1
|
Khiabani NA, Doustvandi MA, Story D, Nobari SA, Hajizadeh M, Petersen R, Dunbar G, Rossignol J. Glioblastoma therapy: State of the field and future prospects. Life Sci 2024; 359:123227. [PMID: 39537100 DOI: 10.1016/j.lfs.2024.123227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GB) is a cancerous brain tumor that originates from glial cells and leads to thousands of deaths each year and a five-year survival of only 6.8 %. Treatments for GB include surgery, chemotherapy, radiation, and immunotherapy. GB is an incurable fatal disease, necessitating the development of innovative strategies to find a developing effective therapy. Genetic therapies may be crucial in treating GB by identifying the mutations and amplifications of multiple genes, which drive its proliferation and spread. Use of small interfering RNAs (siRNAs) provides a novel technology used to suppress the genes associated with disease, which forms a basis for targeted therapy in GB and its stem cell population, which are recognized for their ability to develop resistance to chemotherapy and tumorigenic capabilities. This review examines the use of siRNAs in GB, emphasizing their effectiveness in suppressing key oncogenes and signaling pathways associated with tumor development, invasion, stemness, and resistance to standard treatments. siRNA-based gene silencing is a promising approach for developing targeted therapeutics against GB and associated stem cell populations, potentially enhancing patient outcomes and survival rates in this devastating disease.
Collapse
Affiliation(s)
- Nadia Allahyarzadeh Khiabani
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Darren Story
- Department of Psychology, Saginaw Valley State University, University Center, MI 48710, USA
| | | | | | - Robert Petersen
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Gary Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
2
|
Wang N, Yuan Y, Hu T, Xu H, Piao H. Metabolism: an important player in glioma survival and development. Discov Oncol 2024; 15:577. [PMID: 39436434 PMCID: PMC11496451 DOI: 10.1007/s12672-024-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Gliomas are malignant tumors originating from both neuroglial cells and neural stem cells. The involvement of neural stem cells contributes to the tumor's heterogeneity, affecting its metabolic features, development, and response to therapy. This review provides a brief introduction to the importance of metabolism in gliomas before systematically categorizing them into specific groups based on their histological and molecular genetic markers. Metabolism plays a critical role in glioma biology, as tumor cells rely heavily on altered metabolic pathways to support their rapid growth, survival, and progression. Dysregulated metabolic processes, involving carbohydrates, lipids, and amino acids not only fuel tumor development but also contribute to therapy resistance and metastatic potential. By understanding these metabolic changes, key intervention points, such as mutations in genes like RTK, EGFR, RAS, and IDH can be identified, paving the way for novel therapeutic strategies. This review emphasizes the connection between metabolic pathways and clinical challenges, offering actionable insights for future research and therapeutic development in gliomas.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Yiru Yuan
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Tianhao Hu
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Liaoning Province, 110042, P R China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China.
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
| |
Collapse
|
3
|
Xiong W, Su R, Han X, Zhu M, Tang H, Huang S, Wang P, Zhu G. Molecular insights and functional analysis of isocitrate dehydrogenase in two gram-negative pathogenic bacteria. World J Microbiol Biotechnol 2024; 40:357. [PMID: 39425873 DOI: 10.1007/s11274-024-04169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Klebsiella pneumoniae and Legionella pneumophila are common Gram-negative bacteria that can cause lung infections. The multidrug resistance of K. pneumoniae presents a significant challenge for treatment. This study focuses on isocitrate dehydrogenase (IDH), a key enzyme in the oxidative metabolic pathway of these two bacteria. KpIDH and LpIDH were successfully overexpressed and purified, and their biochemical characteristics were thoroughly investigated. The study revealed that KpIDH and LpIDH are homodimeric enzymes with molecular weights of approximately 70 kDa. They are completely dependent on the coenzyme NADP+ and are inactive towards NAD+. KpIDH exhibits the highest catalytic activity at pH 8.0 in the presence of Mn2+ and at pH 7.8 in the presence of Mg2+. Its optimal catalytic performance is achieved with both ions at 55 °C. LpIDH exhibited its highest activity at pH 7.8 in the presence of Mn2+ and Mg2+, respectively, and exhibits optimal catalytic performance at 45 °C. Heat inactivation studies showed that KpIDH and LpIDH retained over 80% of their activity after being exposed to 45 °C for 20 min. Furthermore, we successfully altered the coenzyme specificity of KpIDH and LpIDH from NADP+ to NAD+ by replacing four key amino acid residues. This study provides a comprehensive biochemical characterization of two multidrug-resistant bacterial IDHs commonly found in hospital environments. It enhances our understanding of the characteristics of pathogenic bacteria and serves as a reference for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Wei Xiong
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Rui Su
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xueyang Han
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Mengxiao Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Hongyiru Tang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shiping Huang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui, 237012, China.
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
4
|
Piskol F, Lukat P, Kaufhold L, Heger A, Blankenfeldt W, Jahn D, Moser J. Biochemical and structural elucidation of the L-carnitine degradation pathway of the human pathogen Acinetobacter baumannii. Front Microbiol 2024; 15:1446595. [PMID: 39206375 PMCID: PMC11353897 DOI: 10.3389/fmicb.2024.1446595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii is an opportunistic human pathogen which can use host-derived L-carnitine as sole carbon and energy source. Recently, an L-carnitine transporter (Aci1347) and a specific monooxygense (CntA/CntB) for the intracellular cleavage of L-carnitine have been characterized. Subsequent conversion of the resulting malic semialdehyde into the central metabolite L-malate was hypothesized. Alternatively, L-carnitine degradation via D-malate with subsequent oxidation into pyruvate was proposed. Here we describe the in vitro and in vivo reconstitution of the entire pathway, starting from the as yet uncharacterized gene products of the carnitine degradation gene operon. Using recombinantly purified enzymes, enantiomer-specific formation of D-malate by the NAD(P)+-dependent malic semialdehyde dehydrogenase (MSA-DH) is demonstrated. The solved X-ray crystal structure of tetrameric MSA-DH reveals the key catalytic residues Cys290 and Glu256, accessible through opposing substrate and cofactor funnels. Specific substrate binding is enabled by Arg166, Arg284 and Ser447 while dual cofactor specificity for NAD+ and NADP+ is mediated by Asn184. The subsequent conversion of the unusual D-malate reaction product by an uncharacterized NAD+-dependent malate dehydrogenase (MDH) is shown. Tetrameric MDH is a β-decarboxylating dehydrogenase that synthesizes pyruvate. MDH experiments with alternative substrates showed a high degree of substrate specificity. Finally, the entire A. baumannni pathway was heterologously reconstituted, allowing E. coli to grow on L-carnitine as a carbon and energy source. Overall, the metabolic conversion of L-carnitine via malic semialdehyde and D-malate into pyruvate, CO2 and trimethylamine was demonstrated. Trimethylamine is also an important gut microbiota-dependent metabolite that is associated with an increased risk of cardiovascular disease. The pathway reconstitution experiments allowed us to assess the TMA forming capacity of gut microbes which is related to human cardiovascular health.
Collapse
Affiliation(s)
- Fabian Piskol
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Peer Lukat
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laurin Kaufhold
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Alexander Heger
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Biochemistry, Biotechnology and Bioinformatic, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Centre of Integrated Systems Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jürgen Moser
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
Ivanov S, Nano O, Hana C, Bonano-Rios A, Hussein A. Molecular Targeting of the Isocitrate Dehydrogenase Pathway and the Implications for Cancer Therapy. Int J Mol Sci 2024; 25:7337. [PMID: 39000443 PMCID: PMC11242572 DOI: 10.3390/ijms25137337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The advent of comprehensive genomic profiling using next-generation sequencing (NGS) has unveiled an abundance of potentially actionable genetic aberrations that have shaped our understanding of the cancer biology landscape. Isocitrate dehydrogenase (IDH) is an enzyme present in the cytosol (IDH1) and mitochondria (IDH2 and IDH3). In the mitochondrion, it catalyzes the irreversible oxidative decarboxylation of isocitrate, yielding the production of α-ketoglutarate and nicotinamide adenine dinucleotide phosphate (NADPH) as well as carbon dioxide (CO2). In the cytosol, IDH catalyzes the decarboxylation of isocitrate to α-ketoglutarate as well as the reverse reductive carboxylation of α-ketoglutarate to isocitrate. These rate-limiting steps in the tricarboxylic acid cycle, as well as the cytoplasmic response to oxidative stress, play key roles in gene regulation, cell differentiation, and tissue homeostasis. Mutations in the genes encoding IDH1 and IDH2 and, less commonly, IDH3 have been found in a variety of cancers, most commonly glioma, acute myeloid leukemia (AML), chondrosarcoma, and intrahepatic cholangiocarcinoma. In this paper, we intend to elucidate the theorized pathophysiology behind IDH isomer mutation, its implication in cancer manifestation, and discuss some of the available clinical data regarding the use of novel IDH inhibitors and their role in therapy.
Collapse
Affiliation(s)
- Stanislav Ivanov
- Memorial Cancer Institute, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (O.N.); (A.B.-R.); (A.H.)
| | | | | | | | | |
Collapse
|
6
|
Cui Z, Li C, Liu W, Sun M, Deng S, Cao J, Yang H, Chen P. Scutellarin activates IDH1 to exert antitumor effects in hepatocellular carcinoma progression. Cell Death Dis 2024; 15:267. [PMID: 38622131 PMCID: PMC11018852 DOI: 10.1038/s41419-024-06625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Isochlorate dehydrogenase 1 (IDH1) is an important metabolic enzyme for the production of α-ketoglutarate (α-KG), which has antitumor effects and is considered to have potential antitumor effects. The activation of IDH1 as a pathway for the development of anticancer drugs has not been attempted. We demonstrated that IDH1 can limit glycolysis in hepatocellular carcinoma (HCC) cells to activate the tumor immune microenvironment. In addition, through proteomic microarray analysis, we identified a natural small molecule, scutellarin (Scu), which activates IDH1 and inhibits the growth of HCC cells. By selectively modifying Cys297, Scu promotes IDH1 active dimer formation and increases α-KG production, leading to ubiquitination and degradation of HIF1a. The loss of HIF1a further leads to the inhibition of glycolysis in HCC cells. The activation of IDH1 by Scu can significantly increase the level of α-KG in tumor tissue, downregulate the HIF1a signaling pathway, and activate the tumor immune microenvironment in vivo. This study demonstrated the inhibitory effect of IDH1-α-KG-HIF1a on the growth of HCC cells and evaluated the inhibitory effect of Scu, the first IDH1 small molecule agonist, which provides a reference for cancer immunotherapy involving activated IDH1.
