1
|
Dhayalan B, Glidden MD, Zaykov AN, Chen YS, Yang Y, Phillips NB, Ismail-Beigi F, Jarosinski MA, DiMarchi RD, Weiss MA. Peptide Model of the Mutant Proinsulin Syndrome. I. Design and Clinical Correlation. Front Endocrinol (Lausanne) 2022; 13:821069. [PMID: 35299972 PMCID: PMC8922534 DOI: 10.3389/fendo.2022.821069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
The mutant proinsulin syndrome is a monogenic cause of diabetes mellitus due to toxic misfolding of insulin's biosynthetic precursor. Also designated mutant INS-gene induced diabetes of the young (MIDY), this syndrome defines molecular determinants of foldability in the endoplasmic reticulum (ER) of β-cells. Here, we describe a peptide model of a key proinsulin folding intermediate and variants containing representative clinical mutations; the latter perturb invariant core sites in native proinsulin (LeuB15→Pro, LeuA16→Pro, and PheB24→Ser). The studies exploited a 49-residue single-chain synthetic precursor (designated DesDi), previously shown to optimize in vitro efficiency of disulfide pairing. Parent and variant peptides contain a single disulfide bridge (cystine B19-A20) to provide a model of proinsulin's first oxidative folding intermediate. The peptides were characterized by circular dichroism and redox stability in relation to effects of the mutations on (a) in vitro foldability of the corresponding insulin analogs and (b) ER stress induced in cell culture on expression of the corresponding variant proinsulins. Striking correlations were observed between peptide biophysical properties, degree of ER stress and age of diabetes onset (neonatal or adolescent). Our findings suggest that age of onset reflects the extent to which nascent structure is destabilized in proinsulin's putative folding nucleus. We envisage that such peptide models will enable high-resolution structural studies of key folding determinants and in turn permit molecular dissection of phenotype-genotype relationships in this monogenic diabetes syndrome. Our companion study (next article in this issue) employs two-dimensional heteronuclear NMR spectroscopy to define site-specific perturbations in the variant peptides.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michael D. Glidden
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yanwu Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nelson B. Phillips
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Mark A. Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Mukherjee S, Acharya S, Mondal S, Banerjee P, Bagchi B. Structural Stability of Insulin Oligomers and Protein Association-Dissociation Processes: Free Energy Landscape and Universal Role of Water. J Phys Chem B 2021; 125:11793-11811. [PMID: 34674526 DOI: 10.1021/acs.jpcb.1c05811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Association and dissociation of proteins are important biochemical events. In this Feature Article, we analyze the available studies of these processes for insulin oligomers in aqueous solution. We focus on the solvation of the insulin monomer in water, stability and dissociation of its dimer, and structural integrity of the hexamer. The intricate role of water in solvation of the dimer- and hexamer-forming surfaces, in long-range interactions between the monomers and the stability of the oligomers, is discussed. Ten water molecules inside the central cavity stabilize the structure of the insulin hexamer. We discuss how different order parameters can be used to understand the dissociation of the insulin dimer. The calculation of the rate using a recently computed multidimensional free energy provides considerable insight into the interplay between protein and water dynamics.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Subhajit Acharya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Puja Banerjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Dhayalan B, Chatterjee D, Chen YS, Weiss MA. Structural Lessons From the Mutant Proinsulin Syndrome. Front Endocrinol (Lausanne) 2021; 12:754693. [PMID: 34659132 PMCID: PMC8514764 DOI: 10.3389/fendo.2021.754693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Insight into folding mechanisms of proinsulin has been provided by analysis of dominant diabetes-associated mutations in the human insulin gene (INS). Such mutations cause pancreatic β-cell dysfunction due to toxic misfolding of a mutant proinsulin and impairment in trans of wild-type insulin secretion. Anticipated by the "Akita" mouse (a classical model of monogenic diabetes mellitus; DM), this syndrome illustrates the paradigm endoreticulum (ER) stress leading to intracellular proteotoxicity. Diverse clinical mutations directly or indirectly perturb native disulfide pairing leading to protein misfolding and aberrant aggregation. Although most introduce or remove a cysteine (Cys; leading in either case to an unpaired thiol group), non-Cys-related mutations identify key determinants of folding efficiency. Studies of such mutations suggest that the hormone's evolution has been constrained not only by structure-function relationships, but also by the susceptibility of its single-chain precursor to impaired foldability. An intriguing hypothesis posits that INS overexpression in response to peripheral insulin resistance likewise leads to chronic ER stress and β-cell dysfunction in the natural history of non-syndromic Type 2 DM. Cryptic contributions of conserved residues to folding efficiency, as uncovered by rare genetic variants, define molecular links between biophysical principles and the emerging paradigm of Darwinian medicine: Biosynthesis of proinsulin at the edge of non-foldability provides a key determinant of "diabesity" as a pandemic disease of civilization.
Collapse
Affiliation(s)
| | | | | | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Dhayalan B, Chatterjee D, Chen YS, Weiss MA. Diabetes mellitus due to toxic misfolding of proinsulin variants. Mol Metab 2021:101229. [PMID: 33823319 DOI: 10.1016/j.molmet.2021.101229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dominant mutations in the human insulin gene (INS) lead to pancreatic β-cell dysfunction and diabetes mellitus (DM) due to toxic misfolding of a mutant proinsulin. Analogous to a classical mouse model of monogenic DM ("Akita"), this syndrome highlights the susceptibility of β-cells to endoreticulum (ER) stress due to protein misfolding and aberrant aggregation. SCOPE OF REVIEW Diverse clinical mutations directly or indirectly perturb native disulfide pairing. Whereas most introduce or remove a cysteine (Cys; leading in either case to an unpaired thiol group), non-Cys-related mutations identify key determinants of folding efficiency. Studies of such mutations suggest that the hormone's evolution has been constrained not only by structure-function relationships but also by the susceptibility of its single-chain precursor to impaired foldability. An intriguing hypothesis posits that INS overexpression in response to peripheral insulin resistance likewise leads to chronic ER stress and β-cell dysfunction in the natural history of nonsyndromic Type 2 DM. MAJOR CONCLUSIONS Cryptic contributions of conserved residues to folding efficiency, as uncovered by rare genetic variants, define molecular links between biophysical principles and the emerging paradigm of Darwinian medicine: Biosynthesis of proinsulin at the edge of nonfoldability provides a key determinant of "diabesity" as a pandemic disease of civilization.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
5
|
Desmond JL, Koner D, Meuwly M. Probing the Differential Dynamics of the Monomeric and Dimeric Insulin from Amide-I IR Spectroscopy. J Phys Chem B 2019; 123:6588-6598. [PMID: 31318551 DOI: 10.1021/acs.jpcb.9b04628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The monomer-dimer equilibrium for insulin is one of the essential steps in forming the receptor-binding competent monomeric form of the hormone. Despite this importance, the thermodynamic stability, in particular for modified insulins, is quite poorly understood, in part, due to experimental difficulties. This work explores one- and two-dimensional infrared spectroscopy in the range of the amide-I band for the hydrated monomeric and dimeric wild-type hormone. It is found that for the monomer the frequency fluctuation correlation function (FFCF) and the one-dimensional infrared spectra are position sensitive. The spectra of the -CO probes at the dimerization interface (residues Phe24, Phe25, and Tyr26) split and indicate an asymmetry despite the overall (formal) point symmetry of the dimer structure. Also, the decay times of the FFCF for the same -CO probe in the monomer and the dimer can differ by up to 1 order of magnitude, for example, for residue PheB24, which is solvent exposed for the monomer but at the interface for the dimer. The spectroscopic shifts correlate approximately with the average number of hydration waters and the magnitude of the FFCF at time zero. However, this correlation is only qualitative due to the heterogeneous and highly dynamical environment. Based on density functional theory calculations, the dominant contribution for solvent-exposed -CO is found to arise from the surrounding water (∼75%), whereas the protein environment contributes considerably less. The results suggest that infrared spectroscopy is a positionally sensitive probe of insulin dimerization, in particular in conjunction with isotopic labeling of the probe.
Collapse
Affiliation(s)
- Jasmine L Desmond
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland
| | - Debasish Koner
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland
| | - Markus Meuwly
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland
| |
Collapse
|
6
|
Akbarian M, Ghasemi Y, Uversky VN, Yousefi R. Chemical modifications of insulin: Finding a compromise between stability and pharmaceutical performance. Int J Pharm 2018; 547:450-468. [DOI: 10.1016/j.ijpharm.2018.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
|
7
|
Rege NK, Wickramasinghe NP, Tustan AN, Phillips NFB, Yee VC, Ismail-Beigi F, Weiss MA. Structure-based stabilization of insulin as a therapeutic protein assembly via enhanced aromatic-aromatic interactions. J Biol Chem 2018; 293:10895-10910. [PMID: 29880646 PMCID: PMC6052209 DOI: 10.1074/jbc.ra118.003650] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
Key contributions to protein structure and stability are provided by weakly polar interactions, which arise from asymmetric electronic distributions within amino acids and peptide bonds. Of particular interest are aromatic side chains whose directional π-systems commonly stabilize protein interiors and interfaces. Here, we consider aromatic-aromatic interactions within a model protein assembly: the dimer interface of insulin. Semi-classical simulations of aromatic-aromatic interactions at this interface suggested that substitution of residue TyrB26 by Trp would preserve native structure while enhancing dimerization (and hence hexamer stability). The crystal structure of a [TrpB26]insulin analog (determined as a T3Rf3 zinc hexamer at a resolution of 2.25 Å) was observed to be essentially identical to that of WT insulin. Remarkably and yet in general accordance with theoretical expectations, spectroscopic studies demonstrated a 150-fold increase in the in vitro lifetime of the variant hexamer, a critical pharmacokinetic parameter influencing design of long-acting formulations. Functional studies in diabetic rats indeed revealed prolonged action following subcutaneous injection. The potency of the TrpB26-modified analog was equal to or greater than an unmodified control. Thus, exploiting a general quantum-chemical feature of protein structure and stability, our results exemplify a mechanism-based approach to the optimization of a therapeutic protein assembly.
