1
|
Inhibition of E. coli RecQ Helicase Activity by Structurally Distinct DNA Lesions: Structure-Function Relationships. Int J Mol Sci 2022; 23:ijms232415654. [PMID: 36555294 PMCID: PMC9779537 DOI: 10.3390/ijms232415654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
DNA helicase unwinding activity can be inhibited by small molecules and by covalently bound DNA lesions. Little is known about the relationships between the structural features of DNA lesions and their impact on unwinding rates and processivities. Employing E.coli RecQ helicase as a model system, and various conformationally defined DNA lesions, the unwinding rate constants kobs = kU + kD, and processivities P = (kU/(kU + kD) were determined (kU, unwinding rate constant; kD, helicase-DNA dissociation rate constant). The highest kobs values were observed in the case of intercalated benzo[a]pyrene (BP)-derived adenine adducts, while kobs values of guanine adducts with minor groove or base-displaced intercalated adduct conformations were ~10-20 times smaller. Full unwinding was observed in each case with the processivity P = 1.0 (100% unwinding). The kobs values of the non-bulky lesions T(6-4)T, CPD cyclobutane thymine dimers, and a guanine oxidation product, spiroiminodihydantoin (Sp), are up to 20 times greater than some of the bulky adduct values; their unwinding efficiencies are strongly inhibited with processivities P = 0.11 (CPD), 0.062 (T(6-4)T), and 0.63 (Sp). These latter observations can be accounted for by correlated decreases in unwinding rate constants and enhancements in the helicase DNA complex dissociation rate constants.
Collapse
|
2
|
Mu H, Zhang Y, Geacintov NE, Broyde S. Lesion Sensing during Initial Binding by Yeast XPC/Rad4: Toward Predicting Resistance to Nucleotide Excision Repair. Chem Res Toxicol 2018; 31:1260-1268. [PMID: 30284444 PMCID: PMC6247245 DOI: 10.1021/acs.chemrestox.8b00231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleotide excision repair (NER) excises a variety of environmentally derived DNA lesions. However, NER efficiencies for structurally different DNA lesions can vary by orders of magnitude; yet the origin of this variance is poorly understood. Our goal is to develop computational strategies that predict and identify the most hazardous, repair-resistant lesions from the plethora of such adducts. In the present work, we are focusing on lesion recognition by the xeroderma pigmentosum C protein complex (XPC), the first and required step for the subsequent assembly of factors needed to produce successful NER. We have performed molecular dynamics simulations to characterize the initial binding of Rad4, the yeast orthologue of human XPC, to a library of 10 different lesion-containing DNA duplexes derived from environmental carcinogens. These vary in lesion chemical structures and conformations in duplex DNA and exhibit a wide range of relative NER efficiencies from repair resistant to highly susceptible. We have determined a promising set of structural descriptors that characterize initial binding of Rad4 to lesions that are resistant to NER. Key initial binding requirements for successful recognition are absent in the repair-resistant cases: There is little or no duplex unwinding, very limited interaction between the β-hairpin domain 2 of Rad4 and the minor groove of the lesion-containing duplex, and no conformational capture of a base on the lesion partner strand. By contrast, these key binding features are present to different degrees in NER susceptible lesions and correlate to their relative NER efficiencies. Furthermore, we have gained molecular understanding of Rad4 initial binding as determined by the lesion structures in duplex DNA and how the initial binding relates to the repair efficiencies. The development of a computational strategy for identifying NER-resistant lesions is grounded in this molecular understanding of the lesion recognition mechanism.
Collapse
Affiliation(s)
| | - Yingkai Zhang
- NYU-ECNU Center for Computational Chemistry at New York University Shanghai , Shanghai 200062 , China
| | | | | |
Collapse
|
3
|
Simultaneous detection of nucleotide excision repair events and apoptosis-induced DNA fragmentation in genotoxin-treated cells. Sci Rep 2018; 8:2265. [PMID: 29396432 PMCID: PMC5797224 DOI: 10.1038/s41598-018-20527-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/18/2018] [Indexed: 01/27/2023] Open
Abstract
Novel in vivo excision assays for monitoring the excised oligonucleotide products of nucleotide excision repair in UV-irradiated cells have provided unprecedented views of the kinetics and genomic distribution of repair events. However, an unresolved issue is the fate of the excised oligonucleotide products of repair and their mechanism of degradation. Based on our observation that decreases in excised oligonucleotide abundance coincide with the induction of apoptotic signaling in UV-irradiated cells, we considered the possibility that caspase-mediated apoptotic signaling contributes to excised oligonucleotide degradation or to a general inhibition of the excision repair system. However, genetic and pharmacological approaches to inhibit apoptotic signaling demonstrated that caspase-mediated apoptotic signaling does not affect excision repair or excised oligonucleotide stability. Nonetheless, our assay for detecting soluble DNAs produced by repair also revealed the production of larger DNAs following DNA damage induction that was dependent on caspase activation. We therefore further exploited the versatility of this assay by showing that soluble DNAs produced by both nucleotide excision repair and apoptotic signaling can be monitored simultaneously with a diverse set of DNA damaging agents. Thus, our in vivo excision repair assay provides a sensitive measure of both repair kinetics and apoptotic signaling in genotoxin-treated cells.