Collapse
Affiliation(s)
- Zhao Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Mo Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing, China.
| |
Collapse
|
7
|
Satgunaseelan L, Sy J, Shivalingam B, Sim HW, Alexander KL, Buckland ME. Prognostic and predictive biomarkers in central nervous system tumours: the molecular state of play. Pathology 2024; 56:158-169. [PMID: 38233331 DOI: 10.1016/j.pathol.2023.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 01/19/2024]
Abstract
Central nervous system (CNS) tumours were one of the first cancer types to adopt and integrate molecular profiling into routine clinical diagnosis in 2016. The vast majority of these biomarkers, used to discriminate between tumour types, also offered prognostic information. With the advent of The Cancer Genome Atlas (TCGA) and other large genomic datasets, further prognostic sub-stratification was possible within tumour types, leading to increased precision in CNS tumour grading. This review outlines the evolution of the molecular landscape of adult CNS tumours, through the prism of World Health Organization (WHO) Classifications. We begin our journey in the pre-molecular era, where high-grade gliomas were divided into 'primary' and 'secondary' glioblastomas. Molecular alterations explaining these clinicopathological observations were the first branching points of glioma diagnostics, with the discovery of IDH1/2 mutations and 1p/19q codeletion. Subsequently, the rigorous characterisation of paediatric gliomas led to the unearthing of histone H3 alterations as a key event in gliomagenesis, which also had implications for young adult patients. Simultaneously, studies investigating prognostic biomarkers within tumour types were undertaken. Certain genomic phenotypes were found to portend unfavourable outcomes, for example, MYCN amplification in spinal ependymoma. The arrival of methylation profiling, having revolutionised the diagnosis of CNS tumours, now promises to bring increased prognostic accuracy, as has been shown in meningiomas. While MGMT promoter hypermethylation has remained a reliable biomarker of response to cytotoxic chemotherapy, targeted therapy in CNS tumours has unfortunately not had the success of other cancers. Therefore, predictive biomarkers have lagged behind the identification of prognostic biomarkers in CNS tumours. Emerging research from new clinical trials is cause for guarded optimism and may shift our conceptualisation of predictive biomarker testing in CNS tumours.
Collapse
Affiliation(s)
- Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Joanne Sy
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Brindha Shivalingam
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Hao-Wen Sim
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Kimberley L Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Raghavan B, Paulikat M, Ahmad K, Callea L, Rizzi A, Ippoliti E, Mandelli D, Bonati L, De Vivo M, Carloni P. Drug Design in the Exascale Era: A Perspective from Massively Parallel QM/MM Simulations. J Chem Inf Model 2023; 63:3647-3658. [PMID: 37319347 PMCID: PMC10302481 DOI: 10.1021/acs.jcim.3c00557] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 06/17/2023]
Abstract
The initial phases of drug discovery - in silico drug design - could benefit from first principle Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics (MD) simulations in explicit solvent, yet many applications are currently limited by the short time scales that this approach can cover. Developing scalable first principle QM/MM MD interfaces fully exploiting current exascale machines - so far an unmet and crucial goal - will help overcome this problem, opening the way to the study of the thermodynamics and kinetics of ligand binding to protein with first principle accuracy. Here, taking two relevant case studies involving the interactions of ligands with rather large enzymes, we showcase the use of our recently developed massively scalable Multiscale Modeling in Computational Chemistry (MiMiC) QM/MM framework (currently using DFT to describe the QM region) to investigate reactions and ligand binding in enzymes of pharmacological relevance. We also demonstrate for the first time strong scaling of MiMiC-QM/MM MD simulations with parallel efficiency of ∼70% up to >80,000 cores. Thus, among many others, the MiMiC interface represents a promising candidate toward exascale applications by combining machine learning with statistical mechanics based algorithms tailored for exascale supercomputers.
Collapse
Affiliation(s)
- Bharath Raghavan
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
- Department
of Physics, RWTH Aachen University, Aachen 52074, Germany
| | - Mirko Paulikat
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Katya Ahmad
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Lara Callea
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Andrea Rizzi
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
- Atomistic
Simulations, Italian Institute of Technology, Genova 16163, Italy
| | - Emiliano Ippoliti
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Davide Mandelli
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Laura Bonati
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Marco De Vivo
- Molecular
Modelling and Drug Discovery, Italian Institute
of Technology, Genova 16163, Italy
| | - Paolo Carloni
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
- Department
of Physics and Universitätsklinikum, RWTH Aachen University, Aachen 52074, Germany
| |
Collapse
|
9
|
Solomou G, Finch A, Asghar A, Bardella C. Mutant IDH in Gliomas: Role in Cancer and Treatment Options. Cancers (Basel) 2023; 15:cancers15112883. [PMID: 37296846 DOI: 10.3390/cancers15112883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Altered metabolism is a common feature of many cancers and, in some cases, is a consequence of mutation in metabolic genes, such as the ones involved in the TCA cycle. Isocitrate dehydrogenase (IDH) is mutated in many gliomas and other cancers. Physiologically, IDH converts isocitrate to α-ketoglutarate (α-KG), but when mutated, IDH reduces α-KG to D2-hydroxyglutarate (D2-HG). D2-HG accumulates at elevated levels in IDH mutant tumours, and in the last decade, a massive effort has been made to develop small inhibitors targeting mutant IDH. In this review, we summarise the current knowledge about the cellular and molecular consequences of IDH mutations and the therapeutic approaches developed to target IDH mutant tumours, focusing on gliomas.
Collapse
Affiliation(s)
- Georgios Solomou
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Alina Finch
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Asim Asghar
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Chiara Bardella
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
10
|
Park JW. Metabolic Rewiring in Adult-Type Diffuse Gliomas. Int J Mol Sci 2023; 24:ijms24087348. [PMID: 37108511 PMCID: PMC10138713 DOI: 10.3390/ijms24087348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple metabolic pathways are utilized to maintain cellular homeostasis. Given the evidence that altered cell metabolism significantly contributes to glioma biology, the current research efforts aim to improve our understanding of metabolic rewiring between glioma's complex genotype and tissue context. In addition, extensive molecular profiling has revealed activated oncogenes and inactivated tumor suppressors that directly or indirectly impact the cellular metabolism that is associated with the pathogenesis of gliomas. The mutation status of isocitrate dehydrogenases (IDHs) is one of the most important prognostic factors in adult-type diffuse gliomas. This review presents an overview of the metabolic alterations in IDH-mutant gliomas and IDH-wildtype glioblastoma (GBM). A particular focus is placed on targeting metabolic vulnerabilities to identify new therapeutic strategies for glioma.
Collapse
Affiliation(s)
- Jong-Whi Park
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
11
|
Blacker TS, Duchen MR, Bain AJ. NAD(P)H binding configurations revealed by time-resolved fluorescence and two-photon absorption. Biophys J 2023; 122:1240-1253. [PMID: 36793214 PMCID: PMC10111271 DOI: 10.1016/j.bpj.2023.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/07/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
NADH and NADPH play key roles in the regulation of metabolism. Their endogenous fluorescence is sensitive to enzyme binding, allowing changes in cellular metabolic state to be determined using fluorescence lifetime imaging microscopy (FLIM). However, to fully uncover the underlying biochemistry, the relationships between their fluorescence and binding dynamics require greater understanding. Here we accomplish this through time- and polarization-resolved fluorescence and polarized two-photon absorption measurements. Two lifetimes result from binding of both NADH to lactate dehydrogenase and NADPH to isocitrate dehydrogenase. The composite fluorescence anisotropy indicates the shorter (1.3-1.6 ns) decay component to be accompanied by local motion of the nicotinamide ring, pointing to attachment solely via the adenine moiety. For the longer lifetime (3.2-4.4 ns), the nicotinamide conformational freedom is found to be fully restricted. As full and partial nicotinamide binding are recognized steps in dehydrogenase catalysis, our results unify photophysical, structural, and functional aspects of NADH and NADPH binding and clarify the biochemical processes that underlie their contrasting intracellular lifetimes.
Collapse
Affiliation(s)
- Thomas S Blacker
- Department of Physics & Astronomy, University College London, London, United Kingdom; Research Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Angus J Bain
- Department of Physics & Astronomy, University College London, London, United Kingdom.
| |
Collapse
|
12
|
Sabo KA, Albekioni E, Caliger D, Coleman NJ, Thornberg E, Avellaneda Matteo D, Komives EA, Silletti S, Sohl CD. Capturing the Dynamic Conformational Changes of Human Isocitrate Dehydrogenase 1 (IDH1) upon Ligand and Metal Binding Using Hydrogen-Deuterium Exchange Mass Spectrometry. Biochemistry 2023; 62:1145-1159. [PMID: 36854124 PMCID: PMC10089636 DOI: 10.1021/acs.biochem.2c00636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Human isocitrate dehydrogenase 1 (IDH1) is a highly conserved metabolic enzyme that catalyzes the interconversion of isocitrate and α-ketoglutarate. Kinetic and structural studies with IDH1 have revealed evidence of striking conformational changes that occur upon binding of its substrates, isocitrate and NADP+, and its catalytic metal cation. Here, we used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to build a comprehensive map of the dynamic conformational changes experienced by IDH1 upon ligand binding. IDH1 proved well-suited for HDX-MS analysis, allowing us to capture profound changes in solvent accessibility at substrate binding sites and at a known regulatory region, as well as at more distant local subdomains that appear to support closure of this protein into its active conformation. HDX-MS analysis suggested that IDH1 is primarily purified with NADP(H) bound in the absence of its metal cation. Subsequent metal cation binding, even in the absence of isocitrate, was critical for driving large conformational changes. WT IDH1 folded into its fully closed conformation only when the full complement of substrates and metal was present. Finally, we show evidence supporting a previously hypothesized partially open conformation that forms prior to the catalytically active state, and we propose this conformation is driven by isocitrate binding in the absence of metal.
