine (PS)-dependent manner. In wild-type mice, hydroxyeicosatetraenoic acid-phospholipids (HETE-PLs) enhanced coagulation and restored normal hemostasis in clotting-deficient animals genetically lacking p12-LOX or 12/15-LOX activity. Murine platelets generated 22 eoxPL species, all of which were missing in the absence of p12-LOX. Humans with the thrombotic disorder antiphospholipid syndrome (APS) had statistically significantly increased HETE-PLs in platelets and leukocytes, as well as greater HETE-PL immunoreactivity, than healthy controls. HETE-PLs enhanced membrane binding of the serum protein β2GP1 (β2-glycoprotein 1), an event considered central to the autoimmune reactivity responsible for APS symptoms. Correlation network analysis of 47 platelet eoxPL species in platelets from APS and control subjects identified their enzymatic origin and revealed a complex network of regulation, with the abundance of 31 p12-LOX-derived eoxPL molecules substantially increased in APS. In summary, circulating blood cells generate networks of eoxPL molecules, including HETE-PLs, which change membrane properties to enhance blood coagulation and contribute to the excessive clotting and immunoreactivity of patients with APS.
Collapse
Affiliation(s)
- Sarah N Lauder
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Keith Allen-Redpath
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - David A Slatter
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Anne O'Connor
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Daniel Farewell
- Division of Population Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Charles L Percy
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Jessica E Molhoek
- Department of Clinical Chemistry and Haematology, University of Utrecht, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Sirpa Rannikko
- Department of Medical Microbiology and Immunology, Research Unit of Biomedicine, Finland and Medical Research Center, University of Oulu, P.O. Box 5000, Oulu 90220, Finland.,Nordlab Oulu, University Hospital, Oulu 90220, Finland
| | - Victoria J Tyrrell
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Salvatore Ferla
- Welsh School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Alastair W Poole
- School of Physiology, Pharmacy and Neuroscience, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Christopher P Thomas
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK.,Welsh School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Samya Obaji
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Philip R Taylor
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Simon A Jones
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Phillip G de Groot
- Department of Clinical Chemistry and Haematology, University of Utrecht, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Rolf T Urbanus
- Department of Clinical Chemistry and Haematology, University of Utrecht, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Sohvi Hörkkö
- Department of Medical Microbiology and Immunology, Research Unit of Biomedicine, Finland and Medical Research Center, University of Oulu, P.O. Box 5000, Oulu 90220, Finland.,Nordlab Oulu, University Hospital, Oulu 90220, Finland
| | - Stefan Uderhardt
- Department of Internal Medicine and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Jochen Ackermann
- Department of Internal Medicine and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - P Vince Jenkins
- Institute of Molecular Medicine, St James's Hospital, Dublin, Ireland
| | - Andrea Brancale
- Welsh School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Gerhard Krönke
- Department of Internal Medicine and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Peter W Collins
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK. .,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK. .,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
11
|
Broughton LJ, Giuntini F, Savoie H, Bryden F, Boyle RW, Maraveyas A, Madden LA. Duramycin-porphyrin conjugates for targeting of tumour cells using photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:374-84. [DOI: 10.1016/j.jphotobiol.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/27/2022]
|
12
|
Abstract
Duramycin, through binding with phosphatidylethanolamine (PE), has shown potential to be an effective antitumour agent. However, its mode of action in relation to tumour cells is not fully understood. PE expression on the surface of a panel of cancer cell lines was analysed using duramycin and subsequent antibody labelling, and then analysed by flow cytometry. Cell viability was also assessed by flow cytometry using annexin V and propidium iodide. Calcium ion (Ca) release by tumour cells in response to duramycin was determined by spectrofluorometry following incubation with Fluo-3, AM. Confocal microscopy was performed on the cancer cell line AsPC-1 to assess real-time cell response to duramycin treatment. Duramycin could detect cell surface PE expression on all 15 cancer cell lines screened, which was shown to be duramycin concentration dependent. However, higher concentrations induced necrotic cell death. Duramycin induced calcium ion (Ca) release from the cancer cell lines also in a concentration-dependent and time-dependent manner. Confocal microscopy showed an influx of propidium iodide into the cells over time and induced morphological changes. Duramycin induces Ca release from cancer cell lines in a time-dependent and concentration-dependent manner.