Collapse
|
4
|
Mechanism of error-free replication across benzo[a]pyrene stereoisomers by Rev1 DNA polymerase. Nat Commun 2017; 8:965. [PMID: 29042535 PMCID: PMC5645340 DOI: 10.1038/s41467-017-01013-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Benzo[a]pyrene (BP) is a carcinogen in cigarette smoke which, after metabolic activation, can react with the exocyclic N2 amino group of guanine to generate four stereoisomeric BP-N2-dG adducts. Rev1 is unique among translesion synthesis DNA polymerases in employing a protein-template-directed mechanism of DNA synthesis opposite undamaged and damaged guanine. Here we report high-resolution structures of yeast Rev1 with three BP-N2-dG adducts, namely the 10S (+)-trans-BP-N2-dG, 10R (+)-cis-BP-N2-dG, and 10S ( − )-cis-BP-N2-dG. Surprisingly, in all three structures, the bulky and hydrophobic BP pyrenyl residue is entirely solvent-exposed in the major groove of the DNA. This is very different from the adduct alignments hitherto observed in free or protein-bound DNA. All complexes are well poised for dCTP insertion. Our structures provide a view of cis-BP-N2-dG adducts in a DNA polymerase active site, and offer a basis for understanding error-free replication of the BP-derived stereoisomeric guanine adducts. Benzo[a]pyrene (BP) is a carcinogen in cigarette smoke that upon metabolic activation reacts with guanine. Here, the authors present the structures of the translesion DNA synthesis polymerase Rev1 in complex with three of the four possible stereoisomeric BP-N2 -dG adducts, which gives insights how Rev1 achieves error-free replication.
Collapse
|
5
|
Abstract
The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance.
Collapse
Affiliation(s)
- Nicholas E. Geacintov
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| | - Suse Broyde
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| |
Collapse
|
6
|
Gowda ASP, Krzeminski J, Amin S, Suo Z, Spratt TE. Mutagenic Replication of N 2-Deoxyguanosine Benzo[a]pyrene Adducts by Escherichia coli DNA Polymerase I and Sulfolobus solfataricus DNA Polymerase IV. Chem Res Toxicol 2017; 30:1168-1176. [PMID: 28402640 DOI: 10.1021/acs.chemrestox.6b00466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Benzo[a]pyrene, a potent human carcinogen, is metabolized in vivo to a diol epoxide that reacts with the N2-position of guanine to produce N2-BP-dG adducts. These adducts are mutagenic causing G to T transversions. These adducts block replicative polymerases but can be bypassed by the Y-family translesion synthesis polymerases. The mechanisms by which mutagenic bypass occurs is not well-known. We have evaluated base pairing structures using atomic substitution of the dNTP with two stereoisomers, 2'-deoxy-N-[(7R,8S,9R,10S)-7,8,9,10-tetrahydro-7,8,9-trihydroxybenzo[a]pyren-10-yl]guanosine and 2'-deoxy-N-[(7S,8R,9S,10R)-7,8,9,10-tetrahydro-7,8,9-trihydroxybenzo[a]pyren-10-yl]guanosine. We have examined the kinetics of incorporation of 1-deaza-dATP, 7-deaza-dATP, 2'-deoxyinosine triphosphate, and 7-deaza-dGTP, analogues of dATP and dGTP in which single atoms are changed. Changes in rate will occur if that atom provided a critical interaction in the transition state of the reaction. We examined two polymerases, Escherichia coli DNA polymerase I (Kf) and Sulfolobus solfataricus DNA polymerase IV (Dpo4), as models of a high fidelity and TLS polymerase, respectively. We found that with Kf, substitution of the nitrogens on the Watson-Crick face of the dNTPs resulted in decreased rate of reactions. This result is consistent with a Hoogsteen base pair in which the template N2-BP-dG flipped from the anti to syn conformation. With Dpo4, while the substitution did not affect the rate of reaction, the amplitude of the reaction decreased with all substitutions. This result suggests that Dpo4 bypasses N2-BP-dG via Hoogsteen base pairs but that the flipped nucleotide can be either the dNTP or the template.