Collapse
Affiliation(s)
- Kaitlyn A Sabo
- San Diego State University, Department of Chemistry and Biochemistry, San Diego, California 92182, United States
| | - Elene Albekioni
- San Diego State University, Department of Chemistry and Biochemistry, San Diego, California 92182, United States
| | - Danielle Caliger
- San Diego State University, Department of Chemistry and Biochemistry, San Diego, California 92182, United States
| | - Nalani J Coleman
- San Diego State University, Department of Chemistry and Biochemistry, San Diego, California 92182, United States
| | - Ella Thornberg
- San Diego State University, Department of Chemistry and Biochemistry, San Diego, California 92182, United States
| | - Diego Avellaneda Matteo
- San Diego State University, Department of Chemistry and Biochemistry, San Diego, California 92182, United States
| | - Elizabeth A Komives
- University of California, San Diego, Department of Chemistry and Biochemistry, La Jolla, California 92093, United States
| | - Steve Silletti
- University of California, San Diego, Department of Chemistry and Biochemistry, La Jolla, California 92093, United States
| | - Christal D Sohl
- San Diego State University, Department of Chemistry and Biochemistry, San Diego, California 92182, United States
| |
Collapse
|
13
|
Roh J, Im M, Kang J, Youn B, Kim W. Long non-coding RNA in glioma: novel genetic players in temozolomide resistance. Anim Cells Syst (Seoul) 2023; 27:19-28. [PMID: 36819921 PMCID: PMC9937017 DOI: 10.1080/19768354.2023.2175497] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Glioma is the most common primary malignant brain tumor in adults and accounts for approximately 80% of brain and central nervous system tumors. In 2021, the World Health Organization (WHO) published a new taxonomy for glioma based on its histological features and molecular alterations. Isocitrate dehydrogenase (IDH) catalyzes the decarboxylation of isocitrate, a critical metabolic reaction in energy generation in cells. Mutations in the IDH genes interrupt cell differentiation and serve as molecular biomarkers that can be used to classify gliomas. For example, the mutant IDH is widely detected in low-grade gliomas, whereas the wild type is in high-grade ones, including glioblastomas. Long non-coding RNAs (lncRNAs) are epigenetically involved in gene expression and contribute to glioma development. To investigate the potential use of lncRNAs as biomarkers, we examined lncRNA dysregulation dependent on the IDH mutation status. We found that several lncRNAs, namely, AL606760.2, H19, MALAT1, PVT1 and SBF2-AS1 may function as glioma risk factors, whereas AC068643.1, AC079228.1, DGCR5, FAM13A-AS1, HAR1A and WDFY3-AS2 may have protective effects. Notably, H19, MALAT1, PVT1, and SBF2-AS1 have been associated with temozolomide resistance in glioma patients. This review study suggests that targeting glioma-associated lncRNAs might aid the treatment of glioma.
Collapse
Affiliation(s)
- Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Mijung Im
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea, BuHyun Youn Department of Biological Sciences, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan46241, Republic of Korea; Wanyeon Kim Department of Biology Education, Korea National University of Education, 250 Taeseongtabyeon-ro, Gangnae-myeon, Heungdeok-gu, Cheongju-si, Chungbuk28173, Republic of Korea
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea,Department of Biology Education, Korea National University of Education, Cheongju-si, Republic of Korea, BuHyun Youn Department of Biological Sciences, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan46241, Republic of Korea; Wanyeon Kim Department of Biology Education, Korea National University of Education, 250 Taeseongtabyeon-ro, Gangnae-myeon, Heungdeok-gu, Cheongju-si, Chungbuk28173, Republic of Korea
| |
Collapse
|
14
|
Mo H, Magaki S, Deisch JK, Raghavan R. Isocitrate Dehydrogenase Mutations Are Associated with Different Expression and DNA Methylation Patterns of OLIG2 in Adult Gliomas. J Neuropathol Exp Neurol 2022; 81:707-716. [PMID: 35856894 DOI: 10.1093/jnen/nlac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) mutant gliomas are associated with a better prognosis in comparison to adult IDH wild-type glioma and glioma-CpG island methylator phenotypes. Although OLIG2 is mainly expressed in oligodendrocytes in normal adult brain, it is expressed in both astrocytomas and oligodendrogliomas. Utilizing the clinical, DNA methylation, and RNA-sequencing data from the Cancer Genome Atlas (TCGA) for lower-grade glioma and glioblastoma cohorts, we explored the association between IDH mutation status and OLIG2 expression on transcription, DNA methylation, and gene target levels. Compared to IDH wild-type gliomas, IDH mutant gliomas showed consistently higher expression of OLIG2 transcripts. OLIG2 overexpression is a good surrogate marker for IDH mutation with an AUC of 0.90. At the DNA methylation level, IDH-mutant gliomas showed hyper- and hypomethylation foci upstream of the OLIG2 transcription start site. Underexpressed OLIG2 target genes in IDH mutant glioma were enriched in cell cycle-related pathways. Thus, the differential expression of OLIG2 between IDH mutant and wild-type gliomas reflects involvement in multiple pathways in tumorigenesis.
Collapse
Affiliation(s)
- Huan Mo
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shino Magaki
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jeremy K Deisch
- Department of Pathology, Loma Linda University Medical Center and School of Medicine, Loma Linda, California, USA
| | - Ravi Raghavan
- Department of Pathology, Loma Linda University Medical Center and School of Medicine, Loma Linda, California, USA
| |
Collapse
|
15
|
The epigenetic dysfunction underlying malignant glioma pathogenesis. J Transl Med 2022; 102:682-690. [PMID: 35152274 DOI: 10.1038/s41374-022-00741-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Comprehensive molecular profiling has dramatically transformed the diagnostic neuropathology of brain tumors. Diffuse gliomas, the most common and deadly brain tumor variants, are now classified by highly recurrent biomarkers instead of histomorphological characteristics. Several of the key molecular alterations driving glioma classification involve epigenetic dysregulation at a fundamental level, implicating fields of biology not previously thought to play major roles glioma pathogenesis. This article will review the major epigenetic alterations underlying malignant gliomas, their likely mechanisms of action, and potential strategies for their therapeutic targeting.
Collapse
|
16
|
Winkler D, Gfrerer S, Gescher J. Biochemical Characterization of Recombinant Isocitrate Dehydrogenase and Its Putative Role in the Physiology of an Acidophilic Micrarchaeon. Microorganisms 2021; 9:2318. [PMID: 34835444 PMCID: PMC8623467 DOI: 10.3390/microorganisms9112318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Despite several discoveries in recent years, the physiology of acidophilic Micrarchaeota, such as "Candidatus Micrarchaeum harzensis A_DKE", remains largely enigmatic, as they highly express numerous genes encoding hypothetical proteins. Due to a lacking genetic system, it is difficult to elucidate the biological function of the corresponding proteins and heterologous expression is required. In order to prove the viability of this approach, A_DKE's isocitrate dehydrogenase (MhIDH) was recombinantly produced in Escherichia coli and purified to electrophoretic homogeneity for biochemical characterization. MhIDH showed optimal activity around pH 8 and appeared to be specific for NADP+ yet promiscuous regarding divalent cations as cofactors. Kinetic studies showed KM-values of 53.03 ± 5.63 µM and 1.94 ± 0.12 mM and kcat-values of 38.48 ± 1.62 and 43.99 ± 1.46 s-1 resulting in kcat/KM-values of 725 ± 107.62 and 22.69 ± 2.15 mM-1 s-1 for DL-isocitrate and NADP+, respectively. MhIDH's exceptionally low affinity for NADP+, potentially limiting its reaction rate, can likely be attributed to the presence of a proline residue in the NADP+ binding pocket, which might cause a decrease in hydrogen bonding of the cofactor and a distortion of local secondary structure.
Collapse
Affiliation(s)
- Dennis Winkler
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; (D.W.); (S.G.)
| | - Sabrina Gfrerer
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; (D.W.); (S.G.)
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; (D.W.); (S.G.)
- Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Technical Microbiology, Department of Process and Chemical Engineering, Technical University of Hamburg, Kasernenstr. 12, 21073 Hamburg, Germany
| |
Collapse
|
17
|
Tang W, Wu M, Qin N, Liu L, Meng R, Wang C, Wang P, Zang J, Zhu G. Crystal structures of NAD +-linked isocitrate dehydrogenase from the green alga Ostreococcus tauri and its evolutionary relationship with eukaryotic NADP +-linked homologs. Arch Biochem Biophys 2021; 708:108898. [PMID: 33957092 DOI: 10.1016/j.abb.2021.108898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022]
Abstract
NAD+-linked isocitrate dehydrogenases (NAD-IDHs) catalyze the oxidative decarboxylation of isocitrate into α-ketoglutarate. Previously, we identified a novel phylogenetic clade including NAD-IDHs from several algae in the type II subfamily, represented by homodimeric NAD-IDH from Ostreococcus tauri (OtIDH). However, due to its lack of a crystalline structure, the molecular mechanisms of the ligand binding and catalysis of OtIDH are little known. Here, we elucidate four high-resolution crystal structures of OtIDH in a ligand-free and various ligand-bound forms that capture at least three states in the catalytic cycle: open, semi-closed, and fully closed. Our results indicate that OtIDH shows several novel interactions with NAD+, unlike type I NAD-IDHs, as well as a strictly conserved substrate binding mode that is similar to other homologs. The central roles of Lys283' in dual coenzyme recognition and Lys234 in catalysis were also revealed. In addition, the crystal structures obtained here also allow us to understand the catalytic mechanism. As expected, structural comparisons reveal that OtIDH has a very high structural similarity to eukaryotic NADP+-linked IDHs (NADP-IDHs) within the type II subfamily rather than with the previously reported NAD-IDHs within the type I subfamily. It has also been demonstrated that OtIDH exhibits substantial conformation changes upon ligand binding, similar to eukaryotic NADP-IDHs. These results unambiguously support our hypothesis that OtIDH and OtIDH-like homologs are possible evolutionary ancestors of eukaryotic NADP-IDHs in type II subfamily.