Collapse
Affiliation(s)
| | | | - Alisar N Tustan
- Medicine, Case Western Reserve University, Cleveland, Ohio 44106 and
| | | | | | | | - Michael A Weiss
- From the Departments of Biochemistry and
- the Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
8
|
Raghunathan S, El Hage K, Desmond JL, Zhang L, Meuwly M. The Role of Water in the Stability of Wild-type and Mutant Insulin Dimers. J Phys Chem B 2018; 122:7038-7048. [DOI: 10.1021/acs.jpcb.8b04448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shampa Raghunathan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Jasmine L. Desmond
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Lixian Zhang
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
9
|
Mills BJ, Laurence Chadwick JS. Effects of localized interactions and surface properties on stability of protein-based therapeutics. ACTA ACUST UNITED AC 2016; 70:609-624. [PMID: 27861887 DOI: 10.1111/jphp.12658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/04/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Protein-based therapeutics garner significant attention because of exquisite specificity and limited side effects and are now being used to accomplish targeted delivery of small-molecule drugs. This review identifies and highlights individual chemical attributes and categorizes how site-specific changes affect protein stability based on published high-resolution molecular analyses. KEY FINDINGS Because it is challenging to determine the mechanisms by which the stability of large, complex molecules is altered and data are sparse, smaller, therapeutic proteins (insulin, erythropoietin, interferons) are examined alongside antibody data. Integrating this large pool of information with the limited available studies on antibodies reveals common mechanisms by which specific alterations affect protein structure and stability. SUMMARY Physical and chemical stability of therapeutic proteins and antibody drug conjugates (ADCs) is of critical importance because insufficient stability prevents molecules from making it to market. Individual moieties on/near the surface of proteins have substantial influence on structure and stability. Seemingly small, superficial modification may have far-reaching consequences on structure, conformational dynamics, and solubility of the protein, and hence physical stability of the molecule. Chemical modifications, whether spontaneous (e.g. oxidation, deamidation) or intentional, as with ADCs, may adversely impact stability by disrupting local surface properties or higher order protein structure.
Collapse
Affiliation(s)
- Brittney J Mills
- Department of Chemistry, The University of Kansas, Lawrence, KS, USA
| | - Jennifer S Laurence Chadwick
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA.,BioAnalytix Inc., Cambridge, MA, USA
| |
Collapse
|
10
|
Dhayalan B, Fitzpatrick A, Mandal K, Whittaker J, Weiss MA, Tokmakoff A, Kent SBH. Efficient Total Chemical Synthesis of (13) C=(18) O Isotopomers of Human Insulin for Isotope-Edited FTIR. Chembiochem 2016; 17:415-20. [PMID: 26715336 DOI: 10.1002/cbic.201500601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 11/08/2022]
Abstract
Isotope-edited two-dimensional Fourier transform infrared spectroscopy (2 D FTIR) can potentially provide a unique probe of protein structure and dynamics. However, general methods for the site-specific incorporation of stable (13) C=(18) O labels into the polypeptide backbone of the protein molecule have not yet been established. Here we describe, as a prototype for the incorporation of specific arrays of isotope labels, the total chemical synthesis-via a key ester insulin intermediate-of 97 % enriched [(1-(13) C=(18) O)Phe(B24) ] human insulin: stable-isotope labeled at a single backbone amide carbonyl. The amino acid sequence as well as the positions of the disulfide bonds and the correctly folded structure were unambiguously confirmed by the X-ray crystal structure of the synthetic protein molecule. In vitro assays of the isotope labeled [(1-(13) C=(18) O)Phe(B24) ] human insulin showed that it had full insulin receptor binding activity. Linear and 2 D IR spectra revealed a distinct red-shifted amide I carbonyl band peak at 1595 cm(-1) resulting from the (1-(13) C=(18) O)Phe(B24) backbone label. This work illustrates the utility of chemical synthesis to enable the application of advanced physical methods for the elucidation of the molecular basis of protein function.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Ann Fitzpatrick
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.,The James Frank Institute, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Kalyaneswar Mandal
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Jonathan Whittaker
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Michael A Weiss
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA. .,The James Frank Institute, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
| | - Stephen B H Kent
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
11
|
Mandal K, Dhayalan B, Avital-Shmilovici M, Tokmakoff A, Kent SBH. Crystallization of Enantiomerically Pure Proteins from Quasi-Racemic Mixtures: Structure Determination by X-Ray Diffraction of Isotope-Labeled Ester Insulin and Human Insulin. Chembiochem 2016; 17:421-5. [DOI: 10.1002/cbic.201500600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Kalyaneswar Mandal
- Department of Chemistry; University of Chicago; 929 East 57th Street Chicago IL 60637 USA
| | - Balamurugan Dhayalan
- Department of Chemistry; University of Chicago; 929 East 57th Street Chicago IL 60637 USA
| | | | - Andrei Tokmakoff
- Department of Chemistry; University of Chicago; 929 East 57th Street Chicago IL 60637 USA
| | - Stephen B. H. Kent
- Department of Chemistry; University of Chicago; 929 East 57th Street Chicago IL 60637 USA
| |
Collapse
|
12
|
Pandyarajan V, Smith BJ, Phillips NB, Whittaker L, Cox GP, Wickramasinghe N, Menting JG, Wan ZL, Whittaker J, Ismail-Beigi F, Lawrence MC, Weiss MA. Aromatic anchor at an invariant hormone-receptor interface: function of insulin residue B24 with application to protein design. J Biol Chem 2014; 289:34709-27. [PMID: 25305014 DOI: 10.1074/jbc.m114.608562] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe(B24), an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, Met(B24) was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchor at the hormone-receptor interface. These findings motivated further substitution of Phe(B24) by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [Cha(B24)]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the Cha(B24) analog, determined as an R6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of Phe(B24) at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility.
Collapse
Affiliation(s)
| | - Brian J Smith
- the La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | - John G Menting
- the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and
| | | | | | | | - Michael C Lawrence
- the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael A Weiss
- From the Departments of Biochemistry, Medicine, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106,
| |
Collapse
|
13
|
Abstract
Insulin provides a classical model of a globular protein, yet how the hormone changes conformation to engage its receptor has long been enigmatic. Interest has focused on the C-terminal B-chain segment, critical for protective self-assembly in β cells and receptor binding at target tissues. Insight may be obtained from truncated "microreceptors" that reconstitute the primary hormone-binding site (α-subunit domains L1 and αCT). We demonstrate that, on microreceptor binding, this segment undergoes concerted hinge-like rotation at its B20-B23 β-turn, coupling reorientation of Phe(B24) to a 60° rotation of the B25-B28 β-strand away from the hormone core to lie antiparallel to the receptor's L1-β2 sheet. Opening of this hinge enables conserved nonpolar side chains (Ile(A2), Val(A3), Val(B12), Phe(B24), and Phe(B25)) to engage the receptor. Restraining the hinge by nonstandard mutagenesis preserves native folding but blocks receptor binding, whereas its engineered opening maintains activity at the price of protein instability and nonnative aggregation. Our findings rationalize properties of clinical mutations in the insulin family and provide a previously unidentified foundation for designing therapeutic analogs. We envisage that a switch between free and receptor-bound conformations of insulin evolved as a solution to conflicting structural determinants of biosynthesis and function.
Collapse
|
14
|
Subramanian K, Fee CJ, Fredericks R, Stubbs RS, Hayes MT. Insulin receptor-insulin interaction kinetics using multiplex surface plasmon resonance. J Mol Recognit 2014; 26:643-52. [PMID: 24277609 DOI: 10.1002/jmr.2307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 01/22/2023]
Abstract
Type 2 diabetes affects millions of people worldwide, and measuring the kinetics of insulin receptor-insulin interactions is critical to improving our understanding of this disease. In this paper, we describe, for the first time, a rapid, real-time, multiplex surface plasmon resonance (SPR) assay for studying the interaction between insulin and the insulin receptor ectodomain, isoform A (eIR-A). We used a scaffold approach in which anti-insulin receptor monoclonal antibody 83-7 (Abcam, Cambridge, UK) was first immobilized on the SPR sensorchip by amine coupling, followed by eIR-A capture. The multiplex SPR system (ProteOn XPR36™, Bio-Rad Laboratories, Hercules, CA) enabled measurement of replicate interactions with a single, parallel set of analyte injections, whereas repeated regeneration of the scaffold between measurements caused variable loss of antibody activity. Interactions between recombinant human insulin followed a two-site binding pattern, consistent with the literature, with a high-affinity site (dissociation constant K(D1) = 38.1 ± 0.9 nM) and a low-affinity site (K(D2) = 166.3 ± 7.3 nM). The predominantly monomeric insulin analogue Lispro had corresponding dissociation constants K(D1) = 73.2 ± 1.8 nM and K(D2) = 148.9 ± 6.1 nM, but the fit to kinetic data was improved when we included a conformational change factor in which the high-affinity site was converted to the low-affinity site. The new SPR assay enables insulin-eIR-A interactions to be followed in real time and could potentially be extended to study the effects of humoral factors on the interaction, without the need for insulin labeling.