Collapse
Affiliation(s)
- A S Prakasha Gowda
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| | - Jacek Krzeminski
- Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| | - Shantu Amin
- Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Thomas E Spratt
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| |
Collapse
|
7
|
Trumbo-White CM, Hvastkovs EG. Electrochemical Assessment of Sequence Selective DNA Damage from Myoglogin and Cytochrome P450 Bioactivated Benzo[ a]pyrene at TP53 Oligomers. ELECTROANAL 2016. [DOI: 10.1002/elan.201600109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Eli G. Hvastkovs
- Department of Chemistry; East Carolina University; Greenville, NC
| |
Collapse
|
8
|
Toxicology of DNA Adducts Formed Upon Human Exposure to Carcinogens. ADVANCES IN MOLECULAR TOXICOLOGY 2016. [DOI: 10.1016/b978-0-12-804700-2.00007-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Liu Z, Ding S, Kropachev K, Lei J, Amin S, Broyde S, Geacintov NE. Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function. PLoS One 2015; 10:e0137124. [PMID: 26340000 PMCID: PMC4560436 DOI: 10.1371/journal.pone.0137124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/12/2015] [Indexed: 01/06/2023] Open
Abstract
The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue-DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision repair or base excision repair mechanisms.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Shuang Ding
- Department of Biology, New York University, New York, New York, United States of America
| | - Konstantin Kropachev
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Jia Lei
- Department of Biology, New York University, New York, New York, United States of America
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Suse Broyde
- Department of Biology, New York University, New York, New York, United States of America
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, New York, New York, United States of America
| |
Collapse
|
10
|
Lee YC, Cai Y, Mu H, Broyde S, Amin S, Chen X, Min JH, Geacintov NE. The relationships between XPC binding to conformationally diverse DNA adducts and their excision by the human NER system: is there a correlation? DNA Repair (Amst) 2014; 19:55-63. [PMID: 24784728 DOI: 10.1016/j.dnarep.2014.03.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The first eukaryotic NER factor that recognizes NER substrates is the heterodimeric XPC-RAD23B protein. The currently accepted hypothesis is that this protein recognizes the distortions/destabilization caused by DNA lesions rather than the lesions themselves. The resulting XPC-RAD23B-DNA complexes serve as scaffolds for the recruitment of subsequent NER factors that lead to the excision of the oligonucleotide sequences containing the lesions. Based on several well-known examples of DNA lesions like the UV radiation-induced CPD and 6-4 photodimers, as well as cisplatin-derived intrastrand cross-linked lesions, it is generally believed that the differences in excision activities in human cell extracts is correlated with the binding affinities of XPC-RAD23B to these DNA lesions. However, using electrophoretic mobility shift assays, we have found that XPC-RAD23B binding affinities of certain bulky lesions derived from metabolically activated polycyclic aromatic hydrocarbon compounds such as benzo[a]pyrene and dibenzo[a,l]pyrene, are not directly, or necessarily correlated with NER excision activities observed in cell-free extracts. These findings point to features of XPC-RAD23B-bulky DNA adduct complexes that may involve the formation of NER-productive or unproductive forms of binding that depend on the structural and stereochemical properties of the DNA adducts studied. The pronounced differences in NER cleavage efficiencies observed in cell-free extracts may be due to differences in the successful recruitment of subsequent NER factors by the XPC-RAD23B-DNA adduct complexes, and/or in the verification step. These phenomena appear to depend on the structural and conformational properties of the class of bulky DNA adducts studied.
Collapse
Affiliation(s)
- Yuan-Cho Lee
- Chemistry Department, New York University, Silver Complex, 100 Washington Square East, New York, NY 10012, USA
| | - Yuqin Cai
- Biology Department, New York University, Silver Complex, 100 Washington Square East, New York, NY 10012, USA
| | - Hong Mu
- Biology Department, New York University, Silver Complex, 100 Washington Square East, New York, NY 10012, USA
| | - Suse Broyde
- Biology Department, New York University, Silver Complex, 100 Washington Square East, New York, NY 10012, USA
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Xuejing Chen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jung-Hyun Min
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nicholas E Geacintov
- Chemistry Department, New York University, Silver Complex, 100 Washington Square East, New York, NY 10012, USA.
| |
Collapse
|
11
|
Deligkaris C, Rodriguez JH. Non-covalent interactions of the carcinogen (+)-anti-BPDE with exon 1 of the human K-ras proto-oncogene. Phys Chem Chem Phys 2014; 16:6199-210. [PMID: 24562312 DOI: 10.1039/c3cp55049d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Investigating the complementary, but different, effects of physical (non-covalent) and chemical (covalent) mutagen-DNA and carcinogen-DNA interactions is important for understanding possible mechanisms of development and prevention of mutagenesis and carcinogenesis. A highly mutagenic and carcinogenic metabolite of the polycyclic aromatic hydrocarbon benzo[α]pyrene, namely (+)-anti-BPDE, is known to undergo both physical and chemical complexation with DNA. Previous studies of BPDE-DNA complex formation have focused on processes that require substantial structural reorganization, such as intercalation, and consequently relatively long time scales. However, some initial processes which occur within shorter time scales, such as external non-covalent binding, and which do not require major DNA structural reorganization have not been thoroughly investigated. A detailed computational study of such initial BPDE-DNA interactions is needed to elucidate the temporal and structural origins of the major covalent adduct, a promutagenic, which is known to exist in an external (+)-trans-anti-BPDE-N(2)-dGuanosine configuration. Accordingly, the initial stages of external non-covalent BPDE-DNA binding are studied in this work as well as their relationship to subsequent formation of the major, also external, covalent adduct. To study mechanisms that occur prior to extensive DNA structural reorganization, we present a first and detailed codon by codon computational study of the non-covalent interactions of (+)-anti-BPDE with DNA. In particular, due to its relevance to carcinogenesis, the interaction of (+)-anti-BPDE with exon 1 of the human K-ras gene has been studied. External solvent-exposed non-covalent binding sites have been found which may be precursors of the major external trans adduct and, importantly, are located in codons 12 and 13 of the K-ras gene which are known to be key mutation hotspots. In addition, our study explains and correctly predicts preferential (+)-anti-BPDE binding at minor groove guanosines. A subtle combination of van der Waals and hydrogen bonding interactions has been found to be a primary factor in preferentially positioning (+)-anti-BPDE toward the 5' position of a guanosine's strand, consistent with proton NMR observations for the major trans adduct, and at 5'-TGG-3' sequences which are known to yield high binding probability.