Collapse
Affiliation(s)
- Wanggang Tang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, No.1 Beijing East Road, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Minhao Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Na Qin
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, No.1 Beijing East Road, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Li Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, No.1 Beijing East Road, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Rui Meng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, No.1 Beijing East Road, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Chengliang Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, No.1 Beijing East Road, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, No.1 Beijing East Road, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
18
|
Denitrifying phosphorus removal and microbial community characteristics of two-sludge DEPHANOX system: Effects of COD/TP ratio. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Kayabolen A, Yilmaz E, Bagci-Onder T. IDH Mutations in Glioma: Double-Edged Sword in Clinical Applications? Biomedicines 2021; 9:799. [PMID: 34356864 PMCID: PMC8301439 DOI: 10.3390/biomedicines9070799] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
Discovery of point mutations in the genes encoding isocitrate dehydrogenases (IDH) in gliomas about a decade ago has challenged our view of the role of metabolism in tumor progression and provided a new stratification strategy for malignant gliomas. IDH enzymes catalyze the conversion of isocitrate to alpha-ketoglutarate (α-KG), an intermediate in the citric acid cycle. Specific mutations in the genes encoding IDHs cause neomorphic enzymatic activity that produces D-2-hydroxyglutarate (2-HG) and result in the inhibition of α-KG-dependent enzymes such as histone and DNA demethylases. Thus, chromatin structure and gene expression profiles in IDH-mutant gliomas appear to be different from those in IDH-wildtype gliomas. IDH mutations are highly common in lower grade gliomas (LGG) and secondary glioblastomas, and they are among the earliest genetic events driving tumorigenesis. Therefore, inhibition of mutant IDH enzymes in LGGs is widely accepted as an attractive therapeutic strategy. On the other hand, the metabolic consequences derived from IDH mutations lead to selective vulnerabilities within tumor cells, making them more sensitive to several therapeutic interventions. Therefore, instead of shutting down mutant IDH enzymes, exploiting the selective vulnerabilities caused by them might be another attractive and promising strategy. Here, we review therapeutic options and summarize current preclinical and clinical studies on IDH-mutant gliomas.
Collapse
Affiliation(s)
- Alisan Kayabolen
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Ebru Yilmaz
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| |
Collapse
|
20
|
Sesanto R, Kuehn JF, Barber DL, White KA. Low pH Facilitates Heterodimerization of Mutant Isocitrate Dehydrogenase IDH1-R132H and Promotes Production of 2-Hydroxyglutarate. Biochemistry 2021; 60:1983-1994. [PMID: 34143606 PMCID: PMC8246651 DOI: 10.1021/acs.biochem.1c00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Isocitrate dehydrogenase
1 (IDH1) is a key metabolic enzyme for
maintaining cytosolic levels of α-ketoglutarate (AKG) and preserving
the redox environment of the cytosol. Wild-type (WT) IDH1 converts
isocitrate to AKG; however, mutant IDH1-R132H that is recurrent in
human cancers catalyzes the neomorphic production of the oncometabolite d-2-hydroxyglutrate (D-2HG) from AKG. Recent work suggests that
production of l-2-hydroxyglutarte in cancer cells can be
regulated by environmental changes, including hypoxia and intracellular
pH (pHi). However, it is unknown whether and how pHi affects the activity
of IDH1-R132H. Here, we show that in cells IDH1-R132H can produce
D-2HG in a pH-dependent manner with increased production at lower
pHi. We also identify a molecular mechanism by which this pH sensitivity
is achieved. We show that pH-dependent production of D-2HG is mediated
by pH-dependent heterodimer formation between IDH1-WT and IDH1-R132H.
In contrast, neither IDH1-WT nor IDH1-R132H homodimer formation is
affected by pH. Our results demonstrate that robust production of
D-2HG by IDH1-R132H relies on the coincidence of (1) the ability to
form heterodimers with IDH1-WT and (2) low pHi or highly abundant
AKG substrate. These data suggest cancer-associated IDH1-R132H may
be sensitive to physiological or microenvironmental cues that lower
pH, such as hypoxia or metabolic reprogramming. This work reveals
new molecular considerations for targeted therapeutics and suggests
potential synergistic effects of using catalytic IDH1 inhibitors targeting
D-2HG production in combination with drugs targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Rae Sesanto
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94122, United States
| | - Jessamine F Kuehn
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, Indiana 46556, United States.,Harper Cancer Research Institute, South Bend, Indiana 46617, United States
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94122, United States
| | - Katharine A White
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, Indiana 46556, United States.,Harper Cancer Research Institute, South Bend, Indiana 46617, United States
| |
Collapse
|
21
|
An acidic residue buried in the dimer interface of isocitrate dehydrogenase 1 (IDH1) helps regulate catalysis and pH sensitivity. Biochem J 2021; 477:2999-3018. [PMID: 32729927 DOI: 10.1042/bcj20200311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
Isocitrate dehydrogenase 1 (IDH1) catalyzes the reversible NADP+-dependent conversion of isocitrate to α-ketoglutarate (αKG) to provide critical cytosolic substrates and drive NADPH-dependent reactions like lipid biosynthesis and glutathione regeneration. In biochemical studies, the forward reaction is studied at neutral pH, while the reverse reaction is typically characterized in more acidic buffers. This led us to question whether IDH1 catalysis is pH-regulated, which would have functional implications under conditions that alter cellular pH, like apoptosis, hypoxia, cancer, and neurodegenerative diseases. Here, we show evidence of catalytic regulation of IDH1 by pH, identifying a trend of increasing kcat values for αKG production upon increasing pH in the buffers we tested. To understand the molecular determinants of IDH1 pH sensitivity, we used the pHinder algorithm to identify buried ionizable residues predicted to have shifted pKa values. Such residues can serve as pH sensors, with changes in protonation states leading to conformational changes that regulate catalysis. We identified an acidic residue buried at the IDH1 dimer interface, D273, with a predicted pKa value upshifted into the physiological range. D273 point mutations had decreased catalytic efficiency and, importantly, loss of pH-regulated catalysis. Based on these findings, we conclude that IDH1 activity is regulated, at least in part, by pH. We show this regulation is mediated by at least one buried acidic residue ∼12 Å from the IDH1 active site. By establishing mechanisms of regulation of this well-conserved enzyme, we highlight catalytic features that may be susceptible to pH changes caused by cell stress and disease.
Collapse
|
22
|
Shafei MA, Flemban A, Daly C, Kendrick P, White P, Dean S, Qualtrough D, Conway ME. Differential expression of the BCAT isoforms between breast cancer subtypes. Breast Cancer 2020; 28:592-607. [PMID: 33367952 PMCID: PMC8065012 DOI: 10.1007/s12282-020-01197-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023]
Abstract
Background Biological characterisation of breast cancer subtypes is essential as it informs treatment regimens especially as different subtypes have distinct locoregional patterns. This is related to metabolic phenotype, where altered cellular metabolism is a fundamental adaptation of cancer cells during rapid proliferation. In this context, the metabolism of the essential branched-chain amino acids (BCAAs), catalysed by the human branched-chain aminotransferase proteins (hBCAT), offers multiple benefits for tumour growth. Upregulation of the cytosolic isoform of hBCAT (hBCATc), regulated by c-Myc, has been demonstrated to increase cell migration, tumour aggressiveness and proliferation in gliomas, ovarian and colorectal cancer but the importance of the mitochondrial isoform, hBCATm has not been fully investigated. Methods Using immunohistochemistry, the expression profile of metabolic proteins (hBCAT, IDH) was assessed between breast cancer subtypes, HER2 + , luminal A, luminal B and TNBC. Correlations between the percentage and the intensity of protein expression/co-expression with clinical parameters, such as hormone receptor status, tumour stage, lymph-node metastasis and survival, were determined. Results We show that hBCATc expression was found to be significantly associated with the more aggressive HER2 + and luminal B subtypes, whilst hBCATm and IDH1 associated with luminal A subtype. This was concomitant with better prognosis indicating a differential metabolic reliance between these two subtypes, in which enhanced expression of IDH1 may replenish the α-ketoglutarate pool in cells with increased hBCATm expression. Conclusion The cytosolic isoform of BCAT is associated with tumours that express HER2 receptors, whereas the mitochondrial isoform is highly expressed in tumours that are ER + , indicating that the BCAT proteins are regulated through different signalling pathways, which may lead to the identification of novel targets for therapeutic applications targeting dysregulated cancer metabolism.