Collapse
|
13
|
Sample conditions determine the ability of thrombin generation parameters to identify bleeding phenotype in FXI deficiency. Blood 2015; 126:397-405. [PMID: 25911238 DOI: 10.1182/blood-2014-12-616565] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/22/2015] [Indexed: 11/20/2022] Open
Abstract
Individuals with Factor XI (FXI) deficiency have a variable bleeding tendency that does not correlate with FXI:C levels or genotype. Comparing a range of sample conditions, we tested whether the thrombin generation assay (TGA) could discriminate between control subjects (n = 50) and FXI-deficient individuals (n = 97), and between those with bleeding tendency (n = 50) and without (n = 24). The comparison used platelet-rich plasma (PRP) and platelet-poor plasma (PPP), either with or without corn trypsin inhibitor (CTI) to prevent contact activation, over a range of tissue factor (TF) concentrations. When contact activation was inhibited and platelets were absent, FXI:C levels did not correlate with thrombin generation parameters, and control and FXI-deficient individuals were not distinguished. In all other sample types, the best discrimination was obtained using TF 0.5 pM and assay measures: endogenous thrombin potential (ETP) and peak height. We showed that although a number of conditions could distinguish differences between the groups tested, TGA measured in PRP with CTI best differentiated between bleeders and nonbleeders. These measures provided high sensitivity and specificity (peak height receiver operating characteristic [ROC] area under the curve [AUC] = 0.9362; P < .0001) (ETP ROC AUC = 0.9362; P < .0001). We conclude that by using sample conditions directed to test specific pathways of FXI activation, the TGA can identify bleeding phenotype in FXI deficiency.
Collapse
|
14
|
Solís-Calero C, Ortega-Castro J, Frau J, Muñoz F. Nonenzymatic Reactions above Phospholipid Surfaces of Biological Membranes: Reactivity of Phospholipids and Their Oxidation Derivatives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:319505. [PMID: 25977746 PMCID: PMC4419266 DOI: 10.1155/2015/319505] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/03/2023]
Abstract
Phospholipids play multiple and essential roles in cells, as components of biological membranes. Although phospholipid bilayers provide the supporting matrix and surface for many enzymatic reactions, their inherent reactivity and possible catalytic role have not been highlighted. As other biomolecules, phospholipids are frequent targets of nonenzymatic modifications by reactive substances including oxidants and glycating agents which conduct to the formation of advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs). There are some theoretical studies about the mechanisms of reactions related to these processes on phosphatidylethanolamine surfaces, which hypothesize that cell membrane phospholipids surface environment could enhance some reactions through a catalyst effect. On the other hand, the phospholipid bilayers are susceptible to oxidative damage by oxidant agents as reactive oxygen species (ROS). Molecular dynamics simulations performed on phospholipid bilayers models, which include modified phospholipids by these reactions and subsequent reactions that conduct to formation of ALEs and AGEs, have revealed changes in the molecular interactions and biophysical properties of these bilayers as consequence of these reactions. Then, more studies are desirable which could correlate the biophysics of modified phospholipids with metabolism in processes such as aging and diseases such as diabetes, atherosclerosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Christian Solís-Calero
- Institut d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Palma, 07010 Palma, Spain
| | - Joaquín Ortega-Castro
- Institut d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Palma, 07010 Palma, Spain
| | - Juan Frau
- Institut d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Palma, 07010 Palma, Spain
| | - Francisco Muñoz
- Institut d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Palma, 07010 Palma, Spain
| |
Collapse
|
15
|
Saillant NN, Sims CA. Platelet dysfunction in injured patients. MOLECULAR AND CELLULAR THERAPIES 2014; 2:37. [PMID: 26056601 PMCID: PMC4451966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/05/2014] [Indexed: 11/21/2023]
Abstract
A renewed understanding of Trauma Induced Coagulopathy (TIC) has implicated platelets as a crucial mediator and potential therapeutic target in hemostasis. While the importance of abnormal coagulation tests is well described in trauma, there is a paucity of data regarding the role of platelets in coagulopathy. New coagulation models, namely the cell-based-model of hemostasis, have refocused attention toward the platelet and endothelium as key regulators of clot formation. Although platelet dysfunction has been associated with worse outcomes in trauma, the mechanisms which platelet dysfunction contributes to coagulopathy are poorly understood. The goal of this review article is to outline recent advances in understanding hemostasis and the ensuing cellular dysfunction that contributes to the exsanguination of a critically injured patient.
Collapse
Affiliation(s)
- Noelle N Saillant
- Division of Traumatology, Department of Surgery Critical Care and Acute Care Surgery, University of Pennsylvania, University of Pennsylvania, 3400 Spruce Street, 5 Maloney, Philadelphia, Pennsylvania USA
| | - Carrie A Sims
- Division of Traumatology, Department of Surgery Critical Care and Acute Care Surgery, University of Pennsylvania, University of Pennsylvania, 3400 Spruce Street, 5 Maloney, Philadelphia, Pennsylvania USA
| |
Collapse
|
16
|
Saillant NN, Sims CA. Platelet dysfunction in injured patients. MOLECULAR AND CELLULAR THERAPIES 2014; 2:37. [PMID: 26056601 PMCID: PMC4451966 DOI: 10.1186/s40591-014-0037-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/05/2014] [Indexed: 12/24/2022]
Abstract
A renewed understanding of Trauma Induced Coagulopathy (TIC) has implicated platelets as a crucial mediator and potential therapeutic target in hemostasis. While the importance of abnormal coagulation tests is well described in trauma, there is a paucity of data regarding the role of platelets in coagulopathy. New coagulation models, namely the cell-based-model of hemostasis, have refocused attention toward the platelet and endothelium as key regulators of clot formation. Although platelet dysfunction has been associated with worse outcomes in trauma, the mechanisms which platelet dysfunction contributes to coagulopathy are poorly understood. The goal of this review article is to outline recent advances in understanding hemostasis and the ensuing cellular dysfunction that contributes to the exsanguination of a critically injured patient.
Collapse
Affiliation(s)
- Noelle N Saillant
- Division of Traumatology, Department of Surgery Critical Care and Acute Care Surgery, University of Pennsylvania, University of Pennsylvania, 3400 Spruce Street, 5 Maloney, Philadelphia, Pennsylvania USA
| | - Carrie A Sims
- Division of Traumatology, Department of Surgery Critical Care and Acute Care Surgery, University of Pennsylvania, University of Pennsylvania, 3400 Spruce Street, 5 Maloney, Philadelphia, Pennsylvania USA
| |
Collapse
|
17
|
A hereditary bleeding disorder resulting from a premature stop codon in thrombomodulin (p.Cys537Stop). Blood 2014; 124:1951-6. [PMID: 25049278 DOI: 10.1182/blood-2014-02-557538] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, we describe a novel thrombomodulin (TM) mutation (c.1611C>A) that codes for a change from cysteine 537 to a premature stop codon (p.Cys537Stop). Three members of a family with a history of posttraumatic bleeding were identified to be heterozygous for this TM mutation. All coagulation screening tests, coagulation factor assays, and platelet function test results were within normal limits. However, the endogenous thrombin potential was markedly reduced at low-tissue factor concentration, and failure to correct with normal plasma indicated the presence of a coagulation inhibitor. Plasma TM levels were highly elevated (433-845 ng/ml, normal range 2-8 ng/ml, equating to 5 to 10 nM), and the addition of exogenous protein C further decreased thrombin generation. The mutation, p.Cys537Stop, results in a truncation within the carboxyl-terminal transmembrane helix. We predict that as a consequence of the truncation, the variant TM is shed from the endothelial surface into the blood plasma. This would promote systemic protein C activation and early cessation of thrombin generation within a developing hemostatic clot, thereby explaining the phenotype of posttraumatic bleeding observed within this family.
Collapse
|
18
|
Characterization of platelet aminophospholipid externalization reveals fatty acids as molecular determinants that regulate coagulation. Proc Natl Acad Sci U S A 2013; 110:5875-80. [PMID: 23530199 DOI: 10.1073/pnas.1222419110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aminophospholipid (APL) trafficking across the plasma membrane is a key event in cell activation, apoptosis, and aging and is required for clearance of dying cells and coagulation. Currently the phospholipid molecular species externalized are unknown. Using a lipidomic method, we show that thrombin, collagen, or ionophore-activated human platelets externalize two phosphatidylserines (PSs) and five phosphatidylethanolamines (PEs). Four percent of the total cellular PE/PS pool (∼300 ng/2 × 10(8) cells, thrombin), is externalized via calcium mobilization and protease-activated receptors-1 and -4, and 48% is contained in microparticles. Apoptosis and energy depletion (aging) externalized the same APLs in a calcium-dependent manner, and all stimuli externalized oxidized phospholipids, termed hydroxyeicosatetraenoic acid-PEs. Transmembrane protein-16F (TMEM-16F), the protein mutated in Scott syndrome, was required for PE/PS externalization during thrombin activation and energy depletion, but not apoptosis. Platelet-specific APLs optimally supported tissue factor-dependent coagulation in human plasma, vs. APL with longer or shorter fatty acyl chains. This finding demonstrates fatty acids as molecular determinants of APL that regulate hemostasis. Thus, the molecular species of externalized APL during platelet activation, apoptosis, and energy depletion were characterized, and their ability to support coagulation revealed. The findings have therapeutic implications for bleeding disorders and transfusion therapy. The assay could be applied to other cell events characterized by APL externalization, including cell division and vesiculation.
Collapse
|
19
|
Duramycin exhibits antiproliferative properties and induces apoptosis in tumour cells. Blood Coagul Fibrinolysis 2013; 23:396-401. [PMID: 22543977 DOI: 10.1097/mbc.0b013e3283538875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Duramycin is a polypeptide that binds specifically to phosphatidylethanolamine (PE) on cell surfaces with high affinity, and has been shown to disrupt tumour cell surface-based coagulation and exhibit weak antimicrobial activity. The aim of the present study was to characterize the effect of duramycin on tumour cell proliferation and viability. Duramycin was used to detect phosphatidylethanolamine expression on cell lines by flow cytometry. Cells were cultured in the presence of duramycin and proliferation and cell viability assessed. Electron microscopy and confocal microscopy were utilized to investigate cell membrane structure after duramycin treatment. Pancreatic tumour cells were shown to express phosphatidylethanolamine on their cell surfaces by specific labelling with duramycin. Phosphatidylethanolamine expression was generally increased in apoptotic cells and more so in necrotic cells. Cells cultured in the presence of duramycin showed increasing levels of apoptosis and ultimately necrosis with increasing duramycin concentrations, and cell proliferation was reduced in a duramycin dose-dependent manner between 0.125 and 12.5 μmol/l. Tissue factor expression was also reduced when cells were cultured in the presence of duramycin. Cells imaged by electron microscopy were fragile, suggesting that membrane integrity was compromised by duramycin, although no obvious differences in membrane structure were observed by live cell confocal imaging. Duramycin induced apoptosis and exhibited antiproliferative and anticoagulant effects on pancreatic tumour cells, most probably by disrupting cell membrane structure and/or function.
Collapse
|
20
|
Pancreatic cancer cell and microparticle procoagulant surface characterization: involvement of membrane-expressed tissue factor, phosphatidylserine and phosphatidylethanolamine. Blood Coagul Fibrinolysis 2012; 22:680-7. [PMID: 21941170 DOI: 10.1097/mbc.0b013e32834ad7bc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Advanced pancreatic cancer is associated with a high risk of patients developing venous thromboembolism. This increased risk is thought to be tumour-driven and associated with tissue factor (TF) and microparticles. The aim of this study was to investigate the role of TF and phospholipid expression in the procoagulant properties of pancreatic cell lines and microparticles. Pancreatic cancer cell lines (MIA-PaCa-2, ASPC-1 and CFPAC-1) were assessed for expression of TF and microparticle release. Procoagulant potential was determined by a prothrombin time assay. Cell surface expression of TF was highest in CFPAC-1, with low expression on ASPC-1 and little/no expression on MIA-PaCa-2. Clotting time (CT) was cell number and TF-dependent (P < 0.001). Blocking of TF resulted in slower CT for CFPAC-1 and ASPC1 and prevented clotting in MIA-PaCa-2. Microparticles were shown to be procoagulant and the majority of procoagulant potential could be removed by passing cell-free media through a 0.1 μm filter. A dose-dependent CT was observed in both ASPC-1 and CFPAC-1 cell-free media. Furthermore, addition of duramycin prevented microparticle-supported coagulation. The data presented suggest a key role for cell and microparticle surface-expressed TF and phospholipids in coagulation and highlight duramycin-mediated disruption of clotting.
Collapse
|
21
|
Hokazono E, Tamezane H, Hotta T, Kayamori Y, Osawa S. Enzymatic assay of phosphatidylethanolamine in serum using amine oxidase from Arthrobacter sp. Clin Chim Acta 2011; 412:1436-40. [DOI: 10.1016/j.cca.2011.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/18/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
22
|
Supplementation with fatty acids influences the airway nitric oxide and inflammatory markers in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 2010; 50:537-44. [PMID: 20639712 DOI: 10.1097/mpg.0b013e3181b47967] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To obtain a balance in the fatty acid (FA) metabolism is important for the inflammatory response and of special importance in cystic fibrosis (CF), which is characterized by impaired FA metabolism, chronic inflammation, and infection in the airways. Nitric oxide (NO) has antimicrobial properties and low nasal (nNO) and exhaled NO (FENO), commonly reported in CF that may affect bacterial status. The present study investigates the effect of different FA blends on nNO and FENO and immunological markers in patients with CF. PATIENTS AND METHODS Forty-three patients with CF and "severe" mutations were consecutively enrolled in a randomized double-blind placebo-controlled study with 3 FA blends containing mainly n-3 or n-6 FA or saturated FA acting as placebo. FENO, nNO, serum phospholipid concentrations of FA, and biomarkers of inflammation were measured before and after 3 months of supplementation. RESULTS Thirty-five patients in clinically stable condition completed the study. The serum phospholipid FA pattern changed significantly in all 3 groups. An increase of the n-6 FA, arachidonic acid, was associated with a decrease of FENO and nNO. The inflammatory biomarkers, erythrocyte sedimentation rate, and interleukin-8 decreased after supplementation with n-3 FA and erythrocyte sedimentation rate increased after supplementation with n-6 FA. CONCLUSIONS This small pilot study indicated that the composition of dietary n-3 and n-6 FA influenced the inflammatory markers in CF. FENO and nNO were influenced by changes in the arachidonic acid concentration, supporting previous studies suggesting that both the lipid abnormality and the colonization with Pseudomonas influenced NO in the airways.
Collapse
|
23
|
Thomas CP, Morgan LT, Maskrey BH, Murphy RC, Kühn H, Hazen SL, Goodall AH, Hamali HA, Collins PW, O'Donnell VB. Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. J Biol Chem 2010; 285:6891-903. [PMID: 20061396 PMCID: PMC2844139 DOI: 10.1074/jbc.m109.078428] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Here, a group of specific lipids, comprising phosphatidylethanolamine (PE)- or phosphatidylcholine (PC)-esterified 12S-hydroxyeicosatetraenoic acid (12S-HETE), generated by 12-lipoxygenase was identified and characterized. 12S-HETE-PE/PCs were formed within 5 min of activation by thrombin, ionophore, or collagen. Esterified HETE levels generated in response to thrombin were 5.85 ± 1.42 (PE) or 18.35 ± 4.61 (PC), whereas free was 65.5 ± 17.6 ng/4 × 107 cells (n = 5 separate donors, mean ± S.E.). Their generation was stimulated by triggering protease-activated receptors-1 and -4 and signaling via Ca2+ mobilization secretory phospholipase A2, platelet-activating factor-acetylhydrolase, src tyrosine kinases, and protein kinase C. Stable isotope labeling showed that they form predominantly by esterification that occurs on the same time scale as free acid generation. Unlike free 12S-HETE that is secreted, esterified HETEs remain cell-associated, with HETE-PEs migrating to the outside of the plasma membrane. 12-Lipoxygenase inhibition attenuated externalization of native PE and phosphatidylserine and HETE-PEs. Platelets from a patient with the bleeding disorder, Scott syndrome, did not externalize HETE-PEs, and liposomes supplemented with HETE-PC dose-dependently enhanced tissue factor-dependent thrombin generation in vitro. This suggests a role for these novel lipids in promoting coagulation. Thus, oxidized phospholipids form by receptor/agonist mechanisms, not merely as an undesirable consequence of vascular and inflammatory disease.
Collapse
|
24
|
Krisinger MJ, Guo LJ, Salvagno GL, Guidi GC, Lippi G, Dahlbäck B. Mouse recombinant protein C variants with enhanced membrane affinity and hyper-anticoagulant activity in mouse plasma. FEBS J 2009; 276:6586-602. [PMID: 19817854 DOI: 10.1111/j.1742-4658.2009.07371.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mouse anticoagulant protein C (461 residues) shares 69% sequence identity with its human ortholog. Interspecies experiments suggest that there is an incompatibility between mouse and human protein C, such that human protein C does not function efficiently in mouse plasma, nor does mouse protein C function efficiently in human plasma. Previously, we described a series of human activated protein C (APC) Gla domain mutants (e.g. QGNSEDY-APC), with enhanced membrane affinity that also served as superior anticoagulants. To characterize these Gla mutants further in mouse models of diseases, the analogous mutations were now made in mouse protein C. In total, seven mutants (mutated at one or more of positions P(10)S(12)D(23)Q(32)N(33)) and wild-type protein C were expressed and purified to homogeneity. In a surface plasmon resonance-based membrane-binding assay, several high affinity protein C mutants were identified. In Ca(2+) titration experiments, the high affinity variants had a significantly reduced (four-fold) Ca(2+) requirement for half-maximum binding. In a tissue factor-initiated thrombin generation assay using mouse plasma, all mouse APC variants, including wild-type, could completely inhibit thrombin generation; however, one of the variants denoted mutant III (P10Q/S12N/D23S/Q32E/N33D) was found to be a 30- to 50-fold better anticoagulant compared to the wild-type protein. This mouse APC variant will be attractive to use in mouse models aiming to elucidate the in vivo effects of APC variants with enhanced anticoagulant activity.
Collapse
Affiliation(s)
- Michael J Krisinger
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, University Hospital, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
25
|
Cardigan R, Philpot K, Cookson P, Luddington R. Thrombin generation and clot formation in methylene blue-treated plasma and cryoprecipitate. Transfusion 2009; 49:696-703. [PMID: 19170989 DOI: 10.1111/j.1537-2995.2008.02039.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Methylene blue (MB) treatment of plasma is known to reduce the activity of clotting factors, but its effect on thrombin generation and clot formation is not well documented. STUDY DESIGN AND METHODS Individual clotting factors and inhibitors and global tests of thrombin generation and clot formation using rotational thrombelastometry (ROTEM) were assessed in a paired study of standard or MB plasma and cryoprecipitate (n = 20 each). RESULTS MB treatment resulted in a 10 percent reduction in endogenous thrombin potential and 30 percent decrease in peak thrombin as well as the expected 20 to 35 percent loss of Factor (F)VIII, fibrinogen, and FXI activity. MB treatment had no effect on the rate of clot formation and increased the clot firmness by 20 percent as assessed by ROTEM. There were minimal further changes in either coagulation factor levels or thrombin generation when thawed plasma was stored for an additional 24 hours. FVIII and fibrinogen content of MB cryoprecipitate was reduced by 30 and 40 percent, respectively, but this was not associated with altered clot time or rate of clot formation by ROTEM and only an 8 percent decrease in clot firmness. CONCLUSIONS It is concluded that MB treatment is associated with a reduction in the thrombin-generating capacity of plasma, but has very little effect on the strength of clot formation as assessed by thrombelastometry. The thrombin-generating capacity of standard and MB plasma is relatively unaltered by subsequent storage of thawed plasma at 4 degrees C for 24 hours.
Collapse
|
26
|
Dargaud Y, Luddington R, Gray E, Negrier C, Lecompte T, Petros S, Hogwood J, Bordet JC, Regnault V, Siegemund A, Baglin T. Effect of standardization and normalization on imprecision of calibrated automated thrombography: an international multicentre study. Br J Haematol 2008; 139:303-9. [PMID: 17897307 DOI: 10.1111/j.1365-2141.2007.06785.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calibrated automated thrombography (CAT) enables continuous measurement of thrombin generation (TG). Initial clinical studies using the CAT method showed large variability of normal values, indicating the necessity for a standardized CAT protocol. This international study assessed the intra- and inter-assay imprecision of CAT as well as the inter-centre variability of results in five European centres using locally available reagents and conditions (study 1) and a standardized protocol in which results were normalized (study 2). Samples with and without corn trypsin inhibitor from six healthy volunteers, two haemophilia patients and one protein C deficient patient were assayed. Study 1 confirmed that the use of different sources and concentrations of tissue factor (TF) and different phospholipid (PL) mixtures produced large variability in results. The second study demonstrated that, using the same source and concentration of TF, PL and the same test procedure, this variability could be significantly reduced. Normalization of results improved the inter-centre variability. The benefit of contact factor inhibition prior to TG measurement was confirmed. These results demonstrated that standardization of CAT reduces the variability of results to acceptable limits. Standardization and normalization should be considered in future clinical studies which apply TG testing to clinical decision making.
Collapse
Affiliation(s)
- Yesim Dargaud
- Department of Haematology, Addenbrooke's NHS Trust, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Miclea RD, Purohit VS, Balu-Iyer SV. O-phospho-L-serine, multi-functional excipient for B domain deleted recombinant factor VIII. AAPS JOURNAL 2007; 9:E251-9. [PMID: 17907766 PMCID: PMC2573386 DOI: 10.1208/aapsj0902028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Factor VIII (FVIII) is an important cofactor in the blood coagulation cascade. A deficiency or dysfunction of FVIII causes hemophilia A, a life-threatening bleeding disorder. FVIII circulates in plasma as a heterodimer comprising 6 domains (heavy chain, A1-A2-B and light chain, A3-C1-C2). Replacement therapy using FVIII is the leading therapy in the management of hemophilia A. However, approximately 15% to 30% of patients develop inhibitory antibodies that neutralize the activity of the protein. Neutralizing antibodies to epitopes in the lipid binding region of FVIII are commonly identified in patients' plasma. In this report, we investigated the effect of O-phospho-L-serine (OPLS), which binds to the lipid binding region, on the immunogenicity of B domain deleted recombinant factor VIII (BDDrFVIII). Sandwich enzyme-linked immunosorbent assay (ELISA) studies showed that OPLS specifically bind to the lipid binding region, localized in the C2 domain of the coagulation factor. Size exclusion chromatography and fluorescence anisotropy studies showed that OPLS interfered with the aggregation of BDDrFVIII. Immunogenicity of free- vs BDDrFVIII-OPLS complex was evaluated in a murine model of hemophilia A. Animals administered subcutaneous (sc) injections of BDDrFVIII-OPLS had lower neutralizing titers compared with animals treated with BDDrFVIII alone. Based on these studies, we hypothesize that specific molecular interactions between OPLS and BDDrFVIII may improve the stability and reduce the immunogenicity of BDDrFVIII formulations.
Collapse
Affiliation(s)
- Razvan D. Miclea
- />Department of Molecular & Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY
| | - Vivek S. Purohit
- />Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 14260 Buffalo, NY
| | - Sathy V. Balu-Iyer
- />Department of Molecular & Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY
- />Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 14260 Buffalo, NY
| |
Collapse
|
28
|
Lin L, Huai Q, Huang M, Furie B, Furie BC. Crystal structure of the bovine lactadherin C2 domain, a membrane binding motif, shows similarity to the C2 domains of factor V and factor VIII. J Mol Biol 2007; 371:717-24. [PMID: 17583728 PMCID: PMC2701442 DOI: 10.1016/j.jmb.2007.05.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 05/09/2007] [Accepted: 05/18/2007] [Indexed: 11/29/2022]
Abstract
Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 A. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C(alpha) atoms of 0.9 A and 1.2 A, and sequence identities of 43% and 38%, respectively). The lactadherin C2 domain has a discoidin-like fold containing two beta-sheets of five and three antiparallel beta-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One beta-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain beta-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.
Collapse
Affiliation(s)
- Lin Lin
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
29
|
Hasanbasic I, Rajotte I, Blostein M. The role of gamma-carboxylation in the anti-apoptotic function of gas6. J Thromb Haemost 2005; 3:2790-7. [PMID: 16359517 DOI: 10.1111/j.1538-7836.2005.01662.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gas6 is a novel member of the vitamin K-dependent family of gamma-carboxylated proteins and is a ligand for the receptor tyrosine kinase Axl. Gas6-Axl interactions have been shown to mediate cell survival in vascular endothelium. Although the receptor-binding portion of gas6 lies in the C-terminus, the significance of the N-terminal gamma-carboxylated residues (Gla domain) is not clear. To address this question, this study examines the role of the Gla domain in phospholipid binding as well as in the promotion of cell survival, especially in endothelial cells. The results show that carboxylated gas6 binds to phosphatidylserine-containing phospholipid membranes in an analogous manner to other gamma-carboxylated proteins whereas decarboxylated gas6 does not. The gamma-carboxylation inhibitor warfarin abrogates gas6-mediated protection of NIH3T3 fibroblasts from serum starvation-induced apoptosis. Furthermore, the role of gamma-carboxylation in gas6's survival effect on endothelium is demonstrated directly in that only carboxylated, but not decarboxylated, gas6 protects endothelial cells from serum starvation-induced apoptosis. gamma-carboxylation is also required for both Axl phosphorylation and PI3 kinase activation. Taken together, these findings demonstrate that gamma-carboxylation is necessary not only for gas6 binding to phospholipid membranes, but also for gas6-mediated endothelial cell survival.
Collapse
Affiliation(s)
- I Hasanbasic
- The Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
30
|
Luddington R, Baglin T. Clinical measurement of thrombin generation by calibrated automated thrombography requires contact factor inhibition. J Thromb Haemost 2004; 2:1954-9. [PMID: 15550027 DOI: 10.1111/j.1538-7836.2004.00964.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Measurement of thrombin generation by calibrated automated thrombography (CAT) could fulfill the requirements of a global test of coagulability and is potentially applicable to routine clinical laboratory practice. The purpose of this study was to determine if corn trypsin inhibitor (CTI) could be used to abolish contact factor activation in this assay, thus allowing accurate measurement of low tissue factor (TF) concentration-triggered thrombin generation on samples taken in a routine clinical setting. METHODS The endogenous thrombin potential (ETP) was measured by CAT. RESULTS The study demonstrated that addition of CTI after plasma separation is not sufficient and blood must be drawn into tubes containing CTI if in-vitro contact factor-activated thrombin generation is to be abolished. Contact factor-activated thrombin generation is completely inhibited at a CTI concentration of 18.3 microg mL(-1) whole blood. Increasing the CTI concentration above this level does not lead to suppression of the TF-triggered ETP. At a TF concentration of 2 pmol, ETPs were significantly lower in the presence of CTI (P < 0.001). The difference (no CTI minus CTI) between results ranged from - 1 to 2159 nM min(-1) (median - 754). Whilst the low concentration TF-ETP assay was not optimized to distinguish degrees of coagulability between patient samples, there was a significant difference in ETP between normal and hemophilia samples and samples from patients with a clinical prothrombotic tendency. CONCLUSIONS CTI can be applied to ETP measurement by CAT. This permits the use of CAT in a low TF-triggered thrombin generation assay without concern for the effect of interference from in-vitro contact factor activation and the optimum reagent conditions for using CAT as a global test of coagulability in clinical practice can now be defined.
Collapse
Affiliation(s)
- R Luddington
- Department of Haematology, Addenbrooke's NHS Trust, Cambridge, UK.
| | | |
Collapse
|
31
|
Chan CWY, Chan MWC, Liu M, Fung L, Cole EH, Leibowitz JL, Marsden PA, Clark DA, Levy GA. Kinetic analysis of a unique direct prothrombinase, fgl2, and identification of a serine residue critical for the prothrombinase activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5170-7. [PMID: 11994472 DOI: 10.4049/jimmunol.168.10.5170] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
fgl2 prothrombinase, by its ability to generate thrombin, has been shown to be pivotal to the pathogenesis of viral-induced hepatitis, cytokine-induced fetal loss syndrome, and xeno- and allograft rejection. In this study, the molecular basis of fgl2 prothrombinase activity was examined in detail. Purified fgl2 protein generated in a baculovirus expression system had no measurable prothrombinase activity, whereas the activity was restored when the purified protein was reconstituted into phosphatidyl-L-serine-containing vesicles. Reconstituted fgl2 catalyzed the cleavage of human prothrombin to thrombin with kinetics consistent with a first order reaction, with an apparent V(max) value of 6 mol/min/mol fgl2 and an apparent K(m) value for prothrombin of 8.3 microM. The catalytic activity was totally dependent on calcium, and factor Va (500 nM) enhanced the catalytic efficiency of fgl2 by increasing the apparent V(max) value to 3670 mol/min/mol fgl2 and decreasing the apparent K(m) value for prothrombin to 7.2 microM. By a combination of site-directed mutagenesis and production of truncated proteins, it was clearly shown that residue Ser(89) was critical for the prothrombinase activity of fgl2. Furthermore, fgl2 prothrombinase activity was not inhibited by antithrombin III, soybean trypsin inhibitor, 4-aminobenzamidine, aprotinin, or phenylmethylsulfonyl fluoride, whereas diisopropylfluorophosphate completely abrogated the activity. In this work we provide direct evidence that fgl2 cleaves prothrombin to thrombin consistent with serine protease activity and requires calcium, phospholipids, and factor Va for its full activity.
Collapse
Affiliation(s)
- Camie W Y Chan
- Multi Organ Transplant Program, Toronto General Hospital and University of Toronto, 621 University Avenue 10th Floor, Room 116, Toronto, Ontario M5G 2C4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Klein S, Spannagl M, Engelmann B. Phosphatidylethanolamine Participates in the Stimulation of the Contact System of Coagulation by Very-Low-Density Lipoproteins. Arterioscler Thromb Vasc Biol 2001. [DOI: 10.1161/atvb.21.10.1695] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sonja Klein
- Physiologisches Institut der Universität München (S.K., B.E.), and Abteilung Hämostaseologie (M.S.), Universität München, München, Germany
| | - Michael Spannagl
- Physiologisches Institut der Universität München (S.K., B.E.), and Abteilung Hämostaseologie (M.S.), Universität München, München, Germany
| | - Bernd Engelmann
- Physiologisches Institut der Universität München (S.K., B.E.), and Abteilung Hämostaseologie (M.S.), Universität München, München, Germany
| |
Collapse
|
33
|
Falls LA, Furie BC, Jacobs M, Furie B, Rigby AC. The omega-loop region of the human prothrombin gamma-carboxyglutamic acid domain penetrates anionic phospholipid membranes. J Biol Chem 2001; 276:23895-902. [PMID: 11312259 DOI: 10.1074/jbc.m008332200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrophobic omega-loop within the prothrombin gamma-carboxyglutamic acid-rich (Gla) domain is important in membrane binding. The role of this region in membrane binding was investigated using a synthetic peptide, PT-(1-46)F4W, which includes the N-terminal 46 residues of human prothrombin with Phe-4 replaced by Trp providing a fluorescent probe. PT-(1-46)F4W and PT-(1-46) bind calcium ions and phospholipid membranes, and inhibit the prothrombinase complex. PT-(1-46)F4W, but not PT-(1-46), exhibits a blue shift (5 nm) and red-edge excitation shift (28 nm) in the presence of phosphatidylserine (PS)-containing vesicles, suggesting Trp-4 is located within the motionally restricted membrane interfacial region. PS-containing vesicles protect PT-(1-46)F4W, but not PT-(1-46), fluorescence from potassium iodide-induced quenching. Stern-Volmer analysis of the quenching of PT-(1-46)F4W in the presence and absence of 80% phosphatidylcholine/20% PS vesicles suggested that Trp-4 is positioned within the membrane and protected from aqueous quenching agents whereas Trp-41 remains solvent-accessible in the presence of PS-containing vesicles. Fluorescence quenching of membrane-bound PT-(1-46)F4W is optimal with 7- and 10-doxyl-labeled lipids, indicating that Trp-4 is inserted 5 to 7 A into the bilayer. This report demonstrates that the omega-loop region of prothrombin specifically interacts with PS-containing membranes within the interfacial membrane region.
Collapse
Affiliation(s)
- L A Falls
- Division of Hemostasis and Thrombosis Research, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|