Collapse
Affiliation(s)
- Christos Deligkaris
- Department of Physics, Theoretical and Computational Biomolecular Physics Group, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
12
|
Rodríguez FA, Liu Z, Lin CH, Ding S, Cai Y, Kolbanovskiy A, Kolbanovskiy M, Amin S, Broyde S, Geacintov NE. Nuclear magnetic resonance studies of an N2-guanine adduct derived from the tumorigen dibenzo[a,l]pyrene in DNA: impact of adduct stereochemistry, size, and local DNA sequence on solution conformations. Biochemistry 2014; 53:1827-41. [PMID: 24617538 PMCID: PMC3985812 DOI: 10.1021/bi4017044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
The
dimensions and arrangements of aromatic rings (topology) in
adducts derived from the reactions of polycyclic aromatic hydrocarbon
(PAH) diol epoxide metabolites with DNA influence the distortions
and stabilities of double-stranded DNA, and hence their recognition
and processing by the human nucleotide excision repair (NER) system.
Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which
contains a nonplanar and aromatic fjord region that is absent in the
structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide–DNA
adducts formed include the stereoisomeric 14S and
14Rtrans-anti-DB[a,l]P-N2-dG
and the stereochemically analogous 10S- and 10R-B[a]P-N2-dG
(B[a]P-dG) guanine adducts. However, nuclear magnetic
resonance (NMR) solution studies of the 14S-DB[a,l]P-N2-dG
adduct in DNA have not yet been presented. Here we have investigated
the 14S-DB[a,l]P-N2-dG adduct in two different sequence contexts
using NMR methods with distance-restrained molecular dynamics simulations.
In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced
intercalative adduct conformation can be observed. In full duplexes,
in contrast to the intercalated 14R stereoisomeric
adduct, the bulky DB[a,l]P residue
in the 14S adduct is positioned in a greatly widened
and distorted minor groove, with significant disruptions and distortions
of base pairing at the lesion site and two 5′-side adjacent
base pairs. These unique structural features are significantly different
from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of
the DB[a,l]P aromatic ring system
lead to greater structurally destabilizing DNA distortions that are
partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects
impact the NER response to the adduct. These structural results broaden
our understanding of the structure–function relationship in
NER.
Collapse
Affiliation(s)
- Fabián A Rodríguez
- Department of Chemistry, New York University , New York, New York 10003, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kropachev K, Kolbanovskiy M, Liu Z, Cai Y, Zhang L, Schwaid AG, Kolbanovskiy A, Ding S, Amin S, Broyde S, Geacintov NE. Adenine-DNA adducts derived from the highly tumorigenic Dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not. Chem Res Toxicol 2013; 26:783-93. [PMID: 23570232 DOI: 10.1021/tx400080k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N(2)-dG) and adenine (N(6)-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N(2)-dG linkage site is ∼35 times more susceptible to NER dual incisions than the stereochemically identical N(6)-dA adduct. For the guanine and adenine adducts with S stereochemistry, a similar but somewhat smaller effect (factor of ∼15) is observed. The striking resistance of the bulky N(6)-dA in contrast to the modest to good susceptibilities of the N(2)-dG adducts to NER is interpreted in terms of the balance between lesion-induced DNA distorting and DNA stabilizing van der Waals interactions in their structures, that are partly reflected in the overall thermal stabilities of the modified duplexes. Our results are consistent with the hypothesis that the high genotoxic activity of DB[a,l]P is related to the formation of NER-resistant and persistent DB[a,l]P-derived adenine adducts in cellular DNA.
Collapse
Affiliation(s)
- Konstantin Kropachev
- Department of Chemistry, New York University , New York, New York 10003, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Khutsishvili I, Zhang N, Marky LA, Crean C, Patel DJ, Geacintov NE, Shafirovich V. Thermodynamic profiles and nuclear magnetic resonance studies of oligonucleotide duplexes containing single diastereomeric spiroiminodihydantoin lesions. Biochemistry 2013; 52:1354-63. [PMID: 23360616 DOI: 10.1021/bi301566v] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The spiroiminodihydantoins (Sp) are highly mutagenic oxidation products of guanine and 8-oxo-7,8-dihydroguanine in DNA. The Sp lesions have recently been detected in the liver and colon of mice infected with Helicobacter hepaticus that induces inflammation and the development of liver and colon cancers in murine model systems [Mangerich, A., et al. (2012) Proc. Natl. Acad. Sci. U.S.A. 109, E1820-E1829]. The impact of Sp lesions on the thermodynamic characteristics and the effects of the diastereomeric Sp-R and Sp-S lesions on the conformational features of double-stranded 11-mer oligonucleotide duplexes have been studied by a combination of microcalorimetric methods, analysis of DNA melting curves, and two-dimensional nuclear magnetic resonance methods. The nonplanar, propeller-like shapes of the Sp residues strongly diminish the extent of local base stacking interactions that destabilize the DNA duplexes characterized by unfavorable enthalpy contributions. Relative to that of an unmodified duplex, the thermally induced unfolding of the duplexes with centrally positioned Sp-R and Sp-S lesions into single strands is accompanied by a smaller release of cationic counterions (Δn(Na⁺) = 0.6 mol of Na⁺/mol of duplex) and water molecules (Δn(w) = 17 mol of H₂O/mol of duplex). The unfolding parameters are similar for the Sp-R and Sp-S lesions, although their orientations in the duplexes are different. The structural disturbances radiate one base pair beyond the flanking C:G pair, although Watson-Crick hydrogen bonding is maintained at all flanking base pairs. The observed relatively strong destabilization of B-form DNA by the physically small Sp lesions is expected to have a significant impact on the processing of these lesions in biological environments.