Collapse
Affiliation(s)
- Mai Ahmed Shafei
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Arwa Flemban
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Carl Daly
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Paul Kendrick
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Paul White
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Sarah Dean
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - David Qualtrough
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Myra E Conway
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
23
|
Sun P, Liu Y, Ma T, Ding J. Structure and allosteric regulation of human NAD-dependent isocitrate dehydrogenase. Cell Discov 2020; 6:94. [PMID: 33349631 PMCID: PMC7752914 DOI: 10.1038/s41421-020-00220-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/09/2022] Open
Abstract
Human NAD-dependent isocitrate dehydrogenase or HsIDH3 catalyzes the decarboxylation of isocitrate into α-ketoglutarate in the TCA cycle. HsIDH3 exists and functions as a heterooctamer composed of the αβ and αγ heterodimers, and is regulated allosterically and/or competitively by numerous metabolites including CIT, ADP, ATP, and NADH. In this work, we report the crystal structure of HsIDH3 containing a β mutant in apo form. In the HsIDH3 structure, the αβ and αγ heterodimers form the α2βγ heterotetramer via their clasp domains, and two α2βγ heterotetramers form the (α2βγ)2 heterooctamer through insertion of the N-terminus of the γ subunit of one heterotetramer into the back cleft of the β subunit of the other heterotetramer. The functional roles of the key residues at the allosteric site, the pseudo allosteric site, the heterodimer and heterodimer-heterodimer interfaces, and the N-terminal of the γ subunit are validated by mutagenesis and kinetic studies. Our structural and biochemical data together demonstrate that the allosteric site plays an important role but the pseudo allosteric site plays no role in the allosteric activation of the enzyme; the activation signal from the allosteric site is transmitted to the active sites of both αβ and αγ heterodimers via the clasp domains; and the N-terminal of the γ subunit plays a critical role in the formation of the heterooctamer to ensure the optimal activity of the enzyme. These findings reveal the molecular mechanism of the assembly and allosteric regulation of HsIDH3.
Collapse
Affiliation(s)
- Pengkai Sun
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yan Liu
- School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Zhong Road, Shanghai 201210, China
| | - Tengfei Ma
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. .,School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Zhong Road, Shanghai 201210, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshan Road, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
24
|
IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer 2020; 122:1580-1589. [PMID: 32291392 PMCID: PMC7250901 DOI: 10.1038/s41416-020-0814-x] [Citation(s) in RCA: 362] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/24/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) enzymes catalyse the oxidative decarboxylation of isocitrate and therefore play key roles in the Krebs cycle and cellular homoeostasis. Major advances in cancer genetics over the past decade have revealed that the genes encoding IDHs are frequently mutated in a variety of human malignancies, including gliomas, acute myeloid leukaemia, cholangiocarcinoma, chondrosarcoma and thyroid carcinoma. A series of seminal studies further elucidated the biological impact of the IDH mutation and uncovered the potential role of IDH mutants in oncogenesis. Notably, the neomorphic activity of the IDH mutants establishes distinctive patterns in cancer metabolism, epigenetic shift and therapy resistance. Novel molecular targeting approaches have been developed to improve the efficacy of therapeutics against IDH-mutated cancers. Here we provide an overview of the latest findings in IDH-mutated human malignancies, with a focus on glioma, discussing unique biological signatures and proceedings in translational research.
Collapse
|
25
|
The fitness challenge of studying molecular adaptation. Biochem Soc Trans 2020; 47:1533-1542. [PMID: 31642877 DOI: 10.1042/bst20180626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022]
Abstract
Advances in bioinformatics and high-throughput genetic analysis increasingly allow us to predict the genetic basis of adaptive traits. These predictions can be tested and confirmed, but the molecular-level changes - i.e. the molecular adaptation - that link genetic differences to organism fitness remain generally unknown. In recent years, a series of studies have started to unpick the mechanisms of adaptation at the molecular level. In particular, this work has examined how changes in protein function, activity, and regulation cause improved organismal fitness. Key to addressing molecular adaptations is identifying systems and designing experiments that integrate changes in the genome, protein chemistry (molecular phenotype), and fitness. Knowledge of the molecular changes underpinning adaptations allow new insight into the constraints on, and repeatability of adaptations, and of the basis of non-additive interactions between adaptive mutations. Here we critically discuss a series of studies that examine the molecular-level adaptations that connect genetic changes and fitness.
Collapse
|
26
|
Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW, Kwon SH. Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J 2020; 34:3461-3484. [PMID: 31961018 DOI: 10.1096/fj.201902584r] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
The KDM4 subfamily H3K9 histone demethylases are epigenetic regulators that control chromatin structure and gene expression by demethylating histone H3K9, H3K36, and H1.4K26. The KDM4 subfamily mainly consists of four proteins (KDM4A-D), all harboring the Jumonji C domain (JmjC) but with differential substrate specificities. KDM4A-C proteins also possess the double PHD and Tudor domains, whereas KDM4D lacks these domains. KDM4 proteins are overexpressed or deregulated in multiple cancers, cardiovascular diseases, and mental retardation and are thus potential therapeutic targets. Despite extensive efforts, however, there are very few KDM4-selective inhibitors. Defining the exact physiological and oncogenic functions of KDM4 demethylase will provide the foundation for the discovery of novel potent inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM4s and the interplay between KDM4-mediated epigenetic and metabolic pathways in cancer. We also review currently available KDM4 inhibitors and discuss their potential as therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Liu Y, Munteanu CR, Kong Z, Ran T, Sahagún-Ruiz A, He Z, Zhou C, Tan Z. Identification of coenzyme-binding proteins with machine learning algorithms. Comput Biol Chem 2019; 79:185-192. [PMID: 30851647 DOI: 10.1016/j.compbiolchem.2019.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/11/2018] [Accepted: 01/25/2019] [Indexed: 01/12/2023]
Abstract
The coenzyme-binding proteins play a vital role in the cellular metabolism processes, such as fatty acid biosynthesis, enzyme and gene regulation, lipid synthesis, particular vesicular traffic, and β-oxidation donation of acyl-CoA esters. Based on the theory of Star Graph Topological Indices (SGTIs) of protein primary sequences, we proposed a method to develop a first classification model for predicting protein with coenzyme-binding properties. To simulate the properties of coenzyme-binding proteins, we created a dataset containing 2897 proteins, among 456 proteins functioned as coenzyme-binding activity. The SGTIs of peptide sequence were calculated with Sequence to Star Network (S2SNet) application. We used the SGTIs as inputs to several classification techniques with a machine learning software - Weka. A Random Forest classifier based on 3 features of the embedded and non-embedded graphs was identified as the best predictive model for coenzyme-binding proteins. This model developed was with the true positive (TP) rate of 91.7%, false positive (FP) rate of 7.6%, and Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.971. The prediction of new coenzyme-binding activity proteins using this model could be useful for further drug development or enzyme metabolism researches.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, 410128, PR China
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain; Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), A Coruña, 15006, Spain
| | - Zhiwei Kong
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tao Ran
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, T1J 4B1, Canada
| | - Alfredo Sahagún-Ruiz
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Animal Science, National Autonomous University of Mexico, Universidad 3000, Copilco Coyoacán, CP 04510, México D.F., Mexico
| | - Zhixiong He
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, 410128, PR China.
| | - Chuanshe Zhou
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, 410128, PR China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, 410128, PR China
| |
Collapse
|
28
|
Ferrari A, Longo R, Silva R, Mitro N, Caruso D, De Fabiani E, Crestani M. Epigenome modifiers and metabolic rewiring: New frontiers in therapeutics. Pharmacol Ther 2019; 193:178-193. [DOI: 10.1016/j.pharmthera.2018.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Crystal Structures of the Putative Isocitrate Dehydrogenase from Sulfolobus tokodaii Strain 7 in the Apo and NADP +-Bound Forms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2018; 2018:7571984. [PMID: 30662370 PMCID: PMC6313988 DOI: 10.1155/2018/7571984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022]
Abstract
Isocitrate dehydrogenase is a catabolic enzyme that acts during the third step of the tricarboxylic acid cycle. The hypothetical protein ST2166 from the archaeon Sulfolobus tokodaii was isolated and crystallized. It shares high primary structure homology with prokaryotic NADP+-dependent IDHs, suggesting that these enzymes share a common enzymatic mechanism. The crystal structure of ST2166 was determined at 2.0 Å resolution in the apo form, and then the structure of the crystal soaked with NADP+ was also determined at 2.4 Å resolution, which contained NADP+ bound at the putative active site. Comparisons between the structures of apo and NADP+-bound forms and NADP-IDHs from other prokaryotes suggest that prokaryotic NADP-IDHs recognize their cofactors using conserved Lys335, Tyr336, and Arg386 in ST2166 at the opening cleft before the domain closure.
Collapse
|
30
|
Venkat S, Chen H, Stahman A, Hudson D, McGuire P, Gan Q, Fan C. Characterizing Lysine Acetylation of Isocitrate Dehydrogenase in Escherichia coli. J Mol Biol 2018; 430:1901-1911. [PMID: 29733852 PMCID: PMC5988991 DOI: 10.1016/j.jmb.2018.04.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The Escherichia coli isocitrate dehydrogenase (ICDH) is one of the tricarboxylic acid cycle enzymes, playing key roles in energy production and carbon flux regulation. E. coli ICDH was the first bacterial enzyme shown to be regulated by reversible phosphorylation. However, the effect of lysine acetylation on E. coli ICDH, which has no sequence similarity with its counterparts in eukaryotes, is still unclear. Based on previous studies of E. coli acetylome and ICDH crystal structures, eight lysine residues were selected for mutational and kinetic analyses. They were replaced with acetyllysine by the genetic code expansion strategy or substituted with glutamine as a classic approach. Although acetylation decreased the overall ICDH activity, its effects were different site by site. Deacetylation tests demonstrated that the CobB deacetylase could deacetylate ICDH both in vivo and in vitro, but CobB was only specific for lysine residues at the protein surface. On the other hand, ICDH could be acetylated by acetyl-phosphate chemically in vitro. And in vivo acetylation tests indicated that the acetylation level of ICDH was correlated with the amounts of intracellular acetyl-phosphate. This study nicely complements previous proteomic studies to provide direct biochemical evidence for ICDH acetylation.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Hao Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Alleigh Stahman
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Denver Hudson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Paige McGuire
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, United States
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
31
|
Kolb AL, Corridon PR, Zhang S, Xu W, Witzmann FA, Collett JA, Rhodes GJ, Winfree S, Bready D, Pfeffenberger ZJ, Pomerantz JM, Hato T, Nagami GT, Molitoris BA, Basile DP, Atkinson SJ, Bacallao RL. Exogenous Gene Transmission of Isocitrate Dehydrogenase 2 Mimics Ischemic Preconditioning Protection. J Am Soc Nephrol 2018; 29:1154-1164. [PMID: 29371417 DOI: 10.1681/asn.2017060675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023] Open
Abstract
Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine (P<0.05) observed in controls and increased the mitochondria membrane potential (P<0.05), maximal respiratory capacity (P<0.05), and intracellular ATP levels (P<0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning.
