1
|
Saeed A, Bartuzi P, Heegsma J, Dekker D, Kloosterhuis N, de Bruin A, Jonker JW, van de Sluis B, Faber KN. Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes. Cell Mol Gastroenterol Hepatol 2020; 11:309-325.e3. [PMID: 32698042 PMCID: PMC7768561 DOI: 10.1016/j.jcmgh.2020.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.g. all risk factors of NAFLD. METHODS Here, we analyzed vitamin A metabolism in 2 mouse models of NAFLD; mice fed a high-fat, high-cholesterol (HFC) diet and Leptinob mutant (ob/ob) mice. RESULTS Hepatic retinol and retinol binding protein 4 (RBP4) levels were significantly reduced in both mouse models of NAFLD. In contrast, hepatic retinyl palmitate levels (the vitamin A storage form) were significantly elevated in these mice. Transcriptome analysis revealed a hyperdynamic state of hepatic vitamin A metabolism, with enhanced retinol storage and metabolism (upregulated Lrat, Dgat1, Pnpla3, Raldh's and RAR/RXR-target genes) in fatty livers, in conjunction with induced hepatic inflammation (upregulated Cd68, Tnfα, Nos2, Il1β, Il-6) and fibrosis (upregulated Col1a1, Acta2, Tgfβ, Timp1). Autofluorescence analyses revealed prominent vitamin A accumulation in hepatocytes rather than HSC in HFC-fed mice. Palmitic acid exposure increased Lrat mRNA levels in primary rat hepatocytes and promoted retinyl palmitate accumulation when co-treated with retinol, which was not detected for similarly-treated primary rat HSCs. CONCLUSION NAFLD leads to cell type-specific rearrangements in retinol metabolism leading to vitamin A accumulation in hepatocytes. This may promote disease progression and/or affect therapeutic approaches targeting nuclear receptors.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan.
| | - Paulina Bartuzi
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory Medicine, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daphne Dekker
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels Kloosterhuis
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alain de Bruin
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory Medicine, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Touloupi K, Küblbeck J, Magklara A, Molnár F, Reinisalo M, Konstandi M, Honkakoski P, Pappas P. The Basis for Strain-Dependent Rat Aldehyde Dehydrogenase 1A7 ( ALDH1A7) Gene Expression. Mol Pharmacol 2019; 96:655-663. [PMID: 31575620 DOI: 10.1124/mol.119.117424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022] Open
Abstract
Aldehyde hydrogenases (ALDHs) belong to a large gene family involved in oxidation of both endogenous and exogenous compounds in mammalian tissues. Among ALDHs, the rat ALDH1A7 gene displays a curious strain dependence in phenobarbital (PB)-induced hepatic expression: the responsive RR strains exhibit induction of both ALDH1A7 and CYP2B mRNAs and activities, whereas the nonresponsive rr strains show induction of CYP2B only. Here, we investigated the responsiveness of ALDH1A1, ALDH1A7, CYP2B1, and CYP3A23 genes to prototypical P450 inducers, expression of nuclear receptors CAR and pregnane X receptor, and structure of the ALDH1A7 promoter in both rat strains. ALDH1A7 mRNA, associated protein and activity were strongly induced by PB and modestly induced by pregnenolone 16α-carbonitrile in the RR strain but negligibly in the rr strain, whereas induction of ALDH1A1 and P450 mRNAs was similar between the strains. Reporter gene and chromatin immunoprecipitation assays indicated that the loss of ALDH1A7 inducibility in the rr strain is profoundly linked with a 16-base pair deletion in the proximal promoter and inability of the upstream DNA sequences to recruit constitutive androstane receptor-retinoid X receptor heterodimers. SIGNIFICANCE STATEMENT: Genetic variation in rat ALDH1A7 promoter sequences underlie the large strain-dependent differences in expression and inducibility by phenobarbital of the aldehyde dehydrogenase activity. This finding has implications for the design and interpretation of pharmacological and toxicological studies on the effects and disposition of aldehydes.
Collapse
Affiliation(s)
- Katerina Touloupi
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Jenni Küblbeck
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Angeliki Magklara
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Ferdinand Molnár
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Mika Reinisalo
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Maria Konstandi
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Paavo Honkakoski
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Periklis Pappas
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| |
Collapse
|
3
|
Oligo(cis-1,4-isoprene) aldehyde-oxidizing dehydrogenases of the rubber-degrading bacterium Gordonia polyisoprenivorans VH2. Appl Microbiol Biotechnol 2017; 101:7945-7960. [PMID: 28956111 DOI: 10.1007/s00253-017-8508-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/16/2017] [Accepted: 09/01/2017] [Indexed: 12/23/2022]
Abstract
The actinomycete Gordonia polyisoprenivorans strain VH2 is well-known for its ability to efficiently degrade and catabolize natural rubber [poly(cis-1,4-isoprene)]. Recently, a pathway for the catabolism of rubber by strain VH2 was postulated based on genomic data and the analysis of mutants (Hiessl et al. in Appl Environ Microbiol 78:2874-2887, 2012). To further elucidate the degradation pathway of poly(cis-1,4-isoprene), 2-dimensional-polyacrylamide gel electrophoresis was performed. The analysis of the identified protein spots by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry confirmed the postulated intracellular pathway suggesting a degradation of rubber via β-oxidation. In addition, other valuable information on rubber catabolism of G. polyisoprenivorans strain VH2 (e.g. oxidative stress response) was provided. Identified proteins, which were more abundant in cells grown with rubber than in cells grown with propionate, implied a putative long-chain acyl-CoA-dehydrogenase, a 3-ketoacyl-CoA-thiolase, and an aldehyde dehydrogenase. The amino acid sequence of the latter showed a high similarity towards geranial dehydrogenases. The expression of the corresponding gene was upregulated > 10-fold under poly(cis-1,4-isoprene)-degrading conditions. The putative geranial dehydrogenase and a homolog were purified and used for enzyme assays. Deletion mutants for five aldehyde dehydrogenases were generated, and growth with poly(cis-1,4-isoprene) was investigated. While none of the mutants had an altered phenotype regarding growth with poly(cis-1,4-isoprene) as sole carbon and energy source, purified aldehyde dehydrogenases were able to catalyze the oxidation of oligoisoprene aldehydes indicating an involvement in rubber degradation.
Collapse
|
4
|
VLACHOVÁ M, HECZKOVÁ M, JIRSA M, POLEDNE R, KOVÁŘ J. The Response of Hepatic Transcriptome to Dietary Cholesterol in Prague Hereditary Hypercholesterolemic (PHHC) Rat. Physiol Res 2014; 63:S429-37. [DOI: 10.33549/physiolres.932894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To understand the pathogenesis of hypercholesterolemia in Prague hereditary hypercholesterolemic (PHHC) rat, we analyzed the response of hepatic transcriptome to dietary cholesterol in PHHC and control Wistar rats. Male PHHC and Wistar rats were fed chow (C), 5 % fat (palm kernel oil) (CF) or 1 % cholesterol + 5 % fat (CHOL) diet for three weeks. Hepatic transcriptome was analyzed using Affymetrix GeneChip arrays. No differences were found in the effect of both control diets (C and CF) on lipid metabolism and gene expression of 6500 genes. Therefore, these data were pooled for further analysis. Dietary cholesterol induced accumulation of cholesterol and triacylglycerols in the liver in both strains and hypercholesterolemia in PHHC rats. However, there were no differences in response of hepatic transcriptome to CHOL diet. On the other hand, several genes were found to be differently expressed between both strains independently of the diet. Two of those genes, Apof and Aldh1a7, were studied in more detail, and their role in pathogenesis of hypercholesterolemia in PHHC rats could not been corroborated. In conclusion, the hypercholesterolemia in PHHC rats is due to physiological response of hepatic transcriptome to dietary cholesterol in different genetic background.
Collapse
Affiliation(s)
- M. VLACHOVÁ
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
5
|
Holmes RS. Comparative and evolutionary studies of vertebrate ALDH1A-like genes and proteins. Chem Biol Interact 2014; 234:4-11. [PMID: 25446856 DOI: 10.1016/j.cbi.2014.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/28/2014] [Accepted: 11/04/2014] [Indexed: 11/26/2022]
Abstract
Vertebrate ALDH1A-like genes encode cytosolic enzymes capable of metabolizing all-trans-retinaldehyde to retinoic acid which is a molecular 'signal' guiding vertebrate development and adipogenesis. Bioinformatic analyses of vertebrate and invertebrate genomes were undertaken using known ALDH1A1, ALDH1A2 and ALDH1A3 amino acid sequences. Comparative analyses of the corresponding human genes provided evidence for distinct modes of gene regulation and expression with putative transcription factor binding sites (TFBS), CpG islands and micro-RNA binding sites identified for the human genes. ALDH1A-like sequences were identified for all mammalian, bird, lizard and frog genomes examined, whereas fish genomes displayed a more restricted distribution pattern for ALDH1A1 and ALDH1A3 genes. The ALDH1A1 gene was absent in many bony fish genomes examined, with the ALDH1A3 gene also absent in the medaka and tilapia genomes. Multiple ALDH1A1-like genes were identified in mouse, rat and marsupial genomes. Vertebrate ALDH1A1, ALDH1A2 and ALDH1A3 subunit sequences were highly conserved throughout vertebrate evolution. Comparative amino acid substitution rates showed that mammalian ALDH1A2 sequences were more highly conserved than for the ALDH1A1 and ALDH1A3 sequences. Phylogenetic studies supported an hypothesis for ALDH1A2 as a likely primordial gene originating in invertebrate genomes and undergoing sequential gene duplication to generate two additional genes, ALDH1A1 and ALDH1A3, in most vertebrate genomes.
Collapse
Affiliation(s)
- Roger S Holmes
- The Eskitis Institute for Drug Discovery and School of Natural Sciences, Griffith University, Nathan, 4111 QLD, Australia.
| |
Collapse
|
6
|
Yokoyama H, Shiraishi-Yokoyama H, Hibi T. Structural features of the NAD-dependent in situ retinoic acid supply system in esophageal mucosa. Alcohol Clin Exp Res 2009; 34 Suppl 1:S39-44. [PMID: 19824993 DOI: 10.1111/j.1530-0277.2009.01080.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We previously reported that an NAD-dependent in situ retinoic acid supply system, which comprises some isoforms of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) and provides retinoic acid from retinol via a 2-step oxidation process, exists in the rat esophagus. Herein, their isoforms responsible for the pathway and its localization in the rat esophagus was examined. METHODS The expressions of mRNAs of various isoforms of ADH and ALDH were examined in the fraction mainly comprising mucosal layer of the rat esophagus by RT-PCR. Expression levels of Class IV ADH and ALDH 1A1 were compared between the fractions and that mainly comprising muscle layer of the rat esophagus by quantitative PCR. The catalytic activities producing retinoic acid from retinal were compared between the 2 fractions and its optimum pH was also determined. RESULTS Classes I, III, and IV ADHs and ALDHs 1A1 and 3A1 were predominant isoforms in the rat esophageal mucosa. The expression levels of mRNA of Class IV ADH and ALDH 3A1 were significantly higher in the mucosal than in the muscle layer. Consistently, the catalytic activities producing retinoic acid from retinal were significantly higher in the former than the latter. The optimum pH of the process was 9.0. CONCLUSIONS Considering the affinities for retinol and retinal of ADHs and ALDHs expressed in the rat esophagus, the NAD-dependent in situ retinoic acid supply system in the rat esophagus is thought to comprise Class IV ADH and ALDH 1A1. In the rat esophagus, the system exists predominantly in the mucosal layer.
Collapse
Affiliation(s)
- Hirokazu Yokoyama
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
7
|
Kinetic characterization of recombinant mouse retinal dehydrogenase types 3 and 4 for retinal substrates. Biochim Biophys Acta Gen Subj 2009; 1790:1660-4. [PMID: 19766701 DOI: 10.1016/j.bbagen.2009.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/24/2009] [Accepted: 09/09/2009] [Indexed: 01/13/2023]
Abstract
BACKGROUND Retinal dehydrogenases (RALDHs) catalyze the dehydrogenation of retinal into retinoic acids (RAs), which are required for embryogenesis and tissue differentiation. This study sought to determine the detailed kinetic properties of 2 mouse RALDHs, namely RALDH3 and 4, for retinal isomer substrates, to better define their specificities in RA isomer synthesis. METHODS RALDH3 and 4 were expressed in Escherichia coli as His-tagged proteins and affinity-purified. Enzyme kinetics were performed with retinal isomer substrates. The enzymatic products were analyzed by high pressure liquid chromatography. RESULTS RALDH3 oxidized all-trans retinal with high catalytic efficiency (Vmax/Km=77.9) but did not show activity for either 9-cis or 13-cis retinal substrates. On the other hand, RALDH4 was inactive for all-trans retinal substrate, exhibited high activity for 9-cis retinal oxidation (Vmax/Km=27.4), and oxidized 13-cis retinal with lower catalytic efficiency (Vmax/Km=8.24). beta-ionone, a potent inhibitor of RALDH4 activity, suppressed 9-cis and 13-cis retinal oxidation competitively with inhibition constants of 0.60 and 0.32, respectively, but had no effect on RALDH3 activity. The divalent cation MgCl2 activated 13-cis retinal oxidation by RALDH4 by 3-fold, did not significantly influence 9-cis retinal oxidation, and slightly activated RALDH3 activity. CONCLUSIONS These data extend the kinetic characterization of RALDH3 and 4, providing their specificities for retinal isomer substrates. GENERAL SIGNIFICANCE The kinetic characterization of RALDHs should give useful information in determining amino acid residues that are involved in the specificity for retinal isomers and on the role of these enzymes in the synthesis of RAs in specific tissues.
Collapse
|
8
|
Alnouti Y, Klaassen CD. Tissue distribution, ontogeny, and regulation of aldehyde dehydrogenase (Aldh) enzymes mRNA by prototypical microsomal enzyme inducers in mice. Toxicol Sci 2007; 101:51-64. [PMID: 17998271 DOI: 10.1093/toxsci/kfm280] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aldehyde dehydrogenases (Aldhs) are a group of nicotinamide adenine dinucleotide phosphate-dependent enzymes that catalyze the oxidation of a wide spectrum of aldehydes to carboxylic acids. Tissue distribution and developmental changes in the expression of the messenger RNA (mRNA) of 15 Aldh enzymes were quantified in male and female mice tissues using the branched DNA signal amplification assay. Furthermore, the regulation of the mRNA expression of Aldhs by 15 typical microsomal enzyme inducers (MEIs) was studied. Aldh1a1 mRNA expression was highest in ovary; 1a2 in testis; 1a3 in placenta; 1a7 in lung; 1b1 in small intestine; 2 in liver; 3a1 in stomach; 3a2 and 3b1 expression was ubiquitous; 4a1, 6a1, 7a1, and 8a1 in liver and kidney; 9a1 in liver, kidney, and small intestine; and 18a1 in ovary and small intestine. mRNAs of different Aldh enzymes were detected at lower levels in fetuses than adult mice and gradually increased after birth to reach adult levels between 15 and 45 days of age, when the gender difference began to appear. Aromatic hydrocarbon receptor (AhR) ligands induced the liver mRNA expression of Aldh1a7, 1b1, and 3a1, constitutive androstane receptor (CAR) activators induced Aldh1a1 and 1a7, whereas pregnane X receptor (PXR) ligands and NF-E2 related factor 2 (Nrf2) activators induced Aldh1a1, 1a7, and 1b1. Peroxisome proliferator activator receptor alpha (PPAR alpha) ligands induced the mRNA expression in liver of almost all Aldhs. The Aldh organ-specific distribution may be important in elucidating their role in metabolism, elimination, and organ-specific toxicity of xenobiotics. Finally, in contrast to other phase-I metabolic enzymes such as CYP450 enzymes, Aldh mRNA expression seems to be generally insensitive to typical microsomal inducers except PPAR alpha ligands.
Collapse
Affiliation(s)
- Yazen Alnouti
- Kansas Life Sciences Innovation Center, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
9
|
Brodeur H, Chagnon S, Parisotto M, Mader S, Bhat PV. Kinetic properties of chimeric class I aldehyde dehydrogenases for retinal isomers. Biochem Cell Biol 2006; 84:799-804. [PMID: 17167544 DOI: 10.1139/o06-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinal dehydrogenase type 1 (RALDH1) catalyzes the oxidation of all-trans and 9-cis retinal to the respective retinoic acids (RAs), whereas another member of the aldehyde dehydrogenase (ALDH) family, the phenobarbital-induced aldehyde dehydrogenase (PB-ALDH), is very poorly active. We have previously generated chimeras between these 2 enzymes that displayed selectivity for retinal isomers in crude bacterial extracts. Here we have characterized the kinetic properties of the corresponding purified recombinant proteins. The all-trans selective chimera RALDH-131 converted all-trans retinal to all-trans RA with 2.9-fold lower efficiency than the wild-type RALDH1 and had only residual activity with 9-cis retinal. The converse chimera PB-131 was specific for 9-cis retinal, with no residual activity for all-trans retinal. MgCl2 inhibited the activities of RALDH1 and PB-131, but not of RALDH-131, suggesting that amino acids 132-510 in RALDH are necessary for inhibition by MgCl2. These data demonstrate that the chimeric enzymes act as retinal isomer-selective ALDHs, and suggest that these enzymes may be useful to study the roles of cis RA isomers in embryogenesis and differentiation in vivo.
Collapse
Affiliation(s)
- Hélène Brodeur
- Laboratory of Nutrition and Cancer, Centre Hospitalier de l'Université de Montréal-Hotel Dieu, Université de Montréal, 3850 Saint Urbain St, Montréal, QC H2W 1T7, Canada
| | | | | | | | | |
Collapse
|
10
|
Asson-Batres MA, Smith WB. Localization of retinaldehyde dehydrogenases and retinoid binding proteins to sustentacular cells, glia, Bowman's gland cells, and stroma: potential sites of retinoic acid synthesis in the postnatal rat olfactory organ. J Comp Neurol 2006; 496:149-71. [PMID: 16538685 PMCID: PMC2562045 DOI: 10.1002/cne.20904] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Work from our laboratory suggests that retinoic acid (RA) influences neuron development in the postnatal olfactory epithelium (OE). The studies reported here were carried out to identify and localize retinaldehyde dehydrogenase (RALDH) expression in postnatal rat OE to gain a better understanding of potential in vivo RA synthesis sites in this continuously regenerating tissue. RALDH 1, 2, and 3 mRNAs were detected in postnatal rat olfactory tissue by RT-PCR analysis, but RALDH 1 and 2 transcripts were predominant. RALDH 1 immunoreactivity was localized to sustentacular cells in the OE and to Bowman's gland cells, and GFAP(+)/p75(-) olfactory ensheathing cells (OECs) in the underlying lamina propria (LP). RALDH 2 did not colocalize with RALDH 1, but appeared to be expressed in GFAP(-)/RALDH 1(-) OECs as well as in unidentified structures in the LP. Cellular RA binding protein (CRABP II) colocalized with RALDH 1. Cellular retinol/retinaldehyde binding protein (CRBP I) was localized to RALDH 1(+) sites in the OE and LP and RALDH 2(+) sites, primarily surrounding nerve fiber bundles in the LP. Vitamin A deficiency altered RALDH 1, but not RALDH 2 protein expression. The isozymes and binding proteins exhibited random variability in levels and areas of expression both within and between animals. These findings support the hypothesis that RA is synthesized in the postnatal OE (catalyzed by RALDH 1) and underlying LP (differentially catalyzed by RALDH 1 and RALDH 2) at sites that could influence the development, maturation, targeting, and/or turnover of olfactory receptor neurons throughout the olfactory organ.
Collapse
Affiliation(s)
- Mary Ann Asson-Batres
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee 37209, USA.
| | | |
Collapse
|
11
|
Kiso Y, Tsuruoka N, Kidokoro A, Matsumoto I, Abe K. Sesamin ingestion regulates the transcription levels of hepatic metabolizing enzymes for alcohol and lipids in rats. Alcohol Clin Exp Res 2006; 29:116S-120S. [PMID: 16344595 DOI: 10.1097/01.alc.0000189296.99704.1f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sesamin, a major lignan in sesame seeds, has multiple functions such as stimulation effect of ethanol metabolism in mice and human, and prevention of ethanol-induced fatty liver in rats. However, the mechanism has not been clarified yet. METHODS The changes of gene expression were investigated in rats given 250 mg/kg of sesamin (sesamin rats) or vehicle (control rats) for three days by using a DNA microarray analysis. At 4 hr after the final ingestion, the profiles of gene expression in rat livers were compared. RESULTS The analysis showed that 38 transcripts were up-regulated with a significant change of more than two-fold and eight transcripts were down-regulated with a significant change to less than half in the livers of sesamin rats versus control rats. The gene expression levels of the early stage enzymes of beta-oxidation including long-chain acyl-CoA synthetase, very long-chain acyl-CoA synthetase and carnitine palmitoyltransferase were not changed, however, those of the late stage enzymes of beta-oxidation including trifunctional enzyme in mitochondria, and acyl-CoA oxidase, bifunctional enzyme and 3-ketoacyl-CoA thiolase in peroxisomes, were significantly increased by sesamin ingestion. Also, in sesamin rats, the gene expression of aldehyde dehydrogenase was increased about three-fold, whereas alcohol dehydrogenase, liver catalase and CYP2E1 were not changed. Changes in the gene expression of alcohol- and aldehyde-metabolizing enzymes observed in a DNA microarray were also confirmed by a real-time PCR method. CONCLUSIONS These results suggested that sesamin ingestion regulated the transcription levels of hepatic metabolizing enzymes for alcohol and lipids.
Collapse
Affiliation(s)
- Yoshinobu Kiso
- Suntory Institute for Health Care Science, Osaka, Japan.
| | | | | | | | | |
Collapse
|
12
|
Yoon M, Madden MC, Barton HA. Developmental Expression of Aldehyde Dehydrogenase in Rat: a Comparison of Liver and Lung Development. Toxicol Sci 2005; 89:386-98. [PMID: 16291827 DOI: 10.1093/toxsci/kfj045] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabolism is one of the major determinants for age-related changes in susceptibility to chemicals. Aldehydes are highly reactive molecules present in the environment that also can be produced during biotransformation of xenobiotics and endogenous metabolism. Although the lung is a major target for aldehyde toxicity, early development of aldehyde dehydrogenases (ALDHs) in lung has been poorly studied. The expression of ALDH in liver and lung across ages (postnatal day 1, 8, 22, and 60) was investigated in Wistar-Han rats. In adult, the majority of hepatic ALDH activity was found in mitochondria, while cytosolic ALDH activity was the highest contributor in lung. Total aldehyde oxidation capability in liver increases with age, but stays constant in lung. These overall developmental profiles of ALDH expression in a tissue appear to be determined by the different composition of ALDH isoforms within the tissue and their independent temporal and tissue-specific development. ALDH2 showed the most notable tissue-specific development. Hepatic ALDH2 was increased with age, while the pulmonary form did not. ALDH1 was at its maximum value at postnatal day 1 (PND1) and decreased thereafter both in liver and lung. ALDH3 increased with age in liver and lung, although ALDH3A1 was only detectible in lung. Collectively, the present study indicates that, in the case of aldehyde exposure, the in vivo responses would be tissue and age dependent.
Collapse
Affiliation(s)
- Miyoung Yoon
- National Research Council Research Associateship Program, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill North Carolina 27599-7315, USA
| | | | | |
Collapse
|
13
|
Petri MK, Lee PC. Effects of dexamethasone on antral mucosal protein and gastric development in postnatal rats. J Pediatr Gastroenterol Nutr 2005; 40:461-6. [PMID: 15795595 DOI: 10.1097/01.mpg.0000155565.64279.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND The rat stomach undergoes major developmental changes postnatally. An antral mucosal protein (AMP-18) with in vitro mitogenic activity has recently been found in the mammalian stomach. METHODS To evaluate the role of AMP-18 in gastric development in postnatal rats, the AMP-18 content of glandular stomach extracts from postnatal rats at different ages were measured by Western blots using anti-AMP-18 specific serum. Dexamethasone administration was used to evaluate the corticosteroid regulation of AMP-18 expression. RESULTS AMP-18 was detected only in glandular stomach homogenate and gastric mucus. AMP-18 and pepsin levels were high at birth. Both decreased postnatally to low levels at 7 days of age, then increased at 10-15 days of age and reached peak levels around weaning (18-21 days of age). The glandular stomach showed stepwise growth relative to body weight, with a significant increase at 18-20 days of age. The forestomach showed a decrease in growth relative to body weight during the same period. Dexamethasone given to pups before 7 days of age induced the accumulation of AMP-18 and pepsin. Induction of AMP-18 by dexamethasone was evident by 7 hours with a delayed increase in glandular stomach mass 30 hours after dexamethasone injection. Induction of AMP-18 by dexamethasone was attenuated by RU-486 but not by spironolactone. CONCLUSION Increases in AMP-18, pepsin and glandular stomach mass during normal postnatal development suggest that AMP-18 might be involved in gastric maturation, at least in the glandular portion. Dexamethasone induction of pepsin and AMP-18 and the subsequent increase in glandular stomach mass also suggest a possible role for AMP-18 in glandular stomach maturation. Dexamethasone apparently acts through the type II corticosteroid receptor to induce AMP-18.
Collapse
Affiliation(s)
- Michael K Petri
- Department of Pediatrics and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
14
|
Hough RB, Piatigorsky J. Preferential transcription of rabbit Aldh1a1 in the cornea: implication of hypoxia-related pathways. Mol Cell Biol 2004; 24:1324-40. [PMID: 14729976 PMCID: PMC321433 DOI: 10.1128/mcb.24.3.1324-1340.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 08/12/2003] [Accepted: 10/31/2003] [Indexed: 01/01/2023] Open
Abstract
Here we examine the molecular basis for the known preferential expression of rabbit aldehyde dehydrogenase class 1 (ALDH1A1) in the cornea. The rabbit Aldh1a1 promoter-firefly luciferase reporter transgene (-3519 to +43) was expressed preferentially in corneal cells in transfection tests and in transgenic mice, with an expression pattern resembling that of rabbit Aldh1a1. The 5' flanking region of the rabbit Aldh1a1 gene resembled that in the human gene (60.2%) more closely than that in the mouse (46%) or rat (51.5%) genes. We detected three xenobiotic response elements (XREs) and one E-box consensus sequence in the rabbit Aldh1a1 upstream region; these elements are prevalent in other highly expressed corneal genes and can mediate stimulation by dioxin and repression by CoCl(2), which simulates hypoxia. The rabbit Aldh1a1 promoter was stimulated fourfold by dioxin in human hepatoma cells and repressed threefold by CoCl(2) treatment in rabbit corneal stromal and epithelial cells. Cotransfection, mutagenesis, and gel retardation experiments implicated the hypoxia-inducible factor 3alpha/aryl hydrocarbon nuclear translocator heterodimer for Aldh1a1 promoter activation via the XREs and stimulated by retinoic acid protein 13 for promoter repression via the E-box. These experiments suggest that XREs, E-boxes, and PAS domain/basic helix-loop-helix transcription factors (bHLH-PAS) contribute to preferential rabbit Aldh1a1 promoter activity in the cornea, implicating hypoxia-related pathways.
Collapse
Affiliation(s)
- R B Hough
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
15
|
Gagnon I, Duester G, Bhat PV. Enzymatic characterization of recombinant mouse retinal dehydrogenase type 1. Biochem Pharmacol 2003; 65:1685-90. [PMID: 12754104 DOI: 10.1016/s0006-2952(03)00150-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Retinal dehydrogenases (RALDHs) convert retinal into retinoic acids (RAs), which are important signaling molecules in embryogenesis and tissue differentiation. We expressed mouse RALDH type 1 (mRALDH1) in Escherichia coli and studied the kinetic properties of the recombinant enzyme for retinal substrates. Purified recombinant mRALDH1 catalyzed the oxidation of all-trans and 9-cis retinal but not 13-cis retinal, and exhibited two pH optimums, 7.8 and 9.4, for all-trans and 9-cis retinal substrates, respectively. The K(m) for all-trans retinal (11.6 micro M) was 3-fold higher than for 9-cis retinal (3.59 micro M). However, the conversion efficiencies of either all-trans or 9-cis retinal to the respective RAs were similar. MgCl(2) inhibited the oxidation of both all-trans and 9-cis retinal. Chloral hydrate and acetaldehyde competitively suppressed all-trans retinal oxidation with inhibition constants (K(i)) of 4.99 and 49.4 micro M, respectively. Retinol, on the other hand, blocked the reaction uncompetitively. These data extend the kinetic characterization of mRALDH1, provide insight into the possible role of this enzyme in the biogenesis of RAs, and should give useful information on the determination of amino acid residues that play crucial roles in the catalysis of all-trans and 9-cis retinal.
Collapse
Affiliation(s)
- Isabelle Gagnon
- Laboratory of Nutrition and Cancer, Research Centre, Centre hospitalier de l'Universite de Montreal-Hotel-Dieu, 3850 St. Urbain Street, Montreal, Quebec, Canada H2W 1T7
| | | | | |
Collapse
|
16
|
Brodeur H, Gagnon I, Mader S, Bhat PV. Cloning of monkey RALDH1 and characterization of retinoid metabolism in monkey kidney proximal tubule cells. J Lipid Res 2003; 44:303-13. [PMID: 12576512 DOI: 10.1194/jlr.m200359-jlr200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All-trans and 9-cis retinoic acids function as ligands for retinoic acid receptors (RARs and RXRs), which are ligand-dependent transcription factors and play important roles in development and cellular differentiation. Several retinal dehydrogenases are likely to contribute to the production of all-trans and 9-cis RAs in vivo, but their respective roles in different tissues are still poorly characterized. We have previously characterized and cloned from kidney tissues the rat retinal dehydrogenase type 1 (RALDH1), which oxidizes all-trans and 9-cis retinal with high efficiency but is inactive with 13-cis retinal. Here we have characterized the retinal-oxidizing activity in monkey JTC12 cells, which are derived from kidney proximal tubules. In vitro assay of cell lysates revealed the presence of a NAD+-dependent dehydrogenase that catalyzed the oxidation of all-trans, 9-cis, and 13-cis retinal. Northern blot analysis of JTC12 RNAs and cloning by reverse transcription-polymerase chain reaction demonstrated expression of a monkey homolog of RALDH1. Bacterially expressed JTC12 RALDH1 catalyzed conversion of all three retinal isomers, with a higher catalytic efficiency for 9-cis retinal than for all-trans and 13-cis retinal. Accordingly, live JTC12 produced 9-cis retinoic acid more efficiently than all-trans retinoic acid from their respective retinal precursors. Only metabolites corresponding to the same steric conformation were formed from 9-cis or all-trans retinal, indicating a lack of detectable isomerizing activity in JTC12 cells.
Collapse
Affiliation(s)
- Helene Brodeur
- Laboratory of Nutrition and Cancer, Universite de Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
17
|
Haas SJP, Wree A. Dopaminergic differentiation of the Nurr1-expressing immortalized mesencephalic cell line CSM14.1 in vitro. J Anat 2002; 201:61-9. [PMID: 12171477 PMCID: PMC1570893 DOI: 10.1046/j.1469-7580.2002.00072.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of neural stem cells as grafts is a potential treatment for Parkinson's disease, but the potential of stem cells to differentiate into dopaminergic neurones requires investigation. The present study examined the in vitro differentiation of the temperature-sensitive immortalized mesencephalic progenitor cell line CSM14.1 under defined conditions. Cells were derived from the mesencephalic region of a 14-day-old rat embryo, retrovirally immortalized with the Large T antigen and cultured at 33 degrees C in DMEM containing 10% fetal calf serum (FCS). For differentiation, the temperature was elevated at 39 degrees C and FCS was reduced (1%). Using histology, immunocytochemical detection of the stem cell marker Nestin and the neuronal marker MAP5 and, in addition, Western blotting to determine the presence of neurone-specific enolase and the neurone nuclei antigen we demonstrated a differentiation of these cells into neuronal cells accompanied by a decrease in Nestin production. In Western blots, we detected the orphan nuclear receptor Nurr1 in these cells. This was followed by a time-dependent up-regulation of the enzymes tyrosine hydroxylase and aldehyde dehydrogenase 2 characteristic of mature dopaminergic neurones. Our in vitro model of dopaminergic cell differentiation corroborates recent in vivo observations in the developing rodent brain.
Collapse
|
18
|
Niederreither K, Fraulob V, Garnier JM, Chambon P, Dollé P. Differential expression of retinoic acid-synthesizing (RALDH) enzymes during fetal development and organ differentiation in the mouse. Mech Dev 2002; 110:165-71. [PMID: 11744377 DOI: 10.1016/s0925-4773(01)00561-5] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three retinaldehyde dehydrogenases (RALDH1, RALDH2 and RALDH3), which catalyze the oxidation of retinaldehyde into retinoic acid, have been shown to be differentially expressed during early embryogenesis. Here, we report their differential expression patterns throughout later mouse organogenesis. Raldh1 is prominently expressed in developing lung (notably in bronchial and tracheal epithelia), and shows stage-specific expression in stomach and intestine epithelial and mesenchymal layers. Raldh3 expression is specific to the differentiating intestinal lamina propria. Raldh2 is expressed throughout the kidney nephrogenic zone, whereas Raldh1 and Raldh3 are mostly expressed in collecting duct epithelia. Raldh3 expression is more restricted than that of Raldh1 in the urogenital tract and sex gland epithelia, whereas Raldh2 expression is mesenchymal. Raldh1 is coexpressed with Raldh2 in the early heart epicardium, and is later specifically expressed in developing heart valves. All three genes exhibit distinct expression patterns in respiratory and olfactory epithelia and/or mesenchymes, and in developing teeth. Only Raldh1 expression is seen after birth in specific brain structures. These data indicate a requirement for regulated RA synthesis in various differentiating organs.
Collapse
Affiliation(s)
- Karen Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, B.P. 163, 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | | | |
Collapse
|