Collapse
Affiliation(s)
- Irine Khutsishvili
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-4628, United States
| | | | | | | | | | | | | |
Collapse
|
15
|
Tang Y, Liu Z, Ding S, Lin CH, Cai Y, Rodriguez FA, Sayer JM, Jerina DM, Amin S, Broyde S, Geacintov NE. Nuclear magnetic resonance solution structure of an N(2)-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: intercalation from the minor groove with ruptured Watson-Crick base pairing. Biochemistry 2012; 51:9751-62. [PMID: 23121427 DOI: 10.1021/bi3013577] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N(2)-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N(2)-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3'-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3'-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.
Collapse
Affiliation(s)
- Yijin Tang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Minero AS, Lukashevich OV, Cherepanova NA, Kolbanovskiy A, Geacintov NE, Gromova ES. Probing murine methyltransfease Dnmt3a interactions with benzo[a]pyrene-modified DNA by fluorescence methods. FEBS J 2012; 279:3965-80. [PMID: 22913541 DOI: 10.1111/j.1742-4658.2012.08756.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/30/2012] [Accepted: 08/06/2012] [Indexed: 11/29/2022]
Abstract
The impact of bulky carcinogen-DNA adducts positioned at or near recognition sites (CpG) of eukaryotic DNA methyltransferases on their catalytic activities is poorly understood. In the present study, we employed site-specifically modified 30-mer oligodeoxyribonucleotides containing stereoisomeric benzo[a]pyrene diol epoxide (B[a]PDE)-derived guanine (B[a]PDE-N(2)-dG) or adenine (B[a]PDE-N(6)-dA) adducts of different conformations as substrates of the catalytic domain of murine Dnmt3a (Dnmt3a-CD). The fluorescence of these lesions was used to examine interactions between Dnmt3a-CD and DNA. In B[a]PDE-DNA•Dnmt3a-CD complexes, the intensity of fluorescence of the covalently bound B[a]PDE residues is enhanced relative to the protein-free value when the B[a]PDE is positioned in the minor groove [(+)- and (-)-trans-B[a]PDE-N(2)-dG adducts in the CpG site] and when it is intercalated on the 5'-side of the CpG site [(+)-trans-B[a]PDE-N(6)-dA adduct]. The fluorescence of B[a]PDE-modified DNA•Dnmt3a-CD complexes exhibits only small changes when the B[a]PDE is intercalated with base displacement in (+)- and (-)-cis-B[a]PDE-N(2)-dG adducts and without base displacement in the (-)-trans-B[a]PDE-N(6)-dA adduct. The initial rates of methylation were significantly reduced by the minor groove trans-B[a]PDE-N(2)-dG adducts, regardless of their position in the substrate and by the intercalated cis-B[a]PDE-N(2)-dG adducts within the CpG site. The observed changes in fluorescence and methylation rates are consistent with the flipping of the target cytosine and a catalytic loop motion within the DNA•Dnmt3a-CD complexes. In the presence of the regulatory factor Dnmt3L, an enhancement of both methylation rates and fluorescence was observed, which is consistent with a Dnmt3L-mediated displacement of the catalytic loop towards the CpG site.