Collapse
Affiliation(s)
- Alexander L Kolb
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana.,Research Division, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | | | - Shijun Zhang
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana
| | | | | | | | | | - Seth Winfree
- Division of Nephrology.,Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | - Devin Bready
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana.,Division of Nephrology
| | | | | | | | - Glenn T Nagami
- Division of Nephrology, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; and.,Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles Veterans Affairs Medical Center, Los Angeles, California
| | - Bruce A Molitoris
- Division of Nephrology.,Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Simon J Atkinson
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana.,Division of Nephrology
| | - Robert L Bacallao
- Research Division, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; .,Division of Nephrology
| |
Collapse
|
32
|
Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 2017; 36:3359-3374. [PMID: 28092669 PMCID: PMC5485177 DOI: 10.1038/onc.2016.485] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely, epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency. Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these abnormalities in cancer.
Collapse
|
33
|
Structure and function of an ancestral-type β-decarboxylating dehydrogenase from Thermococcus kodakarensis. Biochem J 2016; 474:105-122. [PMID: 27831491 DOI: 10.1042/bcj20160699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/05/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022]
Abstract
β-Decarboxylating dehydrogenases, which are involved in central metabolism, are considered to have diverged from a common ancestor with broad substrate specificity. In a molecular phylogenetic analysis of 183 β-decarboxylating dehydrogenase homologs from 84 species, TK0280 from Thermococcus kodakarensis was selected as a candidate for an ancestral-type β-decarboxylating dehydrogenase. The biochemical characterization of recombinant TK0280 revealed that the enzyme exhibited dehydrogenase activities toward homoisocitrate, isocitrate, and 3-isopropylmalate, which correspond to key reactions involved in the lysine biosynthetic pathway, tricarboxylic acid cycle, and leucine biosynthetic pathway, respectively. In T. kodakarensis, the growth characteristics of the KUW1 host strain and a TK0280 deletion strain suggested that TK0280 is involved in lysine biosynthesis in this archaeon. On the other hand, gene complementation analyses using Thermus thermophilus as a host revealed that TK0280 functions as both an isocitrate dehydrogenase and homoisocitrate dehydrogenase in this organism, but not as a 3-isopropylmalate dehydrogenase, most probably reflecting its low catalytic efficiency toward 3-isopropylmalate. A crystallographic study on TK0280 binding each substrate indicated that Thr71 and Ser80 played important roles in the recognition of homoisocitrate and isocitrate while the hydrophobic region consisting of Ile82 and Leu83 was responsible for the recognition of 3-isopropylmalate. These analyses also suggested the importance of a water-mediated hydrogen bond network for the stabilization of the β3-α4 loop, including the Thr71 residue, with respect to the promiscuity of the substrate specificity of TK0280.
Collapse
|
34
|
Measuring the Impact of Microenvironmental Conditions on Mitochondrial Dehydrogenase Activity in Cultured Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 899:113-20. [PMID: 27325264 DOI: 10.1007/978-3-319-26666-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Mitochondria are powerhouses of a cell, producing much of the cellular ATP. However, mitochondrial enzymes also participate in many cellular biosynthetic processes. They are responsible for helping to maintain NAD(P)/H and redox balance, supplying metabolic intermediates for cell growth, and regulating several types of programed cell death. Several mitochondrial enzymes have even been shown to participate in the oncogenic process such as isocitrate dehydrogenase, succinate dehydrogenase, and fumarate hydratase. Recent advances have identified significant metabolic changes in the mitochondria that are regulated by malignant transformation and environmental stimuli. Understanding the biological activity and regulation of mitochondrial enzymes can provide insight into how they participate in the process of oncogenic transformation and work to sustain malignant growth. This chapter describes a technique to measure mitochondrial dehydrogenase activities that is faster and more cost effective which can also be scaled up for high throughput.
Collapse
|
35
|
Neves RPP, Fernandes PA, Ramos MJ. Unveiling the Catalytic Mechanism of NADP+-Dependent Isocitrate Dehydrogenase with QM/MM Calculations. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui P. P. Neves
- UCIBIO,
REQUIMTE, Departamento
de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO,
REQUIMTE, Departamento
de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO,
REQUIMTE, Departamento
de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
36
|
Hsu C, West AH, Cook PF. Evidence for an induced conformational change in the catalytic mechanism of homoisocitrate dehydrogenase for Saccharomyces cerevisiae: Characterization of the D271N mutant enzyme. Arch Biochem Biophys 2015; 584:20-7. [PMID: 26325079 DOI: 10.1016/j.abb.2015.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 11/19/2022]
Abstract
Homoisocitrate dehydrogenase (HIcDH) catalyzes the NAD(+)-dependent oxidative decarboxylation of HIc to α-ketoadipate, the fourth step in the α-aminoadipate pathway responsible for the de novo synthesis of l-lysine in fungi. A mechanism has been proposed for the enzyme that makes use of a Lys-Tyr pair as acid-base catalysts, with Lys acting as a base to accept a proton from the α-hydroxyl of homoisocitrate, and Tyr acting as an acid to protonate the C3 of the enol of α-ketoadipate in the enolization reaction. Three conserved aspartate residues, D243, D267 and D271, coordinate Mg(2+), which is also coordinated to the α-carboxylate and α-hydroxyl of homoisocitrate. On the basis of kinetic isotope effects, it was proposed that a conformational change to close the active site and organize the active site for catalysis contributed to rate limitation of the overall reaction of the Saccharomyces cerevisiae HIcDH (Lin, Y., Volkman, J., Nicholas, K. M., Yamamoto, T., Eguchi, T., Nimmo, S. L., West, A. H., and Cook, P. F. (2008) Biochemistry47, 4169-4180.). In order to test this hypothesis, site-directed mutagenesis was used to change D271, a metal ion ligand and binding determinant for MgHIc, to N. The mutant enzyme was characterized using initial rate studies. A decrease of 520-fold was observed in V and V/KMgHIc, suggesting the same step(s) limit the reaction at limiting and saturating MgHIc concentrations. Solvent kinetic deuterium isotope effects (SKIE) and viscosity effects are consistent with a rate-limiting pre-catalytic conformational change at saturating reactant concentrations. In addition, at limiting MgHIc, an inverse (SKIE) of 0.7 coupled to a significant normal effect of viscosogen (2.1) indicates equilibrium binding of MgHIc prior to the rate-limiting conformational change. The maximum rate exhibits a small partial change at high pH suggesting a pH-dependent conformational change, while V/KMgHIc exhibits the same partial change observed in V, and a decrease at low pH with a pKa of 6 reflecting the requirement for the unprotonated form of MgHIc to bind to enzyme. However, neither parameter reflects the pH dependence of the chemical reaction. This pH independence of the chemical reaction over the range 5.5-9.5 is consistent with the much slower conformational change that would effectively perturb the observed pK values for catalytic groups to lower and higher pH. In other words, the pH dependence of the chemical reaction will only be observed when chemistry becomes slower than the rate of the conformational change. Data support the hypothesis of the existence of a pre-catalytic conformational change coupled to the binding of MgHIc.
Collapse
Affiliation(s)
- Chaonan Hsu
- 15001 Salem Creek Rd., Edmond, OK 73013, USA
| | - Ann H West
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| | - Paul F Cook
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| |
Collapse
|
37
|
Abstract
The tricarboxylic acid (TCA) cycle plays two essential roles in metabolism. First, under aerobic conditions the cycle is responsible for the total oxidation of acetyl-CoA that is derived mainly from the pyruvate produced by glycolysis. Second, TCA cycle intermediates are required in the biosynthesis of several amino acids. Although the TCA cycle has long been considered a "housekeeping" pathway in Escherichia coli and Salmonella enterica, the pathway is highly regulated at the transcriptional level. Much of this control is exerted in response to respiratory conditions. The TCA cycle gene-protein relationship and mutant phenotypes have been well studied, although a few loose ends remain. The realization that a "shadow" TCA cycle exists that proceeds through methylcitrate has cleared up prior ambiguities. The glyoxylate bypass has long been known to be essential for growth on carbon sources such as acetate or fatty acids because this pathway allowsnet conversion of acetyl-CoA to metabolic intermediates. Strains lacking this pathway fail to grow on these carbon sources, since acetate carbon entering the TCA cycle is quantitatively lost as CO2 resulting in the lack of a means to replenish the dicarboxylic acids consumed in amino acid biosynthesis. The TCA cycle gene-protein relationship and mutant phenotypes have been well studied, although the identity of the small molecule ligand that modulates transcriptional control of the glyoxylate cycle genes by binding to the IclR repressor remains unknown. The activity of the cycle is also exerted at the enzyme level by the reversible phosphorylation of the TCA cycle enzyme isocitrate dehydrogenase catalyzed by a specific kinase/phosphatase to allow isocitratelyase to compete for isocitrate and cleave this intermediate to glyoxylate and succinate.
Collapse
|
38
|
Islam MA, Tchigvintsev A, Yim V, Savchenko A, Yakunin AF, Mahadevan R, Edwards EA. Experimental validation of in silico model-predicted isocitrate dehydrogenase and phosphomannose isomerase from Dehalococcoides mccartyi. Microb Biotechnol 2015; 9:47-60. [PMID: 26374290 PMCID: PMC4720418 DOI: 10.1111/1751-7915.12315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 07/12/2015] [Accepted: 08/07/2015] [Indexed: 11/28/2022] Open
Abstract
Gene sequences annotated as proteins of unknown or non‐specific function and hypothetical proteins account for a large fraction of most genomes. In the strictly anaerobic and organohalide respiring Dehalococcoides mccartyi, this lack of annotation plagues almost half the genome. Using a combination of bioinformatics analyses and genome‐wide metabolic modelling, new or more specific annotations were proposed for about 80 of these poorly annotated genes in previous investigations of D. mccartyi metabolism. Herein, we report the experimental validation of the proposed reannotations for two such genes (KB1_0495 and KB1_0553) from D. mccartyi strains in the KB‐1 community. KB1_0495 or DmIDH was originally annotated as an NAD+‐dependent isocitrate dehydrogenase, but biochemical assays revealed its activity primarily with NADP+ as a cofactor. KB1_0553, also denoted as DmPMI, was originally annotated as a hypothetical protein/sugar isomerase domain protein. We previously proposed that it was a bifunctional phosphoglucose isomerase/phosphomannose isomerase, but only phosphomannose isomerase activity was identified and confirmed experimentally. Further bioinformatics analyses of these two protein sequences suggest their affiliation to potentially novel enzyme families within their respective larger enzyme super families.
Collapse
Affiliation(s)
- M Ahsanul Islam
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Anatoli Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Veronica Yim
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
39
|
Tang WG, Song P, Cao ZY, Wang P, Zhu GP. A unique homodimeric NAD⁺-linked isocitrate dehydrogenase from the smallest autotrophic eukaryote Ostreococcus tauri. FASEB J 2015; 29:2462-72. [PMID: 25724193 DOI: 10.1096/fj.14-257014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/03/2015] [Indexed: 11/11/2022]
Abstract
In eukaryotes, NAD(+)-dependent isocitrate dehydrogenase (IDH) is strictly mitochondrial and is a key enzyme in the Krebs cycle. To date, all known NAD(+)-specific IDHs (NAD-IDHs) in the mitochondria are believed to be heteromeric in solution. Here, a unique homodimeric NAD-IDH from Ostreococcus tauri (OtIDH), the smallest autotrophic picoeukaryote, was unveiled. Active OtIDH has a molecular weight of ∼93 kDa with each subunit of 46.7 kDa. In the presence of Mn(2+) and Mg(2+), OtIDH displayed 42-fold and 51-fold preference for NAD(+) over NADP(+), respectively. Interestingly, OtIDH exhibited a sigmoidal kinetic behavior in response to isocitrate unlike other homodimeric homologs, and a remarkably high affinity for isocitrate (S0.5 < 10 μM) unlike other hetero-oligomeric homologs. Furthermore, its coenzyme specificity can be completely converted from NAD(+) (ancient trait) to NADP(+) (adaptive trait) by rational mutagenesis based on the evolutionary trace. Mutants D344R and D344R/M345H displayed a 15-fold and 72-fold preference for NADP(+) over NAD(+), respectively, indicating that D344 and M345 are the determinants of NAD(+) specificity. These findings also suggest that OtIDH may be an ancestral form of type II IDHs (all reported members are NADP(+)-linked enzymes) and may have evolved into NADP(+)-dependent IDH for adaptation to the increased demand of NADPH under carbon starvation.
Collapse
Affiliation(s)
- Wang-Gang Tang
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ping Song
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zheng-Yu Cao
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Peng Wang
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Guo-Ping Zhu
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
40
|
McSkimming A, Chan B, Bhadbhade MM, Ball GE, Colbran SB. Bio-Inspired Transition Metal-Organic Hydride Conjugates for Catalysis of Transfer Hydrogenation: Experiment and Theory. Chemistry 2014; 21:2821-34. [DOI: 10.1002/chem.201405129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Indexed: 11/07/2022]
|
41
|
Crystal structure studies of NADP+ dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain. Biochem Biophys Res Commun 2014; 449:107-13. [PMID: 24832735 DOI: 10.1016/j.bbrc.2014.04.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 04/30/2014] [Indexed: 02/02/2023]
Abstract
NADP(+) dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP(+) was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH's. And, small domain and clasp domain showing significant differences when compared to other IDH's of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH's. Also, helices/beta sheets are absent in the small domain, when compared to other IDH's of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit-subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.
Collapse
|
42
|
Miller SP, Gonçalves S, Matias PM, Dean AM. Evolution of a transition state: role of Lys100 in the active site of isocitrate dehydrogenase. Chembiochem 2014; 15:1145-53. [PMID: 24797066 DOI: 10.1002/cbic.201400040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Indexed: 11/09/2022]
Abstract
An active site lysine essential to catalysis in isocitrate dehydrogenase (IDH) is absent from related enzymes. As all family members catalyze the same oxidative β-decarboxylation at the (2R)-malate core common to their substrates, it seems odd that an amino acid essential to one is not found in all. Ordinarily, hydride transfer to a nicotinamide C4 neutralizes the positive charge at N1 directly. In IDH, the negatively charged C4-carboxylate of isocitrate stabilizes the ground state positive charge on the adjacent nicotinamide N1, opposing hydride transfer. The critical lysine is poised to stabilize-and perhaps even protonate-an oxyanion formed on the nicotinamide 3-carboxamide, thereby enabling the hydride to be transferred while the positive charge at N1 is maintained. IDH might catalyze the same overall reaction as other family members, but dehydrogenation proceeds through a distinct, though related, transition state. Partial activation of lysine mutants by K(+) and NH4 (+) represents a throwback to the primordial state of the first promiscuous substrate family member.
Collapse
Affiliation(s)
- Stephen P Miller
- Biotechnology Institute, The University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108 (USA)
| | | | | | | |
Collapse
|
43
|
Zhao X, Wang P, Zhu G, Wang B, Zhu G. Enzymatic characterization of a type II isocitrate dehydrogenase from pathogenic Leptospira interrogans serovar Lai strain 56601. Appl Biochem Biotechnol 2013; 172:487-96. [PMID: 24092452 DOI: 10.1007/s12010-013-0521-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/15/2013] [Indexed: 01/20/2023]
Abstract
Leptospira interrogans, a Gram-negative pathogen, could cause infections in a wide variety of mammalian hosts, but due to their fastidious cultivation requirements and the lack of genetic systems, the pathogenic factor is still not clear. Isocitrate dehydrogenase (IDH) is a key enzyme in the tricarboxylation (TCA) cycle, which could have an important impact on the growth and pathogenesis of the bacteria. In the present study, we first report the cloning, heterologous expression, and detailed characterization of the IDH gene from L. interrogans serovar Lai strain 56601(LiIDH). The molecular weight of LiIDH was determined to be 87 kDa by filtration chromatography, suggesting LiIDH is a typical homodimer. The optimum activity of LiIDH was found at 60 °C, and its optimum pH was 7.0 (Mn(2+)) and 8.0 (Mg(2+)). Heat inactivation studies showed that heat treatment for 20 min at 50 °C caused a 50 % loss of enzyme activity. LiIDH was completely divalent cation dependent as other typical dimeric IDHs and Mg(2+) was its best activator. The recombinant LiIDH specificities (kcat/Km values for NADP(+) and NAD(+)) in the presence of Mg(2+) and Mn(2+) were 6,269-fold and 1,000-fold greater for NADP(+) than NAD(+), respectively. This current work is expected to shed light on the functions of metabolic enzymes in L. interrogans and provide useful information for LiIDH to be considered as a possible candidate for serological diagnostics and detection of L. interrogans infection.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute of Molecular Biology and Biotechnology and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, Anhui, China
| | | | | | | | | |
Collapse
|
44
|
Isocitrate dehydrogenase from Streptococcus mutans: biochemical properties and evaluation of a putative phosphorylation site at Ser102. PLoS One 2013; 8:e58918. [PMID: 23484056 PMCID: PMC3590139 DOI: 10.1371/journal.pone.0058918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/08/2013] [Indexed: 11/30/2022] Open
Abstract
Isocitrate deyhdrogenase (IDH) is a reversible enzyme in the tricarboxylic acid cycle that catalyzes the NAD(P)+-dependent oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG) and the NAD(P)H/CO2-dependent reductive carboxylation of αKG to isocitrate. The IDH gene from Streptococcus mutans was fused with the icd gene promoter from Escherichia coli to initiate its expression in the glutamate auxotrophic strain E. coli Δicd::kanr of which the icd gene has been replaced by kanamycin resistance gene. The expression of S. mutans IDH (SmIDH) may restore the wild-type phenotype of the icd-defective strain on minimal medium without glutamate. The molecular weight of SmIDH was estimated to be 70 kDa by gel filtration chromatography, suggesting a homodimeric structure. SmIDH was divalent cation-dependent and Mn2+ was found to be the most effective cation. The optimal pH of SmIDH was 7.8 and the maximum activity was around 45°C. SmIDH was completely NAD+ dependent and its apparent Km for NAD+ was 137 μM. In order to evaluate the role of the putative phosphorylation site at Ser102 in catalysis, two “stably phosphorylated” mutants were constructed by converting Ser102 into Glu102 or Asp102 in SmIDH to mimick a constitutively phosphorylated state. Meanwhile, the functional roles of another four amino acids (threonine, glycine, alanine and tyrosine) containing variant size of side chains were investigated. The replacement of Asp102 or Glu102 totally inactivated the enzyme, while the S102T, S102G, S102A and S102Y mutants decreased the affinity to isocitrate and only retained 16.0%, 2.8%, 3.3% and 1.1% of the original activity, respectively. These results reveal that Ser102 plays important role in substrate binding and is required for the enzyme function. Also, Ser102 in SmIDH is a potential phosphorylation site, indicating that the ancient NAD-dependent IDHs might be the underlying origin of “phosphorylation mechanism” used by their bacterial NADP-dependent homologs.
Collapse
|
45
|
Zientek M, Youdim K. Simultaneous determination of multiple CYP inhibition constants using a cocktail-probe approach. Methods Mol Biol 2013; 987:11-23. [PMID: 23475664 DOI: 10.1007/978-1-62703-321-3_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To identify cytochrome P450 (CYP) drug-drug interaction (DDI) potential of a new chemical entity, the use of a specific clinically relevant probe substrate in the presence of a test compound is common place. In early discovery of new chemical entities, a balance of rigor, the ability to predict clinical DDI, and throughput is desired in an in vitro assay. This chapter describes a high-throughput CYP-mediated DDI assay method that balances these characteristics. The method utilizes a cassette approach using a cocktail of five selective probe substrates for the major clinically relevant CYPs involved in drug interactions. CYP1A2, 2C9, 2C19, 2D6, and 3A activities are assessed with liquid chromatography/tandem mass spectrometry (LC-MS/MS) quantification of metabolite formation. The method also outlines specific inhibitors to evaluate dynamic range and as a positive control. The benefits and needs for caution of this method are noted and discussed.
Collapse
|
46
|
Functional relevance of dynamic properties of Dimeric NADP-dependent Isocitrate Dehydrogenases. BMC Bioinformatics 2012; 13 Suppl 17:S2. [PMID: 23281650 PMCID: PMC3521221 DOI: 10.1186/1471-2105-13-s17-s2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Isocitrate Dehydrogenases (IDHs) are important enzymes present in all living cells. Three subfamilies of functionally dimeric IDHs (subfamilies I, II, III) are known. Subfamily I are well-studied bacterial IDHs, like that of Escherischia coli. Subfamily II has predominantly eukaryotic members, but it also has several bacterial members, many being pathogens or endosymbionts. subfamily III IDHs are NAD-dependent. The eukaryotic-like subfamily II IDH from pathogenic bacteria such as Mycobacterium tuberculosis IDH1 are expected to have regulation similar to that of bacteria which use the glyoxylate bypass to survive starvation. Yet they are structurally different from IDHs of subfamily I, such as the E. coli IDH. Results We have used phylogeny, structural comparisons and molecular dynamics simulations to highlight the similarity and differences between NADP-dependent dimeric IDHs with an emphasis on regulation. Our phylogenetic study indicates that an additional subfamily (IV) may also be present. Variation in sequence and structure in an aligned region may indicate functional importance concerning regulation in bacterial subfamily I IDHs. Correlation in movement of prominent loops seen from molecular dynamics may explain the adaptability and diversity of the predominantly eukaryotic subfamily II IDHs. Conclusion This study discusses possible regulatory mechanisms operating in various IDHs and implications for regulation of eukaryotic-like bacterial IDHs such as that of M. tuberculosis, which may provide avenues for intervention in disease.
Collapse
|
47
|
Expression and characterization of a novel isocitrate dehydrogenase from Streptomyces diastaticus No. 7 strain M1033. Mol Biol Rep 2012; 40:1615-23. [PMID: 23073782 DOI: 10.1007/s11033-012-2210-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 10/09/2012] [Indexed: 01/01/2023]
Abstract
Isocitrate dehydrogenase (IDH) is one of the key enzymes in tricarboxylic acid cycle, widely distributed in Archaea, Bacteria and Eukarya. Here, we report for the first time the cloning, expression and characterization of a monomeric NADP(+)-dependent IDH from Streptomyces diastaticus No. 7 strain M1033 (SdIDH). Molecular mass of SdIDH was about 80 kDa and showed high amino acid sequence identity with known monomeric IDHs. Maximal activity of SdIDH was observed at pH 8.0 (Mn(2+)) and 9.0 (Mg(2+)), and the optimal temperature was 40 °C (Mn(2+)) and 37 °C (Mg(2+)). Heat-inactivation studies showed that SdIDH remained about 50 % activity after 20 min of incubation at 47 °C. SdIDH displayed a 19,000 and 32,000-fold (k (cat)/K (m)) preference for NADP(+) over NAD(+) with Mn(2+) and Mg(2+), respectively. Our work implicate that SdIDH is a divalent metal ion-dependent monomeric IDH with remarkably high coenzyme preference for NADP(+). This work may provide fundamental information for further investigation on the catalytic mechanism of monomeric IDH and give a clue to disclose the real cause of IDH monomerization.
Collapse
|
48
|
Gonçalves S, Miller SP, Carrondo MA, Dean AM, Matias PM. Induced fit and the catalytic mechanism of isocitrate dehydrogenase. Biochemistry 2012; 51:7098-115. [PMID: 22891681 DOI: 10.1021/bi300483w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NADP(+) dependent isocitrate dehydrogenase (IDH; EC 1.1.1.42) belongs to a large family of α-hydroxyacid oxidative β-decarboxylases that catalyze similar three-step reactions, with dehydrogenation to an oxaloacid intermediate preceding β-decarboxylation to an enol intermediate followed by tautomerization to the final α-ketone product. A comprehensive view of the induced fit needed for catalysis is revealed on comparing the first "fully closed" crystal structures of a pseudo-Michaelis complex of wild-type Escherichia coli IDH (EcoIDH) and the "fully closed" reaction product complex of the K100M mutant with previously obtained "quasi-closed" and "open" conformations. Conserved catalytic residues, binding the nicotinamide ring of NADP(+) and the metal-bound substrate, move as rigid bodies during domain closure by a hinge motion that spans the central β-sheet in each monomer. Interactions established between Thr105 and Ser113, which flank the "phosphorylation loop", and the nicotinamide mononucleotide moiety of NADP(+) establish productive coenzyme binding. Electrostatic interactions of a Lys100-Leu103-Asn115-Glu336 tetrad play a pivotal role in assembling a catalytically competent active site. As predicted, Lys230* is positioned to deprotonate/reprotonate the α-hydroxyl in both reaction steps and Tyr160 moves into position to protonate C3 following β-decarboxylation. A proton relay from the catalytic triad Tyr160-Asp307-Lys230* connects the α-hydroxyl of isocitrate to the bulk solvent to complete the picture of the catalytic mechanism.
Collapse
Affiliation(s)
- Susana Gonçalves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2780 Oeiras Portugal
| | | | | | | | | |
Collapse
|
49
|
Leiros HKS, Fedøy AE, Leiros I, Steen IH. The complex structures of isocitrate dehydrogenase from Clostridium thermocellum and Desulfotalea psychrophila suggest a new active site locking mechanism. FEBS Open Bio 2012; 2:159-72. [PMID: 23650595 PMCID: PMC3642140 DOI: 10.1016/j.fob.2012.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 11/29/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) catalyzes the oxidative NAD(P)+-dependent decarboxylation of isocitrate into α-ketoglutarate and CO2 and is present in organisms spanning the biological range of temperature. We have solved two crystal structures of the thermophilic Clostridium thermocellum IDH (CtIDH), a native open apo CtIDH to 2.35 Å and a quaternary complex of CtIDH with NADP+, isocitrate and Mg2+ to 2.5 Å. To compare to these a quaternary complex structure of the psychrophilic Desulfotalea psychrophila IDH (DpIDH) was also resolved to 1.93 Å. CtIDH and DpIDH showed similar global thermal stabilities with melting temperatures of 67.9 and 66.9 °C, respectively. CtIDH represents a typical thermophilic enzyme, with a large number of ionic interactions and hydrogen bonds per residue combined with stabilization of the N and C termini. CtIDH had a higher activity temperature optimum, and showed greater affinity for the substrates with an active site that was less thermolabile compared to DpIDH. The uncompensated negative surface charge and the enlarged methionine cluster in the hinge region both of which are important for cold activity in DpIDH, were absent in CtIDH. These structural comparisons revealed that prokaryotic IDHs in subfamily II have a unique locking mechanism involving Arg310, Asp251′ and Arg255 (CtIDH). These interactions lock the large domain to the small domain and direct NADP+ into the correct orientation, which together are important for NADP+ selectivity.
Collapse
Key Words
- CtIDH, Clostridium thermocellum IDH
- DSC, differential scanning calorimetry
- DhIDH, Desulfitobacterium hafniense IDH
- Domain movement
- DpIDH, Desulfotalea psychrophila IDH
- EcIDH, Escherichia coli IDH
- HcIDH, human cytosolic IDH
- IDH, isocitrate dehydrogenase
- NADP+ selectivity
- PcIDH, porcine heart mitochondrial IDH
- Psychrophilic
- ScIDH, Saccharomyces cerevesiae mitochondrial IDH
- Temperature adaptation
- Thermophilic
- Tm, apparent melting temperature
- TmIDH, Thermotoga maritima
Collapse
Affiliation(s)
- Hanna-Kirsti S Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|
50
|
DeArmond PD, Xu Y, Strickland EC, Daniels KG, Fitzgerald MC. Thermodynamic analysis of protein-ligand interactions in complex biological mixtures using a shotgun proteomics approach. J Proteome Res 2011; 10:4948-58. [PMID: 21905665 PMCID: PMC3208786 DOI: 10.1021/pr200403c] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shotgun proteomics protocols are widely used for the identification and/or quantitation of proteins in complex biological samples. Described here is a shotgun proteomics protocol that can be used to identify the protein targets of biologically relevant ligands in complex protein mixtures. The protocol combines a quantitative proteomics platform with a covalent modification strategy, termed Stability of Proteins from Rates of Oxidation (SPROX), which utilizes the denaturant dependence of hydrogen peroxide-mediated oxidation of methionine side chains in proteins to assess the thermodynamic properties of proteins and protein-ligand complexes. The quantitative proteomics platform involves the use of isobaric mass tags and a methionine-containing peptide enhancement strategy. The protocol is evaluated in a ligand binding experiment designed to identify the proteins in a yeast cell lysate that bind the well-known enzyme cofactor, β-nicotinamide adenine dinucleotide (NAD+). The protocol is also used to investigate the protein targets of resveratrol, a biologically active ligand with less well-understood protein targets. A known protein target of resveratrol, cytosolic aldehyde dehydrogenase, was identified in addition to six other potential new proteins targets including four that are associated with the protein translation machinery, which has previously been implicated as a target of resveratrol.
Collapse
Affiliation(s)
| | - Ying Xu
- Department of Chemistry, Duke University, Durham, NC 27708
| | | | - Kyle G. Daniels
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27708
| | - Michael C. Fitzgerald
- Department of Chemistry, Duke University, Durham, NC 27708
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27708
| |
Collapse
|