Collapse
Affiliation(s)
- Kannan Subramanian
- Biomolecular Interaction Centre and Department of Chemical and Process Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand, 8041
| | | | | | | | | |
Collapse
|
15
|
Pandyarajan V, Phillips NB, Cox GP, Yang Y, Whittaker J, Ismail-Beigi F, Weiss MA. Biophysical optimization of a therapeutic protein by nonstandard mutagenesis: studies of an iodo-insulin derivative. J Biol Chem 2014; 289:23367-81. [PMID: 24993826 DOI: 10.1074/jbc.m114.588277] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Insulin provides a model for the therapeutic application of protein engineering. A paradigm in molecular pharmacology was defined by design of rapid-acting insulin analogs for the prandial control of glycemia. Such analogs, a cornerstone of current diabetes regimens, exhibit accelerated subcutaneous absorption due to more rapid disassembly of oligomeric species relative to wild-type insulin. This strategy is limited by a molecular trade-off between accelerated disassembly and enhanced susceptibility to degradation. Here, we demonstrate that this trade-off may be circumvented by nonstandard mutagenesis. Our studies employed Lys(B28), Pro(B29)-insulin ("lispro") as a model prandial analog that is less thermodynamically stable and more susceptible to fibrillation than is wild-type insulin. We have discovered that substitution of an invariant tyrosine adjoining the engineered sites in lispro (Tyr(B26)) by 3-iodo-Tyr (i) augments its thermodynamic stability (ΔΔGu 0.5 ± 0.2 kcal/mol), (ii) delays onset of fibrillation (lag time on gentle agitation at 37 °C was prolonged by 4-fold), (iii) enhances affinity for the insulin receptor (1.5 ± 0.1-fold), and (iv) preserves biological activity in a rat model of diabetes mellitus. (1)H NMR studies suggest that the bulky iodo-substituent packs within a nonpolar interchain crevice. Remarkably, the 3-iodo-Tyr(B26) modification stabilizes an oligomeric form of insulin pertinent to pharmaceutical formulation (the R6 zinc hexamer) but preserves rapid disassembly of the oligomeric form pertinent to subcutaneous absorption (T6 hexamer). By exploiting this allosteric switch, 3-iodo-Tyr(B26)-lispro thus illustrates how a nonstandard amino acid substitution can mitigate the unfavorable biophysical properties of an engineered protein while retaining its advantages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael A Weiss
- From the Departments of Biochemistry, Medicine, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
16
|
Bagchi K, Roy S. Sensitivity of Water Dynamics to Biologically Significant Surfaces of Monomeric Insulin: Role of Topology and Electrostatic Interactions. J Phys Chem B 2014; 118:3805-13. [DOI: 10.1021/jp411136w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kushal Bagchi
- St. Joseph’s College for Arts and Science, Bangalore 560027, India
| | - Susmita Roy
- SSCU, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Žáková L, Kletvíková E, Veverka V, Lepsík M, Watson CJ, Turkenburg JP, Jirácek J, Brzozowski AM. Structural integrity of the B24 site in human insulin is important for hormone functionality. J Biol Chem 2013; 288:10230-40. [PMID: 23447530 DOI: 10.1074/jbc.m112.448050] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the recent first structural insight into the insulin-insulin receptor complex, the role of the C terminus of the B-chain of insulin in this assembly remains unresolved. Previous studies have suggested that this part of insulin must rearrange to reveal amino acids crucial for interaction with the receptor. The role of the invariant Phe(B24), one of the key residues of the hormone, in this process remains unclear. For example, the B24 site functionally tolerates substitutions to D-amino acids but not to L-amino acids. Here, we prepared and characterized a series of B24-modified insulin analogues, also determining the structures of [D-HisB24]-insulin and [HisB24]-insulin. The inactive [HisB24]-insulin molecule is remarkably rigid due to a tight accommodation of the L-His side chain in the B24 binding pocket that results in the stronger tethering of B25-B28 residues to the protein core. In contrast, the highly active [D-HisB24]-insulin is more flexible, and the reverse chirality of the B24C(α) atom swayed the D-His(B24) side chain into the solvent. Furthermore, the pocket vacated by Phe(B24) is filled by Phe(B25), which mimics the Phe(B24) side and main chains. The B25→B24 downshift results in a subsequent downshift of Tyr(B26) into the B25 site and the departure of B26-B30 residues away from the insulin core. Our data indicate the importance of the aromatic L-amino acid at the B24 site and the structural invariance/integrity of this position for an effective binding of insulin to its receptor. Moreover, they also suggest limited, B25-B30 only, unfolding of the C terminus of the B-chain upon insulin activation.
Collapse
Affiliation(s)
- Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Insulin is a hormone that is essential for regulating energy storage and glucose metabolism in the body. Insulin in liver, muscle, and fat tissues stimulates the cell to take up glucose from blood and store it as glycogen in liver and muscle. Failure of insulin control causes diabetes mellitus (DM). Insulin is the unique medicine to treat some forms of DM. The population of diabetics has dramatically increased over the past two decades, due to high absorption of carbohydrates (or fats and proteins), lack of physical exercise, and development of new diagnostic techniques. At present, the two largest developing countries (India and China) and the largest developed country (United States) represent the top three countries in terms of diabetic population. Insulin is a small protein, but contains almost all structural features typical of proteins: α-helix, β-sheet, β-turn, high order assembly, allosteric T®R-transition, and conformational changes in amyloidal fibrillation. More than ten years' efforts on studying insulin disulfide intermediates by NMR have enabled us to decipher the whole picture of insulin folding coupled to disulfide pairing, especially at the initial stage that forms the nascent peptide. Two structural switches are also known to regulate insulin binding to receptors and progress has been made to identify the residues involved in binding. However, resolving the complex structure of insulin and its receptor remains a challenge in insulin research. Nevertheless, the accumulated knowledge of insulin structure has allowed us to specifically design a new ultra-stable and active single-chain insulin analog (SCI-57), and provides a novel way to design super-stable, fast-acting and cheaper insulin formulations for DM patients. Continuing this long journey of insulin study will benefit basic research in proteins and in pharmaceutical therapy.
Collapse
Affiliation(s)
- Qingxin Hua
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA.
| |
Collapse
|
19
|
Abstract
We have exploited a prandial insulin analog to elucidate the underlying structure and dynamics of insulin as a monomer in solution. A model was provided by insulin lispro (the active component of Humalog(®); Eli Lilly and Co.). Whereas NMR-based modeling recapitulated structural relationships of insulin crystals (T-state protomers), dynamic anomalies were revealed by amide-proton exchange kinetics in D(2)O. Surprisingly, the majority of hydrogen bonds observed in crystal structures are only transiently maintained in solution, including key T-state-specific inter-chain contacts. Long-lived hydrogen bonds (as defined by global exchange kinetics) exist only at a subset of four α-helical sites (two per chain) flanking an internal disulfide bridge (cystine A20-B19); these sites map within the proposed folding nucleus of proinsulin. The anomalous flexibility of insulin otherwise spans its active surface and may facilitate receptor binding. Because conformational fluctuations promote the degradation of pharmaceutical formulations, we envisage that "dynamic re-engineering" of insulin may enable design of ultra-stable formulations for humanitarian use in the developing world.
Collapse
Affiliation(s)
- Qing-Xin Hua
- Department of Biochemistry, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
| | - Wenhua Jia
- Department of Biochemistry, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
| | - Michael A. Weiss
- Department of Biochemistry, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
- *Correspondence: Michael A. Weiss, Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue – Wood W436, Cleveland, OH 44106-4935, USA. e-mail:
| |
Collapse
|
20
|
Liu M, Hua QX, Hu SQ, Jia W, Yang Y, Saith SE, Whittaker J, Arvan P, Weiss MA. Deciphering the hidden informational content of protein sequences: foldability of proinsulin hinges on a flexible arm that is dispensable in the mature hormone. J Biol Chem 2010; 285:30989-1001. [PMID: 20663888 PMCID: PMC2945590 DOI: 10.1074/jbc.m110.152645] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/21/2010] [Indexed: 01/28/2023] Open
Abstract
Protein sequences encode both structure and foldability. Whereas the interrelationship of sequence and structure has been extensively investigated, the origins of folding efficiency are enigmatic. We demonstrate that the folding of proinsulin requires a flexible N-terminal hydrophobic residue that is dispensable for the structure, activity, and stability of the mature hormone. This residue (Phe(B1) in placental mammals) is variably positioned within crystal structures and exhibits (1)H NMR motional narrowing in solution. Despite such flexibility, its deletion impaired insulin chain combination and led in cell culture to formation of non-native disulfide isomers with impaired secretion of the variant proinsulin. Cellular folding and secretion were maintained by hydrophobic substitutions at B1 but markedly perturbed by polar or charged side chains. We propose that, during folding, a hydrophobic side chain at B1 anchors transient long-range interactions by a flexible N-terminal arm (residues B1-B8) to mediate kinetic or thermodynamic partitioning among disulfide intermediates. Evidence for the overall contribution of the arm to folding was obtained by alanine scanning mutagenesis. Together, our findings demonstrate that efficient folding of proinsulin requires N-terminal sequences that are dispensable in the native state. Such arm-dependent folding can be abrogated by mutations associated with β-cell dysfunction and neonatal diabetes mellitus.
Collapse
Affiliation(s)
- Ming Liu
- From the Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109 and
| | - Qing-xin Hua
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shi-Quan Hu
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wenhua Jia
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yanwu Yang
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Sunil Evan Saith
- From the Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109 and
| | - Jonathan Whittaker
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Peter Arvan
- From the Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109 and
| | - Michael A. Weiss
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
21
|
Todorova N, Marinelli F, Piana S, Yarovsky I. Exploring the folding free energy landscape of insulin using bias exchange metadynamics. J Phys Chem B 2009; 113:3556-64. [PMID: 19243106 DOI: 10.1021/jp809776v] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bias exchange metadynamics (BE-META) technique was applied to investigate the folding mechanism of insulin, one of the most studied and biologically important proteins. The BE-META simulations were performed starting from an extended conformation of chain B of insulin, using only eight replicas and seven reaction coordinates. The folded state, together with the intermediate states along the folding pathway were identified and their free energy was determined. Three main basins were found separated from one another by a large free energy barrier. The characteristic native fold of chain B was observed in one basin, while the other two most populated basins contained "molten-globule" conformations stabilized by electrostatic and hydrophobic interactions, respectively. Transitions between the three basins occur on the microsecond time scale. The implications and relevance of this finding to the folding mechanisms of insulin were investigated.
Collapse
Affiliation(s)
- Nevena Todorova
- Applied Physics, School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
22
|
Hua QX, Xu B, Huang K, Hu SQ, Nakagawa S, Jia W, Wang S, Whittaker J, Katsoyannis PG, Weiss MA. Enhancing the activity of a protein by stereospecific unfolding: conformational life cycle of insulin and its evolutionary origins. J Biol Chem 2009; 284:14586-96. [PMID: 19321436 DOI: 10.1074/jbc.m900085200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A central tenet of molecular biology holds that the function of a protein is mediated by its structure. An inactive ground-state conformation may nonetheless be enjoined by the interplay of competing biological constraints. A model is provided by insulin, well characterized at atomic resolution by x-ray crystallography. Here, we demonstrate that the activity of the hormone is enhanced by stereospecific unfolding of a conserved structural element. A bifunctional beta-strand mediates both self-assembly (within beta-cell storage vesicles) and receptor binding (in the bloodstream). This strand is anchored by an invariant side chain (Phe(B24)); its substitution by Ala leads to an unstable but native-like analog of low activity. Substitution by d-Ala is equally destabilizing, and yet the protein diastereomer exhibits enhanced activity with segmental unfolding of the beta-strand. Corresponding photoactivable derivatives (containing l- or d-para-azido-Phe) cross-link to the insulin receptor with higher d-specific efficiency. Aberrant exposure of hydrophobic surfaces in the analogs is associated with accelerated fibrillation, a form of aggregation-coupled misfolding associated with cellular toxicity. Conservation of Phe(B24), enforced by its dual role in native self-assembly and induced fit, thus highlights the implicit role of misfolding as an evolutionary constraint. Whereas classical crystal structures of insulin depict its storage form, signaling requires engagement of a detachable arm at an extended receptor interface. Because this active conformation resembles an amyloidogenic intermediate, we envisage that induced fit and self-assembly represent complementary molecular adaptations to potential proteotoxicity. The cryptic threat of misfolding poses a universal constraint in the evolution of polypeptide sequences.
Collapse
Affiliation(s)
- Qing-xin Hua
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hua QX, Nakagawa SH, Jia W, Huang K, Phillips NB, Hu SQ, Weiss MA. Design of an active ultrastable single-chain insulin analog: synthesis, structure, and therapeutic implications. J Biol Chem 2008; 283:14703-16. [PMID: 18332129 DOI: 10.1074/jbc.m800313200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-chain insulin (SCI) analogs provide insight into the inter-relation of hormone structure, function, and dynamics. Although compatible with wild-type structure, short connecting segments (<3 residues) prevent induced fit upon receptor binding and so are essentially without biological activity. Substantial but incomplete activity can be regained with increasing linker length. Here, we describe the design, structure, and function of a single-chain insulin analog (SCI-57) containing a 6-residue linker (GGGPRR). Native receptor-binding affinity (130 +/- 8% relative to the wild type) is achieved as hindrance by the linker is offset by favorable substitutions in the insulin moiety. The thermodynamic stability of SCI-57 is markedly increased (DeltaDeltaG(u) = 0.7 +/- 0.1 kcal/mol relative to the corresponding two-chain analog and 1.9 +/- 0.1 kcal/mol relative to wild-type insulin). Analysis of inter-residue nuclear Overhauser effects demonstrates that a native-like fold is maintained in solution. Surprisingly, the glycine-rich connecting segment folds against the insulin moiety: its central Pro contacts Val(A3) at the edge of the hydrophobic core, whereas the final Arg extends the A1-A8 alpha-helix. Comparison between SCI-57 and its parent two-chain analog reveals striking enhancement of multiple native-like nuclear Overhauser effects within the tethered protein. These contacts are consistent with wild-type crystal structures but are ordinarily attenuated in NMR spectra of two-chain analogs, presumably due to conformational fluctuations. Linker-specific damping of fluctuations provides evidence for the intrinsic flexibility of an insulin monomer. In addition to their biophysical interest, ultrastable SCIs may enhance the safety and efficacy of insulin replacement therapy in the developing world.
Collapse
Affiliation(s)
- Qing-xin Hua
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Throughout much of the last century insulin served a central role in the advancement of peptide chemistry, pharmacology, cell signaling and structural biology. These discoveries have provided a steadily improved quantity and quality of life for those afflicted with diabetes. The collective work serves as a foundation for the development of insulin analogs and mimetics capable of providing more tailored therapy. Advancements in patient care have been paced by breakthroughs in core technologies, such as semisynthesis, high performance chromatography, rDNA-biosynthesis and formulation sciences. How the structural and conformational dynamics of this endocrine hormone elicit its biological response remains a vigorous area of study. Numerous insulin analogs have served to coordinate structural biology and biochemical signaling to provide a first level understanding of insulin action. The introduction of broad chemical diversity to the study of insulin has been limited by the inefficiency in total chemical synthesis, and the inherent limitations in rDNA-biosynthesis and semisynthetic approaches. The goals of continued investigation remain the delivery of insulin therapy where glycemic control is more precise and hypoglycemic liability is minimized. Additional objectives for medicinal chemists are the identification of superagonists and insulins more suitable for non-injectable delivery. The historical advancements in the synthesis of insulin analogs by multiple methods is reviewed with the specific structural elements of critical importance being highlighted. The functional refinement of this hormone as directed to improved patient care with insulin analogs of more precise pharmacology is reported.
Collapse
Affiliation(s)
- John P Mayer
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|
25
|
Huang K, Chan SJ, Hua QX, Chu YC, Wang RY, Klaproth B, Jia W, Whittaker J, De Meyts P, Nakagawa SH, Steiner DF, Katsoyannis PG, Weiss MA. The A-chain of Insulin Contacts the Insert Domain of the Insulin Receptor. J Biol Chem 2007; 282:35337-49. [PMID: 17884811 DOI: 10.1074/jbc.m705996200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The contribution of the insulin A-chain to receptor binding is investigated by photo-cross-linking and nonstandard mutagenesis. Studies focus on the role of Val(A3), which projects within a crevice between the A- and B-chains. Engineered receptor alpha-subunits containing specific protease sites ("midi-receptors") are employed to map the site of photo-cross-linking by an analog containing a photoactivable A3 side chain (para-azido-Phe (Pap)). The probe cross-links to a C-terminal peptide (residues 703-719 of the receptor A isoform, KTFEDYLHNVVFVPRPS) containing side chains critical for hormone binding (underlined); the corresponding segment of the holoreceptor was shown previously to cross-link to a Pap(B25)-insulin analog. Because Pap is larger than Val and so may protrude beyond the A3-associated crevice, we investigated analogs containing A3 substitutions comparable in size to Val as follows: Thr, allo-Thr, and alpha-aminobutyric acid (Aba). Substitutions were introduced within an engineered monomer. Whereas previous studies of smaller substitutions (Gly(A3) and Ser(A3)) encountered nonlocal conformational perturbations, NMR structures of the present analogs are similar to wild-type insulin; the variant side chains are accommodated within a native-like crevice with minimal distortion. Receptor binding activities of Aba(A3) and allo-Thr(A3) analogs are reduced at least 10-fold; the activity of Thr(A3)-DKP-insulin is reduced 5-fold. The hormone-receptor interface is presumably destabilized either by a packing defect (Aba(A3)) or by altered polarity (allo-Thr(A3) and Thr(A3)). Our results provide evidence that Val(A3), a site of mutation causing diabetes mellitus, contacts the insert domain-derived tail of the alpha-subunit in a hormone-receptor complex.
Collapse
Affiliation(s)
- Kun Huang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pourhosseini PS, Saboury AA, Najafi F, Sarbolouki MN. Interaction of insulin with a triblock copolymer of PEG-(fumaric-sebacic acids)-PEG: Thermodynamic and spectroscopic studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1274-80. [PMID: 17881308 DOI: 10.1016/j.bbapap.2007.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 07/11/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
A comparative study on the interaction of (PEG-co-P(FA/SC)-co-PEG) triblock copolymer with bovine and human insulins was carried out using isothermal titration calorimetry (ITC), circular dichroism (CD), and fluorescence spectroscopy. ITC data show that the copolymer has a low affinity for both proteins, with an association constant of about 7-9 x 10(3) M (-1). Results also show that binding is enthalpically driven, and disfavored by conformational entropy. CD spectroscopy studies reveal a small increase in the helical content and a decrease in beta-structure as well as random coil in both proteins. Acrylamide quenching experiments display reduced accessibility of tyrosines, while intrinsic fluorescence spectra show lower tyrosine emission. Furthermore, thermal unfolding experiments, studied by far-UV CD at 222 and 217 nm, demonstrate that upon interaction with the copolymer helix structure becomes less stable while the stability of beta-structure remains unchanged. Altogether, these observations indicate that (PEG-co-P(FA/SC)-co-PEG) triblock copolymer has similar effect(s) on both proteins.
Collapse
Affiliation(s)
- Pouneh S Pourhosseini
- Institute of Biochemistry and Biophysics, University of Tehran, PO Box 13145-1384, Tehran, Iran
| | | | | | | |
Collapse
|
27
|
Hua QX, Nakagawa S, Hu SQ, Jia W, Wang S, Weiss MA. Toward the active conformation of insulin: stereospecific modulation of a structural switch in the B chain. J Biol Chem 2006; 281:24900-9. [PMID: 16762918 DOI: 10.1074/jbc.m602691200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How insulin binds to the insulin receptor has long been a subject of speculation. Although the structure of the free hormone has been extensively characterized, a variety of evidence suggests that a conformational change occurs upon receptor binding. Here, we employ chiral mutagenesis, comparison of corresponding d and l amino acid substitutions, to investigate a possible switch in the B-chain. To investigate the interrelation of structure, function, and stability, isomeric analogs have been synthesized in which an invariant glycine in a beta-turn (Gly(B8)) is replaced by d- or l-Ser. The d substitution enhances stability (DeltaDeltaG(u) 0.9 kcal/mol) but impairs receptor binding by 100-fold; by contrast, the l substitution markedly impairs stability (DeltaDeltaG(u) -3.0 kcal/mol) with only 2-fold reduction in receptor binding. Although the isomeric structures each retain a native-like overall fold, the l-Ser(B8) analog exhibits fewer helix-related and long range nuclear Overhauser effects than does the d-Ser(B8) analog or native monomer. Evidence for enhanced conformational fluctuations in the unstable analog is provided by its attenuated CD spectrum. The inverse relationship between stereospecific stabilization and receptor binding strongly suggests that the B7-B10 beta-turn changes conformation on receptor binding.
Collapse
Affiliation(s)
- Qing-Xin Hua
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
28
|
Nakagawa SH, Hua QX, Hu SQ, Jia W, Wang S, Katsoyannis PG, Weiss MA. Chiral mutagenesis of insulin. Contribution of the B20-B23 beta-turn to activity and stability. J Biol Chem 2006; 281:22386-22396. [PMID: 16751187 DOI: 10.1074/jbc.m603547200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin contains a beta-turn (residues B20-B23) interposed between two receptor-binding elements, the central alpha-helix of the B chain (B9-B19) and its C-terminal beta-strand (B24-B28). The turn contains conserved glycines at B20 and B23. Although insulin exhibits marked conformational variability among crystal forms, these glycines consistently maintain positive phi dihedral angles within a classic type-I beta-turn. Because the Ramachandran conformations of GlyB20 and GlyB23 are ordinarily forbidden to L-amino acids, turn architecture may contribute to structure or function. Here, we employ "chiral mutagenesis," comparison of corresponding D- and L-Ala substitutions, to investigate this turn. Control substitutions are introduced at GluB21, a neighboring residue exhibiting a conventional (negative) phi angle. The D- and L-Ala substitutions at B23 are associated with a marked stereospecific difference in activity. Whereas the D-AlaB23 analog retains native activity, the L analog exhibits a 20-fold decrease in receptor binding. By contrast, D- and L-AlaB20 analogs each exhibit high activity. Stereospecific differences between the thermodynamic stabilities of the analogs are nonetheless more pronounced at B20 (delta deltaG(u) 2.0 kcal/mole) than at B23 (delta deltaG(u) 0.7 kcal/mole). Control substitutions at B21 are well tolerated without significant stereospecificity. Chiral mutagenesis thus defines the complementary contributions of these conserved glycines to protein stability (GlyB20) or receptor recognition (GlyB23).
Collapse
Affiliation(s)
- Satoe H Nakagawa
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Qing-Xin Hua
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Shi-Quan Hu
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Wenhua Jia
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Shuhua Wang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Panayotis G Katsoyannis
- Department of Pharmacology & Biological Chemistry, Mt. Sinai School of Medicine, New York, New York 10029
| | - Michael A Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106.
| |
Collapse
|
29
|
Hua QX, Liu M, Hu SQ, Jia W, Arvan P, Weiss MA. A conserved histidine in insulin is required for the foldability of human proinsulin: structure and function of an ALAB5 analog. J Biol Chem 2006; 281:24889-99. [PMID: 16728398 DOI: 10.1074/jbc.m602617200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulins of eutherian mammals contain histidines at positions B5 and B10. The role of His(B10) is well defined: although not required in the mature hormone for receptor binding, in the islet beta cell this side chain functions in targeting proinsulin to glucose-regulated secretory granules and provides axial zincbinding sites in storage hexamers. In contrast, the role of His(B5) is less well understood. Here, we demonstrate that its substitution with Ala markedly impairs insulin chain combination in vitro and blocks the folding and secretion of human proinsulin in a transfected mammalian cell line. The structure and stability of an Ala(B5)-insulin analog were investigated in an engineered monomer (DKP-insulin). Despite its impaired foldability, the structure of the Ala(B5) analog retains a native-like T-state conformation. At the site of substitution, interchain nuclear Overhauser effects are observed between the methyl resonance of Ala(B5) and side chains in the A chain; these nuclear Overhauser effects resemble those characteristic of His(B5) in native insulin. Substantial receptor binding activity is retained (80 +/- 10% relative to the parent monomer). Although the thermodynamic stability of the Ala(B5) analog is decreased (DeltaDeltaG(u) = 1.7 +/- 0.1 kcal/mol), consistent with loss of His(B5)-related interchain packing and hydrogen bonds, control studies suggest that this decrement cannot account for its impaired foldability. We propose that nascent long-range interactions by His(B5) facilitate alignment of Cys(A7) and Cys(B7) in protein-folding intermediates; its conservation thus reflects mechanisms of oxidative folding rather than structure-function relationships in the native state.
Collapse
Affiliation(s)
- Qing-Xin Hua
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935
| | | | | | | | | | | |
Collapse
|
30
|
Ahmad A, Uversky VN, Hong D, Fink AL. Early Events in the Fibrillation of Monomeric Insulin. J Biol Chem 2005; 280:42669-75. [PMID: 16246845 DOI: 10.1074/jbc.m504298200] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin has a largely alpha-helical structure and exists as a mixture of hexameric, dimeric, and monomeric states in solution, depending on the conditions: the protein is monomeric in 20% acetic acid. Insulin forms amyloid-like fibrils under a variety of conditions, especially at low pH. In this study we investigated the fibrillation of monomeric human insulin by monitoring changes in CD, attenuated total reflectance-Fourier transform infrared spectroscopy, 8-anilinonaphthalenesulfonic acid fluorescence, thioflavin T fluorescence, dynamic light scattering, and H/D exchange during the initial stages of the fibrillation process to provide insight into early events involving the monomer. The results demonstrate the existence of structural changes occurring before the onset of fibril formation, which are detectable by multiple probes. The data indicate at least two major populations of oligomeric intermediates between the native monomer and fibrils. Both have significantly non-native conformations, and indicate that fibrillation occurs from a beta-rich structure significantly distinct from the native fold.
Collapse
Affiliation(s)
- Atta Ahmad
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
31
|
Nakagawa SH, Zhao M, Hua QX, Hu SQ, Wan ZL, Jia W, Weiss MA. Chiral mutagenesis of insulin. Foldability and function are inversely regulated by a stereospecific switch in the B chain. Biochemistry 2005; 44:4984-99. [PMID: 15794637 PMCID: PMC3845378 DOI: 10.1021/bi048025o] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
How insulin binds to its receptor is unknown despite decades of investigation. Here, we employ chiral mutagenesis-comparison of corresponding d and l amino acid substitutions in the hormone-to define a structural switch between folding-competent and active conformations. Our strategy is motivated by the T --> R transition, an allosteric feature of zinc-hexamer assembly in which an invariant glycine in the B chain changes conformations. In the classical T state, Gly(B8) lies within a beta-turn and exhibits a positive phi angle (like a d amino acid); in the alternative R state, Gly(B8) is part of an alpha-helix and exhibits a negative phi angle (like an l amino acid). Respective B chain libraries containing mixtures of d or l substitutions at B8 exhibit a stereospecific perturbation of insulin chain combination: l amino acids impede native disulfide pairing, whereas diverse d substitutions are well-tolerated. Strikingly, d substitutions at B8 enhance both synthetic yield and thermodynamic stability but markedly impair biological activity. The NMR structure of such an inactive analogue (as an engineered T-like monomer) is essentially identical to that of native insulin. By contrast, l analogues exhibit impaired folding and stability. Although synthetic yields are very low, such analogues can be highly active. Despite the profound differences between the foldabilities of d and l analogues, crystallization trials suggest that on protein assembly substitutions of either class can be accommodated within classical T or R states. Comparison between such diastereomeric analogues thus implies that the T state represents an inactive but folding-competent conformation. We propose that within folding intermediates the sign of the B8 phi angle exerts kinetic control in a rugged landscape to distinguish between trajectories associated with productive disulfide pairing (positive T-like values) or off-pathway events (negative R-like values). We further propose that the crystallographic T -->R transition in part recapitulates how the conformation of an insulin monomer changes on receptor binding. At the very least the ostensibly unrelated processes of disulfide pairing, allosteric assembly, and receptor binding appear to utilize the same residue as a structural switch; an "ambidextrous" glycine unhindered by the chiral restrictions of the Ramachandran plane. We speculate that this switch operates to protect insulin-and the beta-cell-from protein misfolding.
Collapse
Affiliation(s)
- Satoe H. Nakagawa
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Ming Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Qing-xin Hua
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935
| | - Shi-Quan Hu
- Department of Pharmacology and Biological Chemistry, Mt. Sinai School of Medicine of New York University, New York, New York 10029
| | - Zhu-li Wan
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935
| | - Wenhua Jia
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935
| | - Michael A. Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935
- To whom correspondence should be addressed. ; telephone: (216) 368-5991; fax: (216) 368-3419
| |
Collapse
|
32
|
Huang K, Xu B, Hu SQ, Chu YC, Hua QX, Qu Y, Li B, Wang S, Wang RY, Nakagawa SH, Theede AM, Whittaker J, De Meyts P, Katsoyannis PG, Weiss MA. How Insulin Binds: the B-Chain α-Helix Contacts the L1 β-Helix of the Insulin Receptor. J Mol Biol 2004; 341:529-50. [PMID: 15276842 DOI: 10.1016/j.jmb.2004.05.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 05/11/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Binding of insulin to the insulin receptor plays a central role in the hormonal control of metabolism. Here, we investigate possible contact sites between the receptor and the conserved non-polar surface of the B-chain. Evidence is presented that two contiguous sites in an alpha-helix, Val(B12) and Tyr(B16), contact the receptor. Chemical synthesis is exploited to obtain non-standard substitutions in an engineered monomer (DKP-insulin). Substitution of Tyr(B16) by an isosteric photo-activatable derivative (para-azido-phenylalanine) enables efficient cross-linking to the receptor. Such cross-linking is specific and maps to the L1 beta-helix of the alpha-subunit. Because substitution of Val(B12) by larger side-chains markedly impairs receptor binding, cross-linking studies at B12 were not undertaken. Structure-function relationships are instead probed by side-chains of similar or smaller volume: respective substitution of Val(B12) by alanine, threonine, and alpha-aminobutyric acid leads to activities of 1(+/-0.1)%, 13(+/-6)%, and 14(+/-5)% (relative to DKP-insulin) without disproportionate changes in negative cooperativity. NMR structures are essentially identical with native insulin. The absence of transmitted structural changes suggests that the low activities of B12 analogues reflect local perturbation of a "high-affinity" hormone-receptor contact. By contrast, because position B16 tolerates alanine substitution (relative activity 34(+/-10)%), the contribution of this neighboring interaction is smaller. Together, our results support a model in which the B-chain alpha-helix, functioning as an essential recognition element, docks against the L1 beta-helix of the insulin receptor.
Collapse
Affiliation(s)
- Kun Huang
- Department of Biochemistry, Case Western Reserve School of Medicine, Cleveland OH 44106-4935, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ahmad A, Millett IS, Doniach S, Uversky VN, Fink AL. Stimulation of Insulin Fibrillation by Urea-induced Intermediates. J Biol Chem 2004; 279:14999-5013. [PMID: 14736893 DOI: 10.1074/jbc.m313134200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibrillar deposits of insulin cause serious problems in implantable insulin pumps, commercial production of insulin, and for some diabetics. We performed a systematic investigation of the effect of urea-induced structural perturbations on the mechanism of fibrillation of insulin. The addition of as little as 0.5 m urea to zinc-bound hexameric insulin led to dissociation into dimers. Moderate concentrations of urea led to accumulation of a partially unfolded dimer state, which dissociates into an expanded, partially folded monomeric state. Very high concentrations of urea resulted in an unfolded monomer with some residual structure. The addition of even very low concentrations of urea resulted in increased fibrillation. Accelerated fibrillation correlated with population of the partially folded intermediates, which existed at up to 8 m urea, accounting for the formation of substantial amounts of fibrils under such conditions. Under monomeric conditions the addition of low concentrations of urea slowed down the rate of fibrillation, e.g. 5-fold at 0.75 m urea. The decreased fibrillation of the monomer was due to an induced non-native conformation with significantly increased alpha-helical content compared with the native conformation. The data indicate a close-knit relationship between insulin conformation and propensity to fibrillate. The correlation between fibrillation and the partially unfolded monomer indicates that the latter is a critical amyloidogenic intermediate in insulin fibrillation.
Collapse
Affiliation(s)
- Atta Ahmad
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
34
|
Hua QX, Weiss MA. Mechanism of insulin fibrillation: the structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate. J Biol Chem 2004; 279:21449-60. [PMID: 14988398 DOI: 10.1074/jbc.m314141200] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin undergoes aggregation-coupled misfolding to form a cross-beta assembly. Such fibrillation has long complicated its manufacture and use in the therapy of diabetes mellitus. Of interest as a model for disease-associated amyloids, insulin fibrillation is proposed to occur via partial unfolding of a monomeric intermediate. Here, we describe the solution structure of human insulin under amyloidogenic conditions (pH 2.4 and 60 degrees C). Use of an enhanced sensitivity cryogenic probe at high magnetic field avoids onset of fibrillation during spectral acquisition. A novel partial fold is observed in which the N-terminal segments of the A- and B-chains detach from the core. Unfolding of the N-terminal alpha-helix of the A-chain exposes a hydrophobic surface formed by native-like packing of the remaining alpha-helices. The C-terminal segment of the B-chain, although not well ordered, remains tethered to this partial helical core. We propose that detachment of N-terminal segments makes possible aberrant protein-protein interactions in an amyloidogenic nucleus. Non-cooperative unfolding of the N-terminal A-chain alpha-helix resembles that observed in models of proinsulin folding intermediates and foreshadows the extensive alpha --> beta transition characteristic of mature fibrils.
Collapse
Affiliation(s)
- Qing-xin Hua
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44016-4935
| | | |
Collapse
|
35
|
Dong J, Wan Z, Popov M, Carey PR, Weiss MA. Insulin assembly damps conformational fluctuations: Raman analysis of amide I linewidths in native states and fibrils. J Mol Biol 2003; 330:431-42. [PMID: 12823980 DOI: 10.1016/s0022-2836(03)00536-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The crystal structure of insulin has been investigated in a variety of dimeric and hexameric assemblies. Interest in dynamics has been stimulated by conformational variability among crystal forms and evidence suggesting that the functional monomer undergoes a conformational change on receptor binding. Here, we employ Raman spectroscopy and Raman microscopy to investigate well-defined oligomeric species: monomeric and dimeric analogs in solution, native T(6) and R(6) hexamers in solution and corresponding polycrystalline samples. Remarkably, linewidths of Raman bands associated with the polypeptide backbone (amide I) exhibit progressive narrowing with successive self-assembly. Whereas dimerization damps fluctuations at an intermolecular beta-sheet, deconvolution of the amide I band indicates that formation of hexamers stabilizes both helical and non-helical elements. Although the structure of a monomer in solution resembles a crystallographic protomer, its encagement in a native assembly damps main-chain fluctuations. Further narrowing of a beta-sheet-specific amide I band is observed on reorganization of insulin in a cross-beta fibril. Enhanced flexibility of the native insulin monomer is in accord with molecular dynamics simulations. Such conformational fluctuations may initiate formation of an amyloidogenic nucleus and enable induced fit on receptor binding.
Collapse
Affiliation(s)
- Jian Dong
- Department of Biochemistry, Case Western Reserve University School of Medicine, 10900 Euclid Avenue SOM-W427, Cleveland, OH 44106-4935, USA
| | | | | | | | | |
Collapse
|
36
|
Hua QX, Chu YC, Jia W, Phillips NFB, Wang RY, Katsoyannis PG, Weiss MA. Mechanism of insulin chain combination. Asymmetric roles of A-chain alpha-helices in disulfide pairing. J Biol Chem 2002; 277:43443-53. [PMID: 12196530 DOI: 10.1074/jbc.m206107200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The A and B chains of insulin combine to form native disulfide bridges without detectable isomers. The fidelity of chain combination thus recapitulates the folding of proinsulin, a precursor protein in which the two chains are tethered by a disordered connecting peptide. We have recently shown that chain combination is blocked by seemingly conservative substitutions in the C-terminal alpha-helix of the A chain. Such analogs, once formed, nevertheless retain high biological activity. By contrast, we demonstrate here that chain combination is robust to non-conservative substitutions in the N-terminal alpha-helix. Introduction of multiple glycine substitutions into the N-terminal segment of the A chain (residues A1-A5) yields analogs that are less stable than native insulin and essentially without biological activity. (1)H NMR studies of a representative analog lacking invariant side chains Ile(A2) and Val(A3) (A chain sequence GGGEQCCTSICSLYQLENYCN; substitutions are italicized and cysteines are underlined) demonstrate local unfolding of the A1-A5 segment in an otherwise native-like structure. That this and related partial folds retain efficient disulfide pairing suggests that the native N-terminal alpha-helix does not participate in the transition state of the reaction. Implications for the hierarchical folding mechanisms of proinsulin and insulin-like growth factors are discussed.
Collapse
Affiliation(s)
- Qing-Xin Hua
- Department of Biochemistry, Case Western Reserve School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Xu B, Hua QX, Nakagawa SH, Jia W, Chu YC, Katsoyannis PG, Weiss MA. Chiral mutagenesis of insulin's hidden receptor-binding surface: structure of an allo-isoleucine(A2) analogue. J Mol Biol 2002; 316:435-41. [PMID: 11866509 DOI: 10.1006/jmbi.2001.5377] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hydrophobic core of vertebrate insulins contains an invariant isoleucine residue at position A2. Lack of variation may reflect this side-chain's dual contribution to structure and function: Ile(A2) is proposed both to stabilize the A1-A8 alpha-helix and to contribute to a "hidden" functional surface exposed on receptor binding. Substitution of Ile(A2) by alanine results in segmental unfolding of the A1-A8 alpha-helix, lower thermodynamic stability and impaired receptor binding. Such a spectrum of perturbations, although of biophysical interest, confounds interpretation of structure-activity relationships. To investigate the specific contribution of Ile(A2) to insulin's functional surface, we have employed non-standard mutagenesis: inversion of side-chain chirality in engineered monomer allo-Ile(A2)-DKP-insulin. Although the analogue retains native structure and stability, its affinity for the insulin receptor is impaired by 50-fold. Thus, whereas insulin's core readily accommodates allo-isoleucine at A2, its activity is exquisitely sensitive to chiral inversion. We propose that the Ile(A2) side-chain inserts within a chiral pocket of the receptor as part of insulin's hidden functional surface.
Collapse
Affiliation(s)
- Bin Xu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Weiss MA, Wan Z, Zhao M, Chu YC, Nakagawa SH, Burke GT, Jia W, Hellmich R, Katsoyannis PG. Non-standard insulin design: structure-activity relationships at the periphery of the insulin receptor. J Mol Biol 2002; 315:103-11. [PMID: 11779231 DOI: 10.1006/jmbi.2001.5224] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The design of insulin analogues has emphasized stabilization or destabilization of structural elements according to established principles of protein folding. To this end, solvent-exposed side-chains extrinsic to the receptor-binding surface provide convenient sites of modification. An example is provided by an unfavorable helical C-cap (Thr(A8)) whose substitution by favorable amino acids (His(A8) or Arg(A8)) has yielded analogues of improved stability. Remarkably, these analogues also exhibit enhanced activity, suggesting that activity may correlate with stability. Here, we test this hypothesis by substitution of diaminobutyric acid (Dab(A8)), like threonine an amino acid of low helical propensity. The crystal structure of Dab(A8)-insulin is similar to those of native insulin and the related analogue Lys(A8)-insulin. Although no more stable than native insulin, the non-standard analogue is twice as active. Stability and affinity can therefore be uncoupled. To investigate alternative mechanisms by which A8 substitutions enhance activity, multiple substitutions were introduced. Surprisingly, diverse aliphatic, aromatic and polar side-chains enhance receptor binding and biological activity. Because no relationship is observed between activity and helical propensity, we propose that local interactions between the A8 side-chain and an edge of the hormone-receptor interface modulate affinity. Dab(A8)-insulin illustrates the utility of non-standard amino acids in hypothesis-driven protein design.
Collapse
Affiliation(s)
- Michael A Weiss
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu B, Hua QX, Nakagawa SH, Jia W, Chu YC, Katsoyannis PG, Weiss MA. A cavity-forming mutation in insulin induces segmental unfolding of a surrounding alpha-helix. Protein Sci 2002; 11:104-16. [PMID: 11742127 PMCID: PMC2368773 DOI: 10.1110/ps.32102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To investigate the cooperativity of insulin's structure, a cavity-forming substitution was introduced within the hydrophobic core of an engineered monomer. The substitution, Ile(A2)-->Ala in the A1-A8 alpha-helix, does not impair disulfide pairing between chains. In accord with past studies of cavity-forming mutations in globular proteins, a decrement was observed in thermodynamic stability (DeltaDeltaG(u) 0.4-1.2 kcal/mole). Unexpectedly, CD studies indicate an attenuated alpha-helix content, which is assigned by NMR spectroscopy to selective destabilization of the A1-A8 segment. The analog's solution structure is otherwise similar to that of native insulin, including the B chain's supersecondary structure and a major portion of the hydrophobic core. Our results show that (1) a cavity-forming mutation in a globular protein can lead to segmental unfolding, (2) tertiary packing of Ile(A2), a residue of low helical propensity, stabilizes the A1-A8 alpha-helix, and (3) folding of this segment is not required for native disulfide pairing or overall structure. We discuss these results in relation to a hierarchical pathway of protein folding and misfolding. The Ala(A2) analog's low biological activity (0.5% relative to the parent monomer) highlights the importance of the A1-A8 alpha-helix in receptor recognition.
Collapse
Affiliation(s)
- Bin Xu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Weiss MA, Hua QX, Jia W, Nakagawa SH, Chu YC, Hu SQ, Katsoyannis PG. Activities of monomeric insulin analogs at position A8 are uncorrelated with their thermodynamic stabilities. J Biol Chem 2001; 276:40018-24. [PMID: 11517220 DOI: 10.1074/jbc.m104634200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that the potency and thermodynamic stability of human insulin are enhanced in concert by substitution of Thr(A8) by arginine or histidine. These surface substitutions stabilize the N-terminal alpha-helix of the A chain, a key element of hormone-receptor recognition. Does enhanced stability necessarily imply enhanced activity? Here, we test by structure-based mutagenesis the relationship between the stability and activity of the hormone. To circumvent confounding effects of insulin self-association, A chain analogs were combined with a variant B chain (Asp(B10), Lys(B28), and Pro(B29) (DKP)) to create a monomeric template. Five analogs were obtained by chain combination; disulfide pairing proceeded in each case with native yield. CD and (1)H NMR spectra of the DKP analogs are essentially identical to those of DKP-insulin, indicating a correspondence of structures. Receptor binding affinities were determined by competitive displacement of (125)I-insulin from human placental membranes. Thermodynamic stabilities were measured by CD titration; unfolding was monitored as a function of guanidine concentration. In this broader collection of analogs receptor binding affinities are uncorrelated with stability. We suggest that receptor binding affinities of A8 analogs reflect local features of the hormone-receptor interface rather than the stability of the free hormone or the intrinsic C-capping propensity of the A8 side chain.
Collapse
Affiliation(s)
- M A Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106-4935, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The focus of this review is the relationship between the three-dimensional structure of ligands of the various members of the growth factor receptor tyrosine kinase superfamily and their interaction with the cognate receptor. Particular attention is given to the transforming growth factor-alpha, epidermal growth factor (EGF); nerve growth factor, neurotrophin; and insulin-like growth factor-1 (IGF-1), insulin systems since these have been extensively studied in recent years. The three receptor types, which bind these ligands, are the epidermal growth factor receptor family (erb B receptors), the neurotrophin or Trk receptor family, and IGF-1/insulin receptors, respectively, and represent three distinct members of the tyrosine kinase superfamily. For each of these, formation of the ligand-receptor complex initiates the signal transduction cascade through autophosphorylation by the intracellular tyrosine kinase domain. The extracellular portion of the receptor that contains the ligand binding domain in these systems varies significantly in organization in each case. For the EGF receptor system, ligand binding induces homo- and heterodimerization of the receptor leading to activation of the intracellular kinase. For the Trk receptor system, homodimerization of receptors has been shown to occur, although a second receptor, p75, is also required for high affinity binding of neurotrophins and for enhanced sensitivity of tyrosine kinase activation at low ligand concentrations. The IGF-1 and insulin receptors exist as covalent cross-linked dimers where each monomer is composed of two subunits. The aim of this review is also to discuss the mechanism of ligand-receptor interaction for each of these cases; however, since no structural information is yet available for the ligand-receptor complex, the discussion will largely be centered on the molecular requirements of ligand binding. As these receptors are activated through the ligand binding site on the extracellular domain, this represents a possible target for pharmacological intervention by inhibition or stimulation of this portion of the receptor. Thus from a drug design perspective, the focus of this review is to discuss progress in the development of agonists or antagonists of the ligand for these receptors.
Collapse
Affiliation(s)
- C McInnes
- Protein Engineering Network of Centres of Excellence, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
42
|
Abstract
The aim of insulin replacement therapy is to normalize blood glucose in order to reduce the complications of diabetes. The pharmacokinetics of the traditional insulin preparations, however, do not match the profiles of physiological insulin secretion. The introduction of the rDNA technology 20 years ago opened new ways to create insulin analogs with altered properties. Fast-acting analogs are based on the idea that an insulin with less tendency to self-association than human insulin would be more readily absorbed into the systemic circulation. Protracted-acting analogs have been created to mimic the slow, steady rate of insulin secretion in the fasting state. The present paper provides a historical review of the efforts to change the physicochemical and pharmacological properties of insulin in order to improve insulin therapy. The available clinical studies of the new insulins are surveyed and show, together with modeling results, that new strategies for optimal basal-bolus treatment are required for utilization of the new fast-acting analogs.
Collapse
|
43
|
Nourse A, Jeffrey PD. A sedimentation equilibrium study of platypus insulin: the HB10D mutant does not associate beyond dimer. Biophys Chem 1998; 71:21-34. [PMID: 9591358 DOI: 10.1016/s0301-4622(97)00131-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An extensive study of the self-association patterns of zinc-free synthetic native and mutant (HB10D) platypus insulin in solution (pH = 7.0; I = 0.1 M; 25 degrees C) has been undertaken using the method of sedimentation equilibrium. The data was fitted to a mathematical equation describing the indefinite duoisodesmic (IDI) model of self-association [A.E. Mark, P.D. Jeffrey, Biol. Chem. Hoppe-Slayer, 371 (1990) 1165]. From this the relevant association constants, KA and KB, describing the polymerising system were calculated. This information allows the calculation of the complex distribution of odd and even numbered polymeric species within the insulin system in solution. In the studies on the self-association of the synthetic native and mutant platypus insulin, each was compared with bovine insulin as well as with each other. It is concluded that there is some reduction in the extent of the self-association of native platypus insulin compared to bovine insulin. A reduction, in specifically the dimer-dimer interaction, is indicated by the higher KA and lower KB values. HB10D platypus insulin shows a dramatic reduction in self-association compared to native platypus and to bovine insulin. Analysis of the self-association pattern yielding a KB value of effectively zero suggests that the substitution of an aspartic acid residue for a histidine at B10 virtually abolishes its dimer-dimer interaction. Platypus insulin has essentially the same biological activity as that of porcine (submitted for publication) but a somewhat lower self-association, while the introduction of one amino acid in a critical region increases the activity twofold while abolishing self-association beyond dimer.
Collapse
Affiliation(s)
- A Nourse
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
44
|
Hua QX, Hu SQ, Jia W, Chu YC, Burke GT, Wang SH, Wang RY, Katsoyannis PG, Weiss MA. Mini-proinsulin and mini-IGF-I: homologous protein sequences encoding non-homologous structures. J Mol Biol 1998; 277:103-18. [PMID: 9514738 DOI: 10.1006/jmbi.1997.1574] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein minimization highlights essential determinants of structure and function. Minimal models of proinsulin and insulin-like growth factor I contain homologous A and B domains as single-chain analogues. Such models (designated mini-proinsulin and mini-IGF-I) have attracted wide interest due to their native foldability but complete absence of biological activity. The crystal structure of mini-proinsulin, determined as a T3R3 hexamer, is similar to that of the native insulin hexamer. Here, we describe the solution structure of a monomeric mini-proinsulin under physiologic conditions and compare this structure to that of the corresponding two-chain analogue. The two proteins each contain substitutions in the B-chain (HisB10-->Asp and ProB28-->Asp) designed to destabilize self-association by electrostatic repulsion; the proteins differ by the presence or absence of a peptide bond between LysB29 and GlyA1. The structures are essentially identical, resembling in each case the T-state crystallographic protomer. Differences are observed near the site of cross-linking: the adjoining A1-A8 alpha-helix (variable among crystal structures) is less well-ordered in mini-proinsulin than in the two-chain variant. The single-chain analogue is not completely inactive: its affinity for the insulin receptor is 1500-fold lower than that of the two-chain analogue. Moreover, at saturating concentrations mini-proinsulin retains the ability to stimulate lipogenesis in adipocytes (native biological potency). These results suggest that a change in the conformation of insulin, as tethered by the B29-A1 peptide bond, optimizes affinity but is not integral to the mechanism of transmembrane signaling. Surprisingly, the tertiary structure of mini-proinsulin differs from that of mini-IGF-I (main-chain rms deviation 4.5 A) despite strict conservation of non-polar residues in their respective hydrophobic cores (side-chain rms deviation 4.9 A). Three-dimensional profile scores suggest that the two structures each provide acceptable templates for threading of insulin-like sequences. Mini-proinsulin and mini-IGF-I thus provide examples of homologous protein sequences encoding non-homologous structures.
Collapse
Affiliation(s)
- Q X Hua
- Center for Molecular Oncology and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stites WE. Proteinminus signProtein Interactions: Interface Structure, Binding Thermodynamics, and Mutational Analysis. Chem Rev 1997; 97:1233-1250. [PMID: 11851449 DOI: 10.1021/cr960387h] [Citation(s) in RCA: 386] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wesley E. Stites
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701-1201
| |
Collapse
|
46
|
Affiliation(s)
- F Holleman
- Department of Internal Medicine, Diakonessenhuis, Utrecht, the Netherlands
| | | |
Collapse
|
47
|
Hodgson DR, May FE, Westley BR. Involvement of phenylalanine 23 in the binding of IGF-1 to the insulin and type I IGF receptor. REGULATORY PEPTIDES 1996; 66:191-6. [PMID: 8916274 DOI: 10.1016/s0167-0115(96)00102-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hydrophobic residue Phe-23 lies on a surface of insulin like growth factor 1 (IGF-1) which may be involved in binding to the type I IGF and insulin receptors. The possibility that Phe-23 participates directly in binding to these receptors has been investigated by comparing the properties of [F23G]IGF-1, a mutant of insulin-like growth factor 1 in which Phe-23 has been replaced by Gly, with those of IGF-1 and insulin. [F23G]IGF-1 has a 48-fold lower affinity for the type I IGF receptor, a markedly reduced affinity for the insulin receptor and a 100-fold reduced affinity for insulin-like growth factor binding proteins (IGFBPs) compared to IGF-1. [F23G]IGF-1 is a full IGF-1 agonist as measured by its ability to stimulate cell proliferation. Its potency was only 4.5-fold less than IGF-1, probably because its bioavailability was increased as a result of its reduced affinity for IGFBPs. The large reduction in the affinity of [F23G]IGF-1 for the type I IGF receptor and insulin receptor contrasts with the lack of effect of the corresponding alteration to insulin [FB24G]. Phe-B24 is not thought to be involved directly in the binding of insulin to the insulin receptor and the C-terminus of the B-chain of insulin is suggested to be displaced on binding. We suggest that for IGF-1, the C-terminus of the B chain cannot be displaced because of the presence of the C-domain and the large reduction in the binding affinities of [F23G]IGF-1 suggest that the Phe-23 side chain may be directly involved in binding of IGF-1 to the type I IGF and insulin receptors.
Collapse
Affiliation(s)
- D R Hodgson
- Department of Pathology, University of Newcastle Upon Tyne, Royal Victoria Infirmary, UK
| | | | | |
Collapse
|
48
|
Nourse A, Treacy GB, Shaw DC, Jeffrey PD. Platypus insulin: indications from the amino acid sequence of significant differences in structure from porcine insulin. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1996; 377:147-53. [PMID: 8868070 DOI: 10.1515/bchm3.1996.377.2.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Insulin from a monotreme, the platypus (Ornithorhynchus anatinus), was isolated and the amino acid sequence determined. It differs from pig insulin at eleven amino acid sites, mainly on the surface of the monomer. Substitutions relative to pig insulin occur in the monomer-monomer interface, the dimer-dimer interface and the receptor binding region. The residues A5 Glu, A8 Lys and A13 Met have not been reported before in any insulin. Multiple sequence comparison studies reveal a relatively close relationship with the nearest group of relatives to the platypus, the mammals. The relationship of the platypus sequence to reptilian insulin sequences (and amphibian and avian insulin sequences in this case) is sufficiently close to support the observation that platypus has retained some ancient reptilian characteristics over the course of evolution. Model building the platypus insulin sequence on the structure of porcine insulin indicates that there may be some interesting differences.
Collapse
Affiliation(s)
- A Nourse
- Division of Biochemistry and Molecular Biology, Australian National University, Canberra
| | | | | | | |
Collapse
|
49
|
Simonson GD, Groskreutz DJ, Gorman CM, MacDonald MJ. Synthesis and processing of genetically modified human proinsulin by rat myoblast primary cultures. Hum Gene Ther 1996; 7:71-8. [PMID: 8825870 DOI: 10.1089/hum.1996.7.1-71] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rat myoblast primary cultures were tested as a model for proinsulin synthesis and processing and unregulated insulin delivery for insulin-dependent diabetes mellitus (IDDM) gene therapy. Three human proinsulin cDNA constructs containing genetically engineered furin endoprotease cleavage sites between the B-chain and C-peptide (IFur) and between the C-peptide and A-chain (IIFur) and/or containing a histidine B10 to aspartic acid point mutation were subcloned into a mammalian expression vector (pCMV) containing the cytomegalovirus (CMV) promoter. The altered cleavage sites enable the insulin to be processed by the ubiquitous endoprotease furin. The histidine B10 to aspartic acid mutation creates a more stable form of insulin leading to an increase in insulin accumulation. Myoblasts transfected with a proinsulin cDNA construct mutated at all three sites (pCMV.IFur.IIFur.B10), a construct with only the furin sites (pCMV.IFur.IIFur), and a construct containing only the mutation at the B10 position (pCMV.B10) accumulated 852 +/- 16, 150 +/- 13, and 883 +/- 39 microU (pro)insulin/ml, respectively, in the culture medium during a 48-hr incubation. (Pro)insulin was detected in the culture medium within 2 hr post-transfection. Significant (pro)insulin release continued for 1 week and gradually diminished over a month. Approximately 50% of the proinsulin released from rat myoblasts transfected with pCMV.IFur.IIFur.B10 was completely processed into mature insulin based on densitometric analysis of autoradiographs of gels containing immunoprecipitated 35S-Cys-labeled (pro)insulin. However, only a trace of the proinsulin encoded by pCMV.B10 was processed. In an isolated rat adipocyte [14C]glucose oxidation assay, insulin released from myoblasts transfected with pCMV.IFur.IIFur.B10 was active biologically, displaying more biological activity than normal human insulin. Plasmid expression was studied by transfecting myoblasts with the beta-galactosidase (beta-Gal) gene in pCMV, allowing them to divide and fuse into multinucleated myotubes, followed by staining for beta-Gal. Approximately 80% of myotubes expressed beta-Gal. The results indicate that proinsulin encoded by genetically modified proinsulin cDNA is processed into mature insulin, which is secreted at high levels, making myoblasts a viable target cell for gene therapy of IDDM.
Collapse
Affiliation(s)
- G D Simonson
- University of Wisconsin Childrens Diabetes Center, Madison 53706, USA
| | | | | | | |
Collapse
|
50
|
Baudyš M, Uchio T, Hovgaard L, Zhu E, Avramoglou T, Jozefowicz M, Říhová B, Park J, Lee H, Kim S. Glycosylated insulins. J Control Release 1995. [DOI: 10.1016/0168-3659(95)00022-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|