Collapse
Affiliation(s)
- Antonio S Minero
- Department of Chemistry, Moscow State University, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
17
|
Cai Y, Geacintov NE, Broyde S. Nucleotide excision repair efficiencies of bulky carcinogen-DNA adducts are governed by a balance between stabilizing and destabilizing interactions. Biochemistry 2012; 51:1486-99. [PMID: 22242833 DOI: 10.1021/bi201794x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleotide excision repair (NER) machinery, the primary defense against cancer-causing bulky DNA lesions, is surprisingly inefficient in recognizing certain mutagenic DNA adducts and other forms of DNA damage. However, the biochemical basis of resistance to repair remains poorly understood. To address this problem, we have investigated a series of intercalated DNA-adenine lesions derived from carcinogenic polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites that differ in their response to the mammalian NER apparatus. These stereoisomeric PAH-derived adenine lesions represent ideal model systems for elucidating the effects of structural, dynamic, and thermodynamic properties that determine the recognition of these bulky DNA lesions by NER factors. The objective of this work was to gain a systematic understanding of the relation between aromatic ring topology and adduct stereochemistry with existing experimental NER efficiencies and known thermodynamic stabilities of the damaged DNA duplexes. For this purpose, we performed 100 ns molecular dynamics studies of the lesions embedded in identical double-stranded 11-mer sequences. Our studies show that, depending on topology and stereochemistry, stabilizing PAH-DNA base van der Waals stacking interactions can compensate for destabilizing distortions caused by these lesions that can, in turn, cause resistance to NER. The results suggest that the balance between helix stabilizing and destabilizing interactions between the adduct and nearby DNA residues can account for the variability of NER efficiencies observed in this class of PAH-DNA lesions.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, New York, New York 10003, United States
| | | | | |
Collapse
|
18
|
Lukin M, Zaliznyak T, Johnson F, de Los Santos CR. Incorporation of 3-aminobenzanthrone into 2'-deoxyoligonucleotides and its impact on duplex stability. J Nucleic Acids 2011; 2011:521035. [PMID: 22175001 PMCID: PMC3228337 DOI: 10.4061/2011/521035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/03/2011] [Indexed: 12/25/2022] Open
Abstract
3-Nitrobenzanthrone (3NBA), an environmental pollutant and potent mutagen, causes DNA damage via the reaction of its metabolically activated form with the exocyclic amino groups of purines and the C-8 position of guanine. The present work describes a synthetic approach to the preparation of oligomeric 2′-deoxyribonucleotides containing a 2-(2′-deoxyguanosin-N2-yl)-3-aminobenzanthrone moiety, one of the major DNA adducts found in tissues of living organisms exposed to 3NBA. The NMR spectra indicate that the damaged oligodeoxyribonucleotide is capable of forming a regular double helical structure with the polyaromatic moiety assuming a single conformation at room temperature; the spectra suggest that the 3ABA moiety resides in the duplex minor groove pointing toward the 5′-end of the modified strand. Thermodynamic studies show that the dG(N2)-3ABA lesion has a stabilizing effect on the damaged duplex, a fact that correlates well with the long persistence of this damage in living organisms.
Collapse
Affiliation(s)
- Mark Lukin
- Department of Pharmacological Sciences, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | | | | | | |
Collapse
|
19
|
Stone MP, Huang H, Brown KL, Shanmugam G. Chemistry and structural biology of DNA damage and biological consequences. Chem Biodivers 2011; 8:1571-615. [PMID: 21922653 PMCID: PMC3714022 DOI: 10.1002/cbdv.201100033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The formation of adducts by the reaction of chemicals with DNA is a critical step for the initiation of carcinogenesis. The structural analysis of various DNA adducts reveals that conformational and chemical rearrangements and interconversions are a common theme. Conformational changes are modulated both by the nature of adduct and the base sequences neighboring the lesion sites. Equilibria between conformational states may modulate both DNA repair and error-prone replication past these adducts. Likewise, chemical rearrangements of initially formed DNA adducts are also modulated both by the nature of adducts and the base sequences neighboring the lesion sites. In this review, we focus on DNA damage caused by a number of environmental and endogenous agents, and biological consequences.
Collapse
Affiliation(s)
- Michael P Stone
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | |
Collapse
|
20
|
Guza R, Kotandeniya D, Murphy K, Dissanayake T, Lin C, Giambasu GM, Lad RR, Wojciechowski F, Amin S, Sturla SJ, Hudson RH, York DM, Jankowiak R, Jones R, Tretyakova NY. Influence of C-5 substituted cytosine and related nucleoside analogs on the formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA. Nucleic Acids Res 2011; 39:3988-4006. [PMID: 21245046 PMCID: PMC3089471 DOI: 10.1093/nar/gkq1341] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/13/2023] Open
Abstract
Endogenous 5-methylcytosine ((Me)C) residues are found at all CG dinucleotides of the p53 tumor suppressor gene, including the mutational 'hotspots' for smoking induced lung cancer. (Me)C enhances the reactivity of its base paired guanine towards carcinogenic diolepoxide metabolites of polycyclic aromatic hydrocarbons (PAH) present in cigarette smoke. In the present study, the structural basis for these effects was investigated using a series of unnatural nucleoside analogs and a representative PAH diolepoxide, benzo[a]pyrene diolepoxide (BPDE). Synthetic DNA duplexes derived from a frequently mutated region of the p53 gene (5'-CCCGGCACCC GC[(15)N(3),(13)C(1)-G]TCCGCG-3', + strand) were prepared containing [(15)N(3), (13)C(1)]-guanine opposite unsubstituted cytosine, (Me)C, abasic site, or unnatural nucleobase analogs. Following BPDE treatment and hydrolysis of the modified DNA to 2'-deoxynucleosides, N(2)-BPDE-dG adducts formed at the [(15)N(3), (13)C(1)]-labeled guanine and elsewhere in the sequence were quantified by mass spectrometry. We found that C-5 alkylcytosines and related structural analogs specifically enhance the reactivity of the base paired guanine towards BPDE and modify the diastereomeric composition of N(2)-BPDE-dG adducts. Fluorescence and molecular docking studies revealed that 5-alkylcytosines and unnatural nucleobase analogs with extended aromatic systems facilitate the formation of intercalative BPDE-DNA complexes, placing BPDE in a favorable orientation for nucleophilic attack by the N(2) position of guanine.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/analogs & derivatives
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry
- Base Pairing
- Chromatography, High Pressure Liquid
- Cytosine/analogs & derivatives
- DNA Adducts/chemistry
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/chemistry
- Genes, p53
- Guanine/chemistry
- Isotope Labeling
- Models, Molecular
- Oligodeoxyribonucleotides/chemical synthesis
- Oligodeoxyribonucleotides/chemistry
- Spectrometry, Fluorescence
- Spectrometry, Mass, Electrospray Ionization
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Rebecca Guza
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Delshanee Kotandeniya
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kristopher Murphy
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Thakshila Dissanayake
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Chen Lin
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - George Madalin Giambasu
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Rahul R. Lad
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Filip Wojciechowski
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shantu Amin
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shana J. Sturla
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Robert H.E. Hudson
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M. York
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ryszard Jankowiak
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Roger Jones
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Lukashevich OV, Baskunov VB, Darii MV, Kolbanovskiy A, Baykov AA, Gromova ES. Dnmt3a-CD is less susceptible to bulky benzo[a]pyrene diol epoxide-derived DNA lesions than prokaryotic DNA methyltransferases. Biochemistry 2011; 50:875-81. [PMID: 21174446 DOI: 10.1021/bi101717b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Benzo[a]pyrene (B[a]P) is a well-characterized environmental polycyclic aromatic hydrocarbon pollutant. In living organisms, B[a]P is metabolized to the genotoxic anti-benzo[a]pyrene diol epoxide that reacts with cellular DNA to form stereoisomeric anti-B[a]PDE-N(2)-dG adducts. In this study, we explored the effects of adduct stereochemistry and position in double-stranded DNA substrates on the functional characteristics of the catalytic domain of murine de novo DNA methyltransferase Dnmt3a (Dnmt3a-CD). A number of 18-mer duplexes containing site-specifically incorporated (+)- and (-)-trans-anti-B[a]PDE-N(2)-dG lesions located 3'- and 5'-adjacent to and opposite the target cytosine residue were prepared. Dnmt3a-CD binds cooperatively to the DNA duplexes with an up to 5-fold greater affinity compared to that for the undamaged DNA duplexes. Methylation assays showed a 1.7-6.3-fold decrease in the methylation reaction rates for the damaged duplexes. B[a]PDE modifications stimulated a nonproductive binding and markedly favored substrate inhibition of Dnmt3a-CD in a manner independent of DNA methylation status. The latter effect was sensitive to the position and stereochemistry of the B[a]PDE-N(2)-dG adducts. The overall effect of trans-anti-B[a]PDE-N(2)-dG adducts on Dnmt3a-CD was less detrimental than in the case of the prokaryotic methyltransferases we previously investigated.
Collapse
|
22
|
Abstract
Five human RecQ helicases (WRN, BLM, RECQ4, RECQ5, RECQ1) exist in humans. Of these, three are genetically linked to diseases of premature aging and/or cancer. Neither RECQ1 nor RECQ5 has yet been implicated in a human disease. However, cellular studies and genetic analyses of model organisms indicate that RECQ1 (and RECQ5) play an important role in the maintenance of genomic stability. Biochemical studies of purified RECQ1 protein demonstrate that the enzyme catalyzes DNA unwinding and strand annealing, and these activities are likely to be important for its role in DNA repair. RECQ1 also physically and functionally interacts with proteins involved in genetic recombination. In this review, we will summarize our current knowledge of RECQ1 roles in cellular nucleic acid metabolism and propose avenues of investigation for future studies.
Collapse
|
23
|
Wang Y, Schnetz-Boutaud NC, Kroth H, Yagi H, Sayer JM, Kumar S, Jerina DM, Stone MP. 3'-Intercalation of a N2-dG 1R-trans-anti-benzo[c]phenanthrene DNA adduct in an iterated (CG)3 repeat. Chem Res Toxicol 2008; 21:1348-58. [PMID: 18549249 PMCID: PMC2755548 DOI: 10.1021/tx7004103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformation of the 1 R,2 S,3 R,4 S-benzo[ c]phenanthrene- N (2)-dG adduct, arising from trans opening of the (+)-1 S,2 R,3 R,4 S- anti-benzo[ c]phenanthrene diol epoxide, was examined in 5'- d(ATCGC XCGGCATG)-3'.5'-d(CATGCCG CGCGAT)-3', where X = 1 R,2 S,3 R,4 S-B[ c]P- N (2)-dG. This duplex, derived from the hisD3052 frameshift tester strain of Salmonella typhimurium, contains a (CG) 3 iterated repeat, a hotspot for frameshift mutagenesis. NMR experiments showed a disconnection in sequential NOE connectivity between X (4) and C (5), and in the complementary strand, they showed another disconnection between G (18) and C (19). In the imino region of the (1)H NMR spectrum, a resonance was observed at the adducted base pair X (4) x C (19). The X (4) N1H and G (18) N1H resonances shifted upfield as compared to the other guanine imino proton resonances. NOEs were observed between X (4) N1H and C (19) N (4)H and between C (5) N (4)H and G (18) N1H, indicating that base pairs X (4) x C (19) and C (5) x G (18) maintained Watson-Crick hydrogen bonding. No NOE connectivity was observed between X (4) and G (18) in the imino region of the spectrum. Chemical shift perturbations of greater than 0.1 ppm were localized at nucleotides X (4) and C (5) in the modified strand and G (18) and C (19) in the complementary strand. A total of 13 NOEs between the protons of the 1 R-B[ c]Ph moiety and the DNA were observed between B[ c]Ph and major groove aromatic or amine protons at base pairs X (4) x C (19) and 3'-neighbor C (5) x G (18). Structural refinement was achieved using molecular dynamics calculations restrained by interproton distances and torsion angle restraints obtained from NMR data. The B[ c]Ph moiety intercalated on the 3'-face of the X (4) x C (19) base pair such that the terminal ring of 1 R-B[ c]Ph threaded the duplex and faced into the major groove. The torsion angle alpha' [X (4)]-N3-C2-N2-B[ c]Ph]-C1 was calculated to be -177 degrees, maintaining an orientation in which the X (4) exocyclic amine remained in plane with the purine. The torsion angle beta' [X (4)]-C2-N2-[B[ c]Ph]-C1-C2 was calculated to be 75 degrees. This value governed the 3'-orientation of the B[ c]Ph moiety with respect to X (4). The helical rise between base pairs X (4) x C (19) and C (5) x G (18) increased and resulted in unwinding of the right-handed helix. The aromatic rings of the B[ c]Ph moiety were below the Watson-Crick hydrogen-bonding face of the modified base pair X (4) x C (19). The B[c]Ph moiety was stacked above nucleotide G (18), in the complementary strand.
Collapse
Affiliation(s)
- Yazhen Wang
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Nathalie C. Schnetz-Boutaud
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Heiko Kroth
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892
| | - Haruhiko Yagi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892
| | - Jane M. Sayer
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892
| | - Subodh Kumar
- Environmental Toxicology and Chemistry Laboratory, Great Lakes Center, State University of New York College at Buffalo, Buffalo, New York 14222
| | - Donald M. Jerina
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892
| | - Michael P. Stone
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
24
|
Douki T, Ksoury Z, Marie C, Favier A, Ravanat JL, Maitre A. Genotoxicity of combined exposure to polycyclic aromatic hydrocarbons and UVA--a mechanistic study. Photochem Photobiol 2008; 84:1133-40. [PMID: 18466204 DOI: 10.1111/j.1751-1097.2008.00361.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Solar UV radiation and benzo[a]pyrene (BaP) are two carcinogenic agents. When combined, their deleterious properties are synergistic. In order to get insights into the underlying processes, we carried out a mechanistic study within isolated DNA photosensitized to UVA radiation by either BaP, its diol epoxide metabolite (BPDE) or the tetraol arising from the hydrolysis of this last molecule. Measurement of the level of the oxidized base 8-oxo-7,8-dihydroguanine revealed that BaP is a poor sensitizer while BPDE and tetraol are more potent ones. None of these compounds was found to photosensitize formation of cyclobutane pyrimidine dimers through triplet energy transfer. On the basis of the distribution of oxidized DNA bases, we could show that photosensitization of DNA by BPDE involves electron abstraction (Type I) while tetraol acts mainly through singlet oxygen production (Type II). Under our experimental conditions, Type I was the major photosensitization process, which shows the lack of involvement of tetraol in the observed photo-oxidation reaction. Finally, we could show that the adducts, resulting from the alkylation of DNA by BPDE, are very potent sensitizers. Indeed, they are located in the close vicinity of the double helix and thus perfectly placed to induce oxidation reactions.
Collapse
Affiliation(s)
- Thierry Douki
- Laboratoire "Lésions des Acides Nucléiques," Service de Chimie Inorganique et Biologique UMR-E 3 CEA-UJF, CEA/DSM/INaC, CEA-Grenoble, Grenoble, France.
| | | | | | | | | | | |
Collapse
|
25
|
Min JH, Pavletich NP. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 2007; 449:570-5. [PMID: 17882165 DOI: 10.1038/nature06155] [Citation(s) in RCA: 309] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 08/07/2007] [Indexed: 01/03/2023]
Abstract
Mutations in the nucleotide excision repair (NER) pathway can cause the xeroderma pigmentosum skin cancer predisposition syndrome. NER lesions are limited to one DNA strand, but otherwise they are chemically and structurally diverse, being caused by a wide variety of genotoxic chemicals and ultraviolet radiation. The xeroderma pigmentosum C (XPC) protein has a central role in initiating global-genome NER by recognizing the lesion and recruiting downstream factors. Here we present the crystal structure of the yeast XPC orthologue Rad4 bound to DNA containing a cyclobutane pyrimidine dimer (CPD) lesion. The structure shows that Rad4 inserts a beta-hairpin through the DNA duplex, causing the two damaged base pairs to flip out of the double helix. The expelled nucleotides of the undamaged strand are recognized by Rad4, whereas the two CPD-linked nucleotides become disordered. These findings indicate that the lesions recognized by Rad4/XPC thermodynamically destabilize the Watson-Crick double helix in a manner that facilitates the flipping-out of two base pairs.
Collapse
Affiliation(s)
- Jung-Hyun Min
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
26
|
Mocquet V, Kropachev K, Kolbanovskiy M, