1
|
Beihaghi M, Sahebi R, Beihaghi MR, Nessiani RK, Yarasmi MR, Gholamalizadeh S, Shahabnavaie F, Shojaei M. Evaluation of rs10811661 polymorphism in CDKN2A / B in colon and gastric cancer. BMC Cancer 2023; 23:985. [PMID: 37845622 PMCID: PMC10577985 DOI: 10.1186/s12885-023-11461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
One of the causes of colon and gastric cancer is the dysregulation of carcinogenic genes, tumor inhibitors, and micro-RNA. The purpose of this study is to apply rs10811661 polymorphism in CDKN2A /B gene as an effective biomarker of colon cancer and early detection of gastric cancer. As a result,400 blood samples, inclusive of 200 samples from healthy individuals and 200 samples (100 samples from intestinal cancer,100 samples from stomach cancer) from the blood of someone with these cancers, to determine the genotype of genes in healthful and ill people through PCR-RFLP approach and Allelic and genotypic tests of SPSS software. To observe the connection between gastric cancer and bowel cancer risk and genotypes, the t-student test for quantitative variables and Pearson distribution for qualitative variables have been tested and the results have been evaluated using the Chi-square test. The effects confirmed that the highest frequency of TT genotypes is in affected individuals and CC genotype is in healthful individuals. In addition, it confirmed that women were more inclined than men to T3 tumor invasion and most grade II and III colon cancers, and in older sufferers with gastric cancer, the grade of tumor tended to be grade I. Among genetic variety and rs10811661, with invasiveness, there is a tumor size and degree in the affected person. In summary, our findings suggest that the rs10811661 polymorphism of the CDKN2A / B gene is strongly associated with the occurrence of intestinal cancer and stomach is linked to its potential role as a prognostic biomarker for the management of bowel cancer and stomach.
Collapse
Affiliation(s)
- Maria Beihaghi
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran.
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Reza Sahebi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Beihaghi
- Department of Public Health, Sheffield Hallam University, Sheffield, South Yorkshire, England
| | | | | | | | | | - Mitra Shojaei
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Fuentes-Calvo I, Martinez-Salgado C. Sos1 Modulates Extracellular Matrix Synthesis, Proliferation, and Migration in Fibroblasts. Front Physiol 2021; 12:645044. [PMID: 33889087 PMCID: PMC8055938 DOI: 10.3389/fphys.2021.645044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/05/2021] [Indexed: 01/06/2023] Open
Abstract
Non-reversible fibrosis is common in various diseases such as chronic renal failure, liver cirrhosis, chronic pancreatitis, pulmonary fibrosis, rheumatoid arthritis and atherosclerosis. Transforming growth factor beta 1 (TGF-β1) is involved in virtually all types of fibrosis. We previously described the involvement of Ras GTPase isoforms in the regulation of TGF-β1-induced fibrosis. The guanine nucleotide exchange factor Son of Sevenless (Sos) is the main Ras activator, but the role of the ubiquitously expressed Sos1 in the development of fibrosis has not been studied. For this purpose, we isolated and cultured Sos1 knock-out (KO) mouse embryonic fibroblasts, the main extracellular matrix proteins (ECM)-producing cells, and we analyzed ECM synthesis, cell proliferation and migration in the absence of Sos1, as well as the role of the main Sos1-Ras effectors, Erk1/2 and Akt, in these processes. The absence of Sos1 increases collagen I expression (through the PI3K-Akt signaling pathway), total collagen proteins, and slightly increases fibronectin expression; Sos1 regulates fibroblast proliferation through both PI3K-Akt and Raf-Erk pathways, and Sos1-PI3K-Akt signaling regulates fibroblast migration. These study shows that Sos1 regulates ECM synthesis and migration (through Ras-PI3K-Akt) and proliferation (through Ras-PI3K-Akt and Ras-Raf-Erk) in fibroblasts, and describe for the first time the role of the Sos1-Ras signaling axis in the regulation of cellular processes involved in the development of fibrosis.
Collapse
Affiliation(s)
- Isabel Fuentes-Calvo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Translational Research on Renal and Cardiovascular Diseases (TRECARD)-REDINREN (ISCIII), Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Carlos Martinez-Salgado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Translational Research on Renal and Cardiovascular Diseases (TRECARD)-REDINREN (ISCIII), Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| |
Collapse
|
3
|
Sos1 disruption impairs cellular proliferation and viability through an increase in mitochondrial oxidative stress in primary MEFs. Oncogene 2016; 35:6389-6402. [PMID: 27157612 DOI: 10.1038/onc.2016.169] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 03/31/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022]
Abstract
Using a 4-hydroxytamoxifen (4OHT)-inducible, conditional Sos1-null mutation, we analyzed wild-type (WT), single Sos1-KO, Sos2-KO and double Sos1/2 KO primary mouse embryonic fibroblasts (MEF) with an aim at evaluating the functional specificity or redundancy of the Sos1 and Sos2 alleles at the cellular level. The 4OHT-induced Sos1-KO and Sos1/2-DKO MEFs exhibited distinct flat morphology, enlarged cell perimeter and altered cytoskeletal organization that were not observed in the WT and Sos2-KO counterparts. The Sos1-KO and Sos1/2-DKO MEFs also displayed significant accumulation, in comparison with WT and Sos2-KO MEFs, of cytoplasmic vesicular bodies identified as autophagosomes containing degraded mitochondria by means of electron microscopy and specific markers. Cellular proliferation and migration were impaired in Sos1-KO and Sos1/2-DKO MEFs in comparison with WT and Sos2-KO MEFs, whereas cell adhesion was only impaired upon depletion of both Sos isoforms. RasGTP formation was practically absent in Sos1/2-DKO MEFs as compared with the other genotypes and extracellular signal-regulated kinase phosphorylation showed only significant reduction after combined Sos1/2 depletion. Consistent with a mitophagic phenotype, in vivo labeling with specific fluorophores uncovered increased levels of oxidative stress (elevated intracellular reactive oxygen species and mitochondrial superoxide and loss of mitochondrial membrane potential) in the Sos1-KO and the Sos1/2-DKO cells as compared with Sos2-KO and WT MEFs. Interestingly, treatment of the MEF cultures with antioxidants corrected the altered phenotypes of Sos1-KO and Sos1/2-DKO MEFs by restoring their altered perimeter size and proliferative rate to levels similar to those of WT and Sos2-KO MEFs. Our data uncover a direct mechanistic link between Sos1 and control of intracellular oxidative stress, and demonstrate functional prevalence of Sos1 over Sos2 with regards to cellular proliferation and viability.
Collapse
|
4
|
Rose DP, Vona-Davis L. The cellular and molecular mechanisms by which insulin influences breast cancer risk and progression. Endocr Relat Cancer 2012; 19:R225-41. [PMID: 22936542 DOI: 10.1530/erc-12-0203] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have related hyperinsulinemia and type 2 diabetes to an increased breast cancer risk, an aggressive and metastatic phenotype, and a poor prognosis. Furthermore, diabetic retinopathy arises from pathological angiogenesis, which is also essential for breast cancer growth and metastasis. Insulin stimulates the proliferation of some human breast cancer cell lines in vitro by mechanisms that use both the phosphatidylinositol-3 kinase and the mitogen-activated protein kinase/Akt signaling pathways; it is also a cell survival (anti-apoptotic) agent and enhances tumor cell migration and invasive capacity. Hyperinsulinemia affects breast cancer cells via the endocrine system, but experimental studies suggest the importance of paracrine mechanisms operating by the effects of insulin on the secretion of adipokines from tumor-associated adipose tissue. In such a system, one adipokine, leptin, has stimulatory paracrine effects on breast cancer cell proliferation and survival, while a second, adiponectin, is inhibitory. Leptin, vascular endothelial growth factor, another insulin-regulated adipokine, and insulin itself also stimulate angiogenesis. Insulin has complex interactions with estrogens: it induces adipose stromal cell aromatase and tumor cell sex steroid hormone receptor expression and suppresses sex hormone-binding globulin, which may enhance estrogen synthesis and bioactivity with consequent promotion of estrogen-dependent breast cancer. All these actions influence the later steps in breast cancer development but genetic studies are also revealing connections between gene abnormalities related to type 2 diabetes and the initiation stage of breast carcinogenesis. Understanding the various mechanisms by which insulin participates in breast cancer cell biology provides opportunities for novel approaches to treatment.
Collapse
Affiliation(s)
- David P Rose
- Department of Surgery, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, 26506, USA
| | | |
Collapse
|
5
|
Cui ZG, Hong NY, Guan J, Kang HK, Lee DH, Lee YK, Park DB. cAMP antagonizes ERK-dependent antiapoptotic action of insulin. BMB Rep 2011; 44:205-10. [PMID: 21429300 DOI: 10.5483/bmbrep.2011.44.3.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulin has antiapoptotic activity in various cell types. However, the signaling pathways underlying the antiapoptotic activity of insulin is not yet known. This study was conducted to determine if cAMP affects the antiapoptotic activity of insulin and the activity of PI3K and ERK in CHO cells expressing human insulin receptors (CHO-IR). Insulin-stimulated ERK activity was completely suppressed by cAMP-elevating agents like as pertussis toxin (Ptx) and cholera toxin (Ctx) after 4 h treatment. Insulin-stimulated PKB/Akt activity was not affected at all. Ptx treatment together with insulin increased the number of apoptotic cells and the degree of DNA fragmentation. Ctx or 8-brcAMP treatment also increased the number of apoptotic cells and stimulated the cleavage of caspase-3 and the hydrolysis of PARP. Taken together, cAMP antagonizes the antiapoptotic activity of insulin and the main target molecule of cAMP in this process is likely ERK, not PI3K-dependent PKB/Akt.
Collapse
Affiliation(s)
- Zhi Gang Cui
- Department of Medicine, School of Medicine and Institute of Medical Science, Jeju National University, Korea
| | | | | | | | | | | | | |
Collapse
|
6
|
Wang T, Rohan TE, Gunter MJ, Xue X, Wactawski-Wende J, Rajpathak SN, Cushman M, Strickler HD, Kaplan RC, Wassertheil-Smoller S, Scherer PE, Ho GYF. A prospective study of inflammation markers and endometrial cancer risk in postmenopausal hormone nonusers. Cancer Epidemiol Biomarkers Prev 2011; 20:971-7. [PMID: 21415362 PMCID: PMC3096873 DOI: 10.1158/1055-9965.epi-10-1222] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND It is hypothesized that inflammation may mediate the relationship between obesity and endometrial cancer risk. We examined the associations of three inflammation markers, C-reactive protein (CRP), interleukin (IL)-6 and tumor necrosis factor (TNF)-α, with risk of endometrial cancer. METHODS A case-cohort study was nested within the Women's Health Initiative, a cohort of postmenopausal women. Baseline plasma samples of 151 incident endometrial cancer cases and 301 subcohort subjects not using hormones were assayed. RESULTS CRP, but not IL-6 or TNF-α, was positively associated with endometrial cancer risk after adjusting for age and BMI [HR comparing extreme quartiles (HR q(4)-q(1)) = 2.29; 95% CI = 1.13-4.65; P(trend) = 0.012). After additional adjustment for estradiol and insulin, this association was attenuated (HRq(4)-q(1) = 1.70; 95% CI = 0.78-3.68; P(trend) = 0.127). Obesity (BMI ≥ 30 kg/m(2)) was associated with endometrial cancer risk in an age-adjusted model. The obesity effect was reduced by 48%, 67%, and 77% when either estradiol, CRP, or insulin, respectively, was included in the model, and it became null when all three factors were adjusted for simultaneously. CONCLUSIONS The association between inflammation, as indicated by a relatively high level of CRP, and endometrial cancer risk may partially be explained by hyperinsulinemia and elevated estradiol. Nevertheless, all three factors contribute to and mediate the link between obesity and endometrial cancer in postmenopausal women not using hormones. IMPACT The association between obesity and endometrial cancer risk in postmenopausal women may be attributed to inflammation, insulin resistance, and elevated estrogen.
Collapse
Affiliation(s)
- Tao Wang
- Division of Biostatistics, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang B, Li S, Harbrecht BG. Akt-mediated signaling is induced by cytokines and cyclic adenosine monophosphate and suppresses hepatocyte inducible nitric oxide synthase expression independent of MAPK P44/42. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:73-9. [PMID: 20934465 DOI: 10.1016/j.bbamcr.2010.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 11/26/2022]
Abstract
Cyclic AMP inhibits the expression of nitric oxide synthase (Harbrecht et al., 1995 [1]) in hepatocytes but the mechanism for this effect is incompletely understood. Cyclic AMP can activate several intracellular signaling pathways in hepatocytes including Protein Kinase A (PKA), cAMP regulated guanine nucleotide exchange factors (cAMP-GEFs), and calcium-mediated Protein Kinases. There is considerable overlap and cross-talk between many of these signaling pathways, however, and how these cascades regulate hepatocyte iNOS is not known. We hypothesized that Akt mediates the effect of cAMP on hepatocyte iNOS expression. Hepatocytes cultured with cytokines and dbcAMP increased Akt phosphorylation up to 2h of culture. Akt phosphorylation was inhibited by the PI3K inhibitor LY294002 (10μM), farnyltranferase inhibitor FTI-276, or transfection with a dominant negative Akt. The cyclic AMP-induced suppression of cytokine-stimulated iNOS was partially reversed by LY294002 and FTI-276. LY294002 also increased NFκB nucleus translocation by Western blot analysis in nuclear extracts. Cyclic AMP increased phosphorylation of Raf1 at serine 259 which was blocked by LY294002 and associated with decreased MAPK P44/42 phosphorylation. However, inhibition of MAPK P44/42 signaling with PD98059 failed to suppress cytokine-induced hepatocyte iNOS expression and did not enhance the inhibitory effect of dbcAMP on iNOS production. A constitutively active MAPK P44/42 plasmid had no effect on cytokine-stimulated NO production. These data demonstrate that dbcAMP regulates hepatocyte iNOS expression through an Akt-mediated signaling mechanism that is independent of MAPK P44/42.
Collapse
Affiliation(s)
- Baochun Zhang
- University of Louisville, Department of Surgery, Louisville, KY 40292, USA.
| | | | | |
Collapse
|
8
|
Liu HW, Cheng B, Yu WL, Sun RX, Zeng D, Wang J, Liao YX, Fu XB. Angiotensin II regulates phosphoinositide 3 kinase/Akt cascade via a negative crosstalk between AT1 and AT2 receptors in skin fibroblasts of human hypertrophic scars. Life Sci 2006; 79:475-83. [PMID: 16522324 DOI: 10.1016/j.lfs.2006.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 12/23/2005] [Accepted: 01/20/2006] [Indexed: 11/27/2022]
Abstract
Angiotensin II (Ang II) stimulation has been shown to regulate proliferation of skin fibroblasts and production of extracellular matrix, which are very important process in skin wound healing and scarring; however, the signaling pathways involved in this process, especially in humans, are less explored. In the present study, we used skin fibroblasts of human hypertrophic scar, which expressed both AT1 and AT2 receptors, and observed that Ang II increased Akt phosphorylation and phosphoinositide 3 kinase (PI 3-K) activity. In addition, the Ang II-induced Akt phosphorylation was blocked by wortmannin, a PI 3-K inhibitor. This Ang II-activated PI 3-K/Akt cascade was markedly inhibited by valsartan, an AT(1) receptor-specific blocker, whereas it was enhanced by PD123319, an AT(2) receptor antagonist. On the other hand, the Ang II- or EGF-induced activation of PI 3-K/Akt was strongly attenuated by AG1478, an inhibitor of epidermal growth factor (EGF) receptor kinase. Moreover, Ang II stimulated tyrosine phosphorylation of EGF receptor and p85alpha subunit of PI 3-K accompanied by an increase in their association, which was inhibited by valsartan, and enhanced by PD123319. The Ang II-induced transactivation of EGF receptor resulted in activation of extracellular signal-regulated kinase (ERK) that was also inhibited by valsartan, and enhanced by PD123319. Taken together, our results showed that AT(1) receptor-mediated activation of PI 3-K/Akt cascades occurs at least partially via the transactivation of EGF receptor, which is under a negative control by AT(2) receptor in hypertrophic scar fibroblasts. These findings contribute to understanding the molecular mechanism of human hypertrophic scar formation.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Cells, Cultured
- Cicatrix, Hypertrophic/metabolism
- Cicatrix, Hypertrophic/pathology
- Enzyme Activation/drug effects
- ErbB Receptors/genetics
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Humans
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation/drug effects
- Phosphotransferases/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Cross-Talk/drug effects
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Signal Transduction/drug effects
- Skin/cytology
- Transcriptional Activation/genetics
Collapse
Affiliation(s)
- Hong-Wei Liu
- Department of Plastic Surgery, Guangzhou Liuhuaqiao Hospital, Liuhua road 111, Guangzhou, Guangdong Province 510010, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kang S, Song J, Kang J, Kang H, Lee D, Lee Y, Park D. Suppression of the alpha-isoform of class II phosphoinositide 3-kinase gene expression leads to apoptotic cell death. Biochem Biophys Res Commun 2005; 329:6-10. [PMID: 15721265 DOI: 10.1016/j.bbrc.2005.01.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Indexed: 11/24/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) have known to be key enzymes activating intracellular signaling molecules when a number of growth factors bind to their cell surface receptors. PI3Ks are divided into three classes (I, II, and III) and enzymes of each class have different tissue-specificities and physiological functions. Class II PI3Ks consist of three isoforms (alpha,beta,gamma). Although the alpha-isoform (PI3K-C2alpha) is considered ubiquitous and preferentially activated by insulin rather than the beta-isoform, the physiological significance of PI3K-C2alpha is poorly understood. The present study aimed to determine whether PI3K-C2alpha is associated with the suppression of apoptotic cell death. Different sense- and antisense oligonucleotides (ODNs) were synthesized based on the sequence of C2 domain of PI3K-C2alpha gene. Transfection of CHO-IR cells with two different antisense ODNs clearly reduced the protein content as well as mRNA levels of PI3K-C2alpha whereas neither the nonspecific mock- nor sense ODNs affected. The decrease of PI3K-C2alpha gene expression was paralleled by cellular changes indicating apoptotic cell death such as nuclear condensation, formation of apoptotic bodies, and DNA fragmentation. PI3K-C2alpha mRNA levels were also reduced when cells were incubated in growth factor-deficient medium. Supplementing growth factors (serum or insulin) into medium lead to an increase of PI3K-C2alpha mRNA levels. This finding strongly suggests that PI3K-C2alpha is a crucial survival factor.
Collapse
Affiliation(s)
- Shinhae Kang
- Technology Innovation Center, Cheju National University, Jeju, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Orzechowski A. Justification for antioxidant preconditioning (or how to protect insulin-mediated actions under oxidative stress). J Biosci 2003; 28:39-49. [PMID: 12682423 DOI: 10.1007/bf02970130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insulin resistance is characterized by impaired glucose utilization in the peripheral tissues, accelerated muscle protein degradation, impaired antioxidant defences and extensive cell death. Apparently, both insulin and IGF-1 at physiological concentrations support cell survival by phosphatidylinositol 3 kinase-dependent and independent mechanisms. Postprandial hyperglycemia and hyperinsulinemia are found in insulin resistance, which accompanies the so-called noninsulin dependent diabetes mellitus (diabetes type 2). Evidence also indicates that increased susceptibility of muscle cells and cardiomycoytes to oxidative stress is among the harmful complications of insulin resistance and diabetes. Limited knowledge showing benefits of preconditioning with anti- oxidants (vitamin C, E, a-lipoic acid, N-acetylcysteine) in order to protect insulin action under oxidative stress prompted the author to discuss the theoretical background to this approach. It should be stressed that antioxidant preconditioning is relevant to prevention of both diabetes- and insulin resistance-associated side-effects such as low viability and cell deletion. Furthermore, antioxidant conditioning promises to provide higher efficacy for clinical applications in myoblast transfer therapy and cardiomyoplasty.
Collapse
Affiliation(s)
- A Orzechowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw Agricultural University, 02-787 Warsaw, Nowoursynowska 159, Poland.
| |
Collapse
|
11
|
Ho GYF, Melman A, Liu SM, Li M, Yu H, Negassa A, Burk RD, Hsing AW, Ghavamian R, Chua SC. Polymorphism of the insulin gene is associated with increased prostate cancer risk. Br J Cancer 2003; 88:263-9. [PMID: 12610512 PMCID: PMC2377060 DOI: 10.1038/sj.bjc.6600747] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
High insulin levels are linked with increased cancer risk, including prostate cancer. We examined the associations between prostate cancer with polymorphisms of the insulin gene (INS) and its neighbouring genes, tyrosine-hydroxylase and IGF-II (TH and IGF2). In this study, 126 case-control pairs matched on age, race, and countries of origin were genotyped for +1127 INS-PstI in INS, -4217 TH-PstI in TH, and +3580 IGF2-MspI in IGF2. The homozygous CC genotype of +1127 INS-PstI occurred in over 60% of the population. It was associated with an increased risk of prostate cancer in nondiabetic Blacks and Caucasians (OR=3.14, P=0.008). The CC genotype was also associated with a low Gleason score <7 (OR=2.60, P=0.022) and a late age of diagnosis (OR=2.10, P=0.046). Markers in the neighbouring genes of INS showed only null to modest associations with prostate cancer. The polymorphism of INS may play a role in the aetiology of prostate cancer. Given the high prevalence of the CC genotype and its association with late age of onset of low-grade tumours, this polymorphism may contribute to the unique characteristics of prostate cancer, namely a high prevalence of indolent cancers and the dramatic increase in incidence with age.
Collapse
Affiliation(s)
- G Y F Ho
- Department of Epidemiology and Social Medicine, Albert Eistein College of Medicine, Bronx, New York, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cui TX, Nakagami H, Nahmias C, Shiuchi T, Takeda-Matsubara Y, Li JM, Wu L, Iwai M, Horiuchi M. Angiotensin II subtype 2 receptor activation inhibits insulin-induced phosphoinositide 3-kinase and Akt and induces apoptosis in PC12W cells. Mol Endocrinol 2002; 16:2113-23. [PMID: 12198247 DOI: 10.1210/me.2001-0284] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the present study, we identified novel negative cross-talk between the angiotensin II subtype 2 (AT2) receptor and insulin receptor signaling in the regulation of phosphoinositide 3-kinase (PI3K), Akt, and apoptosis in rat pheochromocytoma cell line, PC12W cells, which exclusively express AT2 receptor. We demonstrated that insulin-mediated insulin receptor substrate (IRS)-2-associated PI3K activity was inhibited by AT2 receptor stimulation, whereas IRS-1-associated PI3K activity was not significantly influenced. AT2 receptor stimulation did not change insulin-induced tyrosine phosphorylation of IRS-2 or its association with the p85alpha subunit of PI3K, but led to a significant reduction of insulin-induced p85alpha phosphorylation. AT2 receptor stimulation increased the association of a protein tyrosine phosphatase, SHP-1, with IRS-2. Moreover, we demonstrated that AT2 receptor stimulation inhibited insulin-induced Akt phosphorylation and that insulin-mediated antiapoptotic effect was also blocked by AT2 receptor activation. Overexpression of a catalytically inactive dominant negative SHP-1 markedly attenuated the AT2 receptor- mediated inhibition of IRS-2-associated PI3K activity, Akt phosphorylation, and antiapoptotic effect induced by insulin. Taken together, these results indicate that AT2 receptor-mediated activation of SHP-1 and the consequent inhibition IRS-2-associated PI3K activity contributed at least partly to the inhibition of Akt phosphorylation, thereby inducing apoptosis.
Collapse
Affiliation(s)
- Tai-Xing Cui
- Department of Medical Biochemistry, Ehime University School of Medicine, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wolfman JC, Palmby T, Der CJ, Wolfman A. Cellular N-Ras promotes cell survival by downregulation of Jun N-terminal protein kinase and p38. Mol Cell Biol 2002; 22:1589-606. [PMID: 11839824 PMCID: PMC134687 DOI: 10.1128/mcb.22.5.1589-1606.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellular N-Ras provides a steady-state antiapoptotic signal, at least partially through the regulation of phosphorylated Akt and Bad levels. Fibroblasts lacking c-N-Ras expression are highly sensitive to the induction of apoptosis by a variety of agents. Reduction of pBad and pAkt levels using a phosphatidylinositol 3-kinase inhibitor was not sufficient to sensitize the control cell population to the high level of apoptosis observed in the N-Ras knockout cell lines, suggesting that c-N-Ras provides at least one other antiapoptotic signal. Stimulation of the control cells with apoptotic agents results in a transient increase in Jun N-terminal protein kinase (JNK)/p38 activity that decreased to baseline levels during the time course of the experiments. In all cases, however, sustained JNK/p38 activity was observed in cells lacking c-N-Ras expression. This correlated with sustained levels of phosphorylated MKK4 and MKK3/6, upstream activators of JNK and p38, respectively. Mimicking the sustained activation of JNK in the control cells did result in increasing their sensitivity to apoptotic agents, suggesting that prolonged JNK activity is a proapoptotic event. We also examined the potential downstream c-N-Ras targets that might be involved in regulating the duration of the JNK/p38 signal. Only the RalGDS 37G-N-Ras protein protected the N-Ras knockout cells from apoptosis and restored transient rather than sustained JNK activation. These data suggest that cellular N-Ras provides an antiapoptotic signal through at least two distinct mechanisms, one which regulates steady-state pBad and pAkt levels and one which regulates the duration of JNK/p38 activity following an apoptotic challenge.
Collapse
Affiliation(s)
- Janice C Wolfman
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
14
|
Pandey SK, He HJ, Chesley A, Juhaszova M, Crow MT, Bernier M. Wortmannin-sensitive pathway is required for insulin-stimulated phosphorylation of inhibitor kappaBalpha. Endocrinology 2002; 143:375-85. [PMID: 11796489 DOI: 10.1210/endo.143.2.8619] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to examine the signaling pathways by which insulin promotes activation of nuclear factor kappaB (NFkappaB) through the regulation of inhibitor kappaBalpha (IkappaBalpha). We show here that although insulin increased kappaB-dependent reporter gene expression and augmented nuclear translocation of the p65/RelA subunit of NFkappaB and its DNA binding, it was able to induce a time-dependent accumulation of phosphorylated and ubiquitinated IkappaBalpha without its proteolytic degradation. In contrast, cell stimulation with the cytokine TNFalpha allowed activation of NFkappaB through phosphorylation, ubiquitination, and subsequent degradation of IkappaBalpha. Immunofluorescence studies revealed the presence of a large pool of phosphorylated IkappaBalpha in the nucleus of unstimulated and insulin-treated cells. IkappaB kinase alpha and beta, central players in the phosphorylation of IkappaBalpha, were rapidly induced following exposure to TNFalpha but not insulin. Furthermore, insulin-stimulated IkappaBalpha phosphorylation did not depend on activation of the Ras/ERK cascade. Expression of a dominant-negative mutant of Akt1 or class I PI3K inhibited the insulin stimulation of PI3K/Akt1 signaling without affecting phosphorylation of IkappaBalpha. Interestingly, the PI3K inhibitors wortmannin and LY294002 blocked insulin-stimulated class I PI3K-dependent events at much lower doses than that required to inhibit phosphorylation of IkappaBalpha. These data demonstrate that insulin regulates IkappaBalpha function through a distinct low-affinity wortmannin-sensitive pathway.
Collapse
Affiliation(s)
- Sanjay K Pandey
- Diabetes Section, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland 21224-6825, USA
| | | | | | | | | | | |
Collapse
|