1
|
Molecular Tattoo: Subcellular Confinement of Drug Effects. ACTA ACUST UNITED AC 2015; 22:548-558. [DOI: 10.1016/j.chembiol.2015.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 01/23/2023]
|
2
|
Henderson BJ, Pavlovicz RE, Allen JD, González-Cestari TF, Orac CM, Bonnell AB, Zhu MX, Boyd RT, Li C, Bergmeier SC, McKay DB. Negative allosteric modulators that target human alpha4beta2 neuronal nicotinic receptors. J Pharmacol Exp Ther 2010; 334:761-74. [PMID: 20551292 DOI: 10.1124/jpet.110.168211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Allosteric modulation of neuronal nicotinic acetylcholine receptors (nAChRs) is considered to be one of the most promising approaches for therapeutics. We have previously reported on the pharmacological activity of several compounds that act as negative allosteric modulators (NAMs) of nAChRs. In the following studies, the effects of 30 NAMs from our small chemical library on both human alpha4beta2 (Halpha4beta2) and human alpha3beta4 (Halpha3beta4) nAChRs expressed in human embryonic kidney ts201 cells were investigated. During calcium accumulation assays, these NAMs inhibited nAChR activation with IC(50) values ranging from 2.4 microM to more than 100 microM. Several NAMs showed relative selectivity for Halpha4beta2 nAChRs with IC(50) values in the low micromolar range. A lead molecule, KAB-18, was identified that shows relative selectivity for Halpha4beta2 nAChRs. This molecule contains three phenyl rings, one piperidine ring, and one ester bond linkage. Structure-activity relationship (SAR) analyses of our data revealed three regions of KAB-18 that contribute to its relative selectivity. Predictive three-dimensional quantitative SAR (comparative molecular field analysis and comparative molecular similarity indices analysis) models were generated from these data, and a pharmacophore model was constructed to determine the chemical features that are important for biological activity. Using docking approaches and molecular dynamics on a Halpha4beta2 nAChR homology model, a binding mode for KAB-18 at the alpha/beta subunit interface that corresponds to the predicted pharmacophore is described. This binding mode was supported by mutagenesis studies. In summary, these studies highlight the importance of SAR, computational, and molecular biology approaches for the design and synthesis of potent and selective antagonists targeting specific nAChR subtypes.
Collapse
Affiliation(s)
- Brandon J Henderson
- Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Arias HR, Rosenberg A, Feuerbach D, Targowska-Duda KM, Maciejewski R, Jozwiak K, Moaddel R, Glick SD, Wainer IW. Interaction of 18-methoxycoronaridine with nicotinic acetylcholine receptors in different conformational states. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1153-63. [PMID: 20303928 DOI: 10.1016/j.bbamem.2010.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 11/28/2022]
Abstract
The interaction of 18-methoxycoronaridine (18-MC) with nicotinic acetylcholine receptors (AChRs) was compared with that for ibogaine and phencyclidine (PCP). The results established that 18-MC: (a) is more potent than ibogaine and PCP inhibiting (+/-)-epibatidine-induced AChR Ca(2+) influx. The potency of 18-MC is increased after longer pre-incubation periods, which is in agreement with the enhancement of [(3)H]cytisine binding to resting but activatable Torpedo AChRs, (b) binds to a single site in the Torpedo AChR with high affinity and inhibits [(3)H]TCP binding to desensitized AChRs in a steric fashion, suggesting the existence of overlapping sites. This is supported by our docking results indicating that 18-MC interacts with a domain located between the serine (position 6') and valine (position 13') rings, and (c) inhibits [(3)H]TCP, [(3)H]ibogaine, and [(3)H]18-MC binding to desensitized AChRs with higher affinity compared to resting AChRs. This can be partially attributed to a slower dissociation rate from the desensitized AChR compared to that from the resting AChR. The enthalpic contribution is more important than the entropic contribution when 18-MC binds to the desensitized AChR compared to that for the resting AChR, and vice versa. Ibogaine analogs inhibit the AChR by interacting with a luminal domain that is shared with PCP, and by inducing desensitization.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, Arizona, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Arias HR, Rosenberg A, Targowska-Duda KM, Feuerbach D, Jozwiak K, Moaddel R, Wainer IW. Tricyclic antidepressants and mecamylamine bind to different sites in the human alpha4beta2 nicotinic receptor ion channel. Int J Biochem Cell Biol 2010; 42:1007-18. [PMID: 20223294 DOI: 10.1016/j.biocel.2010.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/18/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
The interaction of tricyclic antidepressants with the human (h) alpha4beta2 nicotinic acetylcholine receptor in different conformational states was compared with that for the noncompetitive antagonist mecamylamine by using functional and structural approaches. The results established that: (a) [(3)H]imipramine binds to halpha4beta2 receptors with relatively high affinity (K(d)=0.83+/-0.08 microM), but imipramine does not differentiate between the desensitized and resting states, (b) although tricyclic antidepressants inhibit (+/-)-epibatidine-induced Ca(2+) influx in HEK293-halpha4beta2 cells with potencies that are in the same concentration range as that for (+/-)-mecamylamine, tricyclic antidepressants inhibit [(3)H]imipramine binding to halpha4beta2 receptors with affinities >100-fold higher than that for (+/-)-mecamylamine. This can be explained by our docking results where imipramine interacts with the leucine (position 9') and valine (position 13') rings by van der Waals contacts, whereas mecamylamine interacts electrostatically with the outer ring (position 20'), (c) van der Waals interactions are in agreement with the thermodynamic results, indicating that imipramine interacts with the desensitized and resting receptors by a combination of enthalpic and entropic components. However, the entropic component is more important in the desensitized state, suggesting local conformational changes. In conclusion, our data indicate that tricyclic antidepressants and mecamylamine efficiently inhibit the ion channel by interacting at different luminal sites. The high proportion of protonated mecamylamine calculated at physiological pH suggests that this drug can be attracted to the channel mouth before binding deeper within the receptor ion channel finally blocking ion flux.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Arias HR, Gumilar F, Rosenberg A, Targowska-Duda KM, Feuerbach D, Jozwiak K, Moaddel R, Wainer IW, Bouzat C. Interaction of bupropion with muscle-type nicotinic acetylcholine receptors in different conformational states. Biochemistry 2009; 48:4506-18. [PMID: 19334677 DOI: 10.1021/bi802206k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To characterize the binding sites and the mechanisms of inhibition of bupropion on muscle-type nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The results established that bupropion (a) inhibits epibatidine-induced Ca(2+) influx in embryonic muscle AChRs, (b) inhibits adult muscle AChR macroscopic currents in the resting/activatable state with approximately 100-fold higher potency compared to that in the open state, (c) increases the desensitization rate of adult muscle AChRs from the open state and impairs channel opening from the resting state, (d) inhibits binding of [(3)H]TCP and [(3)H]imipramine to the desensitized/carbamylcholine-bound Torpedo AChR with higher affinity compared to the resting/alpha-bungarotoxin-bound AChR, (e) binds to the Torpedo AChR in either state mainly by an entropy-driven process, and (f) interacts with a binding domain located between the serine (position 6') and valine (position 13') rings, by a network of van der Waals, hydrogen bond, and polar interactions. Collectively, our data indicate that bupropion first binds to the resting AChR, decreasing the probability of ion channel opening. The remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process. Bupropion interacts with a luminal binding domain shared with PCP that is located between the serine and valine rings, and this interaction is mediated mainly by an entropy-driven process.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, Arizona 85308, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Arias HR. Is the inhibition of nicotinic acetylcholine receptors by bupropion involved in its clinical actions? Int J Biochem Cell Biol 2009; 41:2098-108. [PMID: 19497387 DOI: 10.1016/j.biocel.2009.05.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/23/2009] [Accepted: 05/26/2009] [Indexed: 11/26/2022]
Abstract
In this mini review we will focus on those molecular and cellular mechanisms exerted by bupropion (BP), ultimately leading to the antidepressant and anti-nicotinic properties described for this molecule. The main pharmacological mechanism is based on the fact that BP induces the release as well as inhibits the reuptake of neurotransmitters such as a dopamine (DA) and norepinephrine (NE). Additional mechanisms of action have been also determined. For example, BP is a noncompetitive antagonist (NCA) of several nicotinic acetylcholine receptors (AChRs). Based on this evidence, the dual antidepressant and anti-nicotinic activity of BP is currently considered to be mediated by its stimulatory action on the DA and NE systems as well as its inhibitory action on AChRs. Considering the results obtained in the archetypical mouse muscle AChR, a sequential mechanism can be hypothesized to explain the inhibitory action of BP on neuronal AChRs: (1) BP first binds to AChRs in the resting state, decreasing the probability of ion channel opening, (2) the remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process, and (3), BP interacts with a binding domain located between the serine (position 6') and valine (position 13') rings that is shared with the NCA phencyclidine and other tricyclic antidepressants. This new evidence paves the way for further investigations using AChRs as targets for the action of safer antidepressants and novel anti-addictive compounds.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| |
Collapse
|
7
|
Arias HR, Xing H, Macdougall K, Blanton MP, Soti F, Kem WR. Interaction of benzylidene-anabaseine analogues with agonist and allosteric sites on muscle nicotinic acetylcholine receptors. Br J Pharmacol 2009; 157:320-30. [PMID: 19338581 DOI: 10.1111/j.1476-5381.2009.00156.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Benzylidene-anabaseines (BAs) are partial agonists of the alpha7 nicotinic acetylcholine receptor (nAChR) but their mechanism(s) of action are unknown. Our study explores several possibilities, including direct interactions of BAs with the nAChR channel. EXPERIMENTAL APPROACH Functional and radioligand-binding assays were used to examine the interaction of two BA analogues, 3-(2,4-dimethoxybenzylidene)-anabaseine (DMXBA) and its primary metabolite 3-(4-hydroxy-2-methoxybenzylidene)-anabaseine (4OH-DMXBA) with both agonist and non-competitive antagonist (NCA)-binding sites on muscle-type nAChRs. KEY RESULTS Both BAs non-competitively inhibited ACh activation of human fetal muscle nAChRs and sterically inhibited the specific binding of the NCAs [piperidyl-3,4-3H(N)]-(N-(1-(2-thienyl)cyclohexyl)-3,4-piperidine ([(3)H]TCP) and [(3)H]dizocilpine to Torpedo nAChRs in the desensitized state. These compounds modulated [(3)H]tetracaine, [(14)C]amobarbital and [(3)H]TCP binding to resting nAChRs by allosteric mechanisms. Both BAs enhanced [(3)H]TCP binding when the nAChR was initially in the resting but activatable state, suggesting that both compounds desensitized the Torpedo nAChR. Although DMXBA failed to activate human fetal muscle nAChRs, 4OH-DMXBA was found to be a partial agonist. [(3)H]Nicotine competition-binding experiments confirmed that 4OH-DMXBA has higher affinity than DMXBA for the agonist sites, and that DMXBA is also a competitive antagonist. CONCLUSIONS AND IMPLICATIONS 3-(4-hydroxy-2-methoxybenzylidene)-anabaseine is a partial agonist for human fetal muscle nAChRs, whereas DMXBA only has competitive and NCA activities. The NCA-binding site for BAs overlaps both the phencyclidine- and dizocilpine-binding sites in the desensitized Torpedo nAChR ion channel. The desensitizing property of BAs suggests another possible mode of non-competitive inhibition in addition to direct channel-blocking mechanisms.
Collapse
Affiliation(s)
- H R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, AZ 85308-3550, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Arias HR, Santamaría A, Ali SF. Pharmacological and neurotoxicological actions mediated by bupropion and diethylpropion. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:223-55. [PMID: 19897080 DOI: 10.1016/s0074-7742(09)88009-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The antiappetite agent diethylpropion (DEP), and the antidepressant and antismoking aid compound bupropion (BP), not only share the same structural motif but also present similar mechanisms of action in the CNS. For example, both drugs induce the release as well as inhibit the reuptake of neurotransmitters such as a dopamine (DA) and norepinephrine (NE). In general, they produce mild side effects, including reversible psychomotor alterations mostly in geriatric patients (by BP), or moderate changes in neurotransmitter contents linked to oxidative damage (by DEP). Therefore, attention must be paid during any therapeutic use of these agents. Regarding the interaction of BP with the DA transporter, residues S359, located in the middle of TM7, and A279, located close to the extracellular end of TM5, contribute to the binding and blockade of translocation mediated by BP, respectively. Additional mechanisms of action have also been determined for each compound. For example, BP is a noncompetitive antagonist (NCA) of several nicotinic acetylcholine receptors (AChRs). Based on this evidence, the dual antidepressant and antinicotinic activity of BP is currently considered to be mediated by its stimulatory action on DA and NE systems as well as its inhibitory action on AChRs. Considering the results obtained in the archetypical mouse muscle AChR, a sequential mechanism can be hypothesized to explain the inhibitory action of BP on neuronal AChRs: (1) BP first binds to AChRs in the resting state, decreasing the probability of ion channel opening, (2) the remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process, and finally (3) BP interacts with a binding domain located between the serine (position 9') and valine (position 13') rings that is shared with the NCA phencyclidine and other tricyclic antidepressants. The homologous location in the alpha3beta4 AChR is between the serine and valine/phenylalanine rings. This new evidence opens a window for further investigation using AChRs as targets for the action of safer antidepressants and novel antiaddictive compounds.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, Arizona 85308, USA
| | | | | |
Collapse
|
9
|
Identifying the binding site(s) for antidepressants on the Torpedo nicotinic acetylcholine receptor: [3H]2-azidoimipramine photolabeling and molecular dynamics studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2690-9. [DOI: 10.1016/j.bbamem.2008.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 08/18/2008] [Accepted: 08/21/2008] [Indexed: 11/22/2022]
|
10
|
Moaddel R, Jozwiak K, Wainer IW. Allosteric modifiers of neuronal nicotinic acetylcholine receptors: new methods, new opportunities. Med Res Rev 2007; 27:723-53. [PMID: 17238157 DOI: 10.1002/med.20091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allosteric, non-competitive inhibitors (NCIs) of neuronal nicotinic acetylcholine receptors (nAChRs) have been shown to produce a wide variety of clinically relevant responses. Many of the observed effects are desired as the nAChR is the therapeutic target, while others are undesired consequences due to off-target binding at the nAChR. Thus, the determination of whether or not a lead drug candidate is an NCI should play an important role in drug discovery programs. However, the current experimental techniques used to identify NCIs are challenging, expensive, and time consuming. This review focuses on an alternative approach to the investigation of interactions between test compounds and nAChRs based upon liquid chromatographic stationary phases containing cellular fragments from cell lines expressing nAChRs. The development and validation of these phases as well as their use in drug discovery and pharmacophore modeling are discussed.
Collapse
Affiliation(s)
- Ruin Moaddel
- Gerontology Research Center, Laboratory of Clinical Investigations, National Institute on Aging/NIH, Baltimore, Maryland, USA
| | | | | |
Collapse
|
11
|
The Nemertine Toxin Anabaseine and Its Derivative DMXBA (GTS-21): Chemical and Pharmacological Properties. Mar Drugs 2006. [DOI: 10.3390/md403255] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Arias HR, Bhumireddy P, Bouzat C. Molecular mechanisms and binding site locations for noncompetitive antagonists of nicotinic acetylcholine receptors. Int J Biochem Cell Biol 2006; 38:1254-76. [PMID: 16520081 DOI: 10.1016/j.biocel.2006.01.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 01/03/2006] [Accepted: 01/12/2006] [Indexed: 01/16/2023]
Abstract
Nicotinic acetylcholine receptors are pentameric proteins that belong to the Cys-loop receptor superfamily. Their essential mechanism of functioning is to couple neurotransmitter binding, which occurs at the extracellular domain, to the opening of the membrane-spanning cation channel. The function of these receptors can be modulated by structurally different compounds called noncompetitive antagonists. Noncompetitive antagonists may act at least by two different mechanisms: a steric and/or an allosteric mechanism. The simplest idea representing a steric mechanism is that the antagonist molecule physically blocks the ion channel. On the other hand, there exist distinct allosteric mechanisms. For example, noncompetitive antagonists may bind to the receptor and stabilize a nonconducting conformational state (e.g., resting or desensitized state), and/or increase the receptor desensitization rate. Barbiturates, dissociative anesthetics, antidepressants, and neurosteroids have been shown to inhibit nicotinic receptors by allosteric mechanisms and/or by open- and closed-channel blockade. Receptor modulation has proved to be highly complex for most noncompetitive antagonists. Noncompetitive antagonists may act by more than one mechanism and at distinct sites in the same receptor subtype. The binding site location for one particular molecule depends on the conformational state of the receptor. The mechanisms of action and binding affinities of noncompetitive antagonists differ among nicotinic receptor subtypes. Knowledge of the structure of the nicotinic acetylcholine receptor, the location of its noncompetitive antagonist binding sites, and the mechanisms of inhibition will aid the design of new and more efficacious drugs for treatment of neurological diseases.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766-1854, USA.
| | | | | |
Collapse
|
13
|
Ziebell MR, Nirthanan S, Husain SS, Miller KW, Cohen JB. Identification of binding sites in the nicotinic acetylcholine receptor for [3H]azietomidate, a photoactivatable general anesthetic. J Biol Chem 2004; 279:17640-9. [PMID: 14761946 DOI: 10.1074/jbc.m313886200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To identify binding domains in a ligand-gated ion channel for etomidate, an intravenous general anesthetic, we photolabeled nicotinic acetylcholine receptor (nAChR)-rich membranes from Torpedo electric organ with a photoactivatable analog, [(3)H]azietomidate. Based upon the inhibition of binding of the noncompetitive antagonist [(3)H]phencyclidine, azietomidate and etomidate bind with 10-fold higher affinity to nAChRs in the desensitized state (IC(50) = 70 microm) than in the closed channel state. In addition, both drugs between 0.1 and 1 mm produced a concentration-dependent enhancement of [(3)H]ACh equilibrium binding affinity, but they inhibited binding at higher concentrations. UV irradiation resulted in preferential [(3)H]azietomidate photoincorporation into the nAChR alpha and delta subunits. Photolabeled amino acids in both subunits were identified in the ion channel domain and in the ACh binding sites by Edman degradation. Within the nAChR ion channel in the desensitized state, there was labeling of alphaGlu-262 and deltaGln-276 at the extracellular end and deltaSer-258 and deltaSer-262 toward the cytoplasmic end. Within the acetylcholine binding sites, [(3)H]azietomidate photolabeled alphaTyr-93, alphaTyr-190, and alphaTyr-198 in the site at the alpha-gamma interface and deltaAsp-59 (but not the homologous position, gammaGlu-57). Increasing [(3)H]azietomidate concentration from 1.8 to 150 microm increased the efficiency of incorporation into amino acids within the ion channel by 10-fold and in the ACh sites by 100-fold, consistent with higher affinity binding within the ion channel. The state dependence and subunit selectivity of [(3)H]azietomidate photolabeling are discussed in terms of the structures of the nAChR transmembrane and extracellular domains.
Collapse
Affiliation(s)
- Michael R Ziebell
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
14
|
Arias HR, Kem WR, Trudell JR, Blanton MP. Unique general anesthetic binding sites within distinct conformational states of the nicotinic acetylcholine receptor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 54:1-50. [PMID: 12785284 DOI: 10.1016/s0074-7742(03)54002-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
General anesthesia is a complex behavioral state provoked by the pharmacological action of a broad range of structurally different hydrophobic molecules called general anesthetics (GAs) on receptor members of the genetically linked ligand-gated ion channel (LGIC) superfamily. This superfamily includes nicotinic acetylcholine (AChRs), type A and C gamma-aminobutyric acid (GABAAR and GABACR), glycine (GlyR), and type 3 5-hydroxytryptamine (5-HT3R) receptors. This review focuses on recent advances in the localization of GA binding sites on conformationally and compositionally distinct AChRs. The experimental evidence outlined in this review suggests that: 1. Several neuronal-type AChRs might be targets for the pharmacological action of distinct GAs. 2. The molecular components of a specific GA binding site on a certain receptor subtype are different from the structural determinants of the locus for the same GA on a different receptor subtype. 3. There are unique binding sites for distinct GAs in the same receptor protein. 4. A GA can activate, potentiate, or inhibit an ion channel, indicating the existence of more than one binding site for the same GA. 5. The affinity of a specific GA depends on the conformational state of the receptor. 6. GAs inhibition channels by at least two mechanisms, an open-channel-blocking and/or an allosteric mechanism. 7. Certain GAs may inhibit AChR function by competing for the agonist binding sites or by augmenting the desensitization rate.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| | | | | | | |
Collapse
|
15
|
Sawyer GW, Chiara DC, Olsen RW, Cohen JB. Identification of the bovine gamma-aminobutyric acid type A receptor alpha subunit residues photolabeled by the imidazobenzodiazepine [3H]Ro15-4513. J Biol Chem 2002; 277:50036-45. [PMID: 12388542 DOI: 10.1074/jbc.m209281200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligands binding to the benzodiazepine-binding site in gamma-aminobutyric acid type A (GABA(A)) receptors may allosterically modulate function. Depending upon the ligand, the coupling can either be positive (flunitrazepam), negative (Ro15-4513), or neutral (flumazenil). Specific amino acid determinants of benzodiazepine binding affinity and/or allosteric coupling have been identified within GABA(A) receptor alpha and gamma subunits that localize the binding site at the subunit interface. Previous photolabeling studies with [(3)H]flunitrazepam identified a primary site of incorporation at alpha(1)His-102, whereas studies with [(3)H]Ro15-4513 suggested incorporation into the alpha(1) subunit at unidentified amino acids C-terminal to alpha(1)His-102. To determine the site(s) of photoincorporation by Ro15-4513, we affinity-purified ( approximately 200-fold) GABA(A) receptor from detergent extracts of bovine cortex, photolabeled it with [(3)H]Ro15-4513, and identified (3)H-labeled amino acids by N-terminal sequence analysis of subunit fragments generated by sequential digestions with a panel of proteases. The patterns of (3)H release seen after each digestion of the labeled fragments determined the number of amino acids between the cleavage site and labeled residue, and the use of sequential proteolytic fragmentation identified patterns of cleavage sites unique to the different alpha subunits. Based upon this radiochemical sequence analysis, [(3)H]Ro15-4513 was found to selectively label the homologous tyrosines alpha(1)Tyr-210, alpha(2)Tyr-209, and alpha(3)Tyr-234, in GABA(A) receptors containing those subunits. These results are discussed in terms of a homology model of the benzodiazepine-binding site based on the molluscan acetylcholine-binding protein structure.
Collapse
Affiliation(s)
- Gregory W Sawyer
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
16
|
Arias HR, McCardy EA, Blanton MP. Characterization of the dizocilpine binding site on the nicotinic acetylcholine receptor. Mol Pharmacol 2001; 59:1051-60. [PMID: 11306687 DOI: 10.1124/mol.59.5.1051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the dissociative anesthetic dizocilpine [(+)-MK-801] inhibits nicotinic acetylcholine receptor (AChR) function in a noncompetitive manner, the location of the dizocilpine binding site(s) has yet to be clearly established. Thus, to characterize the binding site for dizocilpine on the AChR we examined 1) the dissociation constant (K(d)) and stoichiometry of [(3)H]dizocilpine binding; 2) the displacement of dizocilpine radioligand binding by noncompetitive inhibitors (NCIs) and conversely dizocilpine displacement of fluorescent and radiolabeled NCIs from their respective high-affinity binding sites on the AChR; and 3) photoaffinity labeling of the AChR using (125)I-dizocilpine. The results establish that one high-affinity (K(d) = 4.8 microM) and several (3-6) low-affinity (K(d) = approximately 140 microM) binding sites exist for dizocilpine on the desensitized and resting AChR, respectively. The binding of the fluorescent NCIs ethidium, quinacrine, and crystal violet as well as [(3)H]thienylcyclohexylpiperidine was inhibited by dizocilpine on desensitized AChRs. However, Schild-type analyses indicate that only the inhibition of quinacrine in the desensitized state seems to be mediated by a mutually exclusive action. Photoaffinity labeling of the AChR by (125)I-dizocilpine was primarily restricted to the alpha1 subunit and subsequent mapping revealed that the principal sites of labeling are localized to the M4 (approximately 70%) and M1 (30%) transmembrane domains. Collectively, the data indicate that the high-affinity dizocilpine binding site is not located in the lumen of the ion channel but probably near the quinacrine binding locus at a nonluminal domain in the AChR desensitized state.
Collapse
Affiliation(s)
- H R Arias
- Departments of Pharmacology and Anesthesiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | | |
Collapse
|
17
|
Bixel MG, Weise C, Bolognesi ML, Rosini M, Brierly MJ, Mellor IR, Usherwood PN, Melchiorre C, Hucho F. Location of the polyamine binding site in the vestibule of the nicotinic acetylcholine receptor ion channel. J Biol Chem 2001; 276:6151-60. [PMID: 11104766 DOI: 10.1074/jbc.m008467200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To map the structure of a ligand-gated ion channel, we used the photolabile polyamine-containing toxin MR44 as photoaffinity label. MR44 binds with high affinity to the nicotinic acetylcholine receptor in its closed channel conformation. The binding stoichiometry was two molecules of MR44 per receptor monomer. Upon UV irradiation of the receptor-ligand complex, (125)I-MR44 was incorporated into the receptor alpha-subunit. From proteolytic mapping studies, we conclude that the site of (125)I-MR44 cross-linking is contained in the sequence alpha His-186 to alpha Leu-199, which is part of the extracellular domain of the receptor. This sequence partially overlaps in its C-terminal region with one of the three loops that form the agonist-binding site. The agonist carbachol and the competitive antagonist alpha-bungarotoxin had only minor influence on the photocross-linking of (125)I-MR44. The site where the hydrophobic head group of (125)I-MR44 binds must therefore be located outside the zone that is sterically influenced by agonist bound at the nicotinic acetylcholine receptor. In binding and photocross-linking experiments, the luminal noncompetitive inhibitors ethidium and triphenylmethylphosphonium were found to compete with (125)I-MR44. We conclude that the polyamine moiety of (125)I-MR44 interacts with the high affinity noncompetitive inhibitor site deep in the channel of the nicotinic acetylcholine receptor, while the aromatic ring of this compound binds in the upper part of the ion channel (i.e. in the vestibule) to a hydrophobic region on the alpha-subunit that is located in close proximity to the agonist binding site. The region of the alpha-subunit labeled by (125)I-MR44 should therefore be accessible from the luminal side of the vestibule.
Collapse
Affiliation(s)
- M G Bixel
- Institut für Chemie-Biochemie (AG Neurochemie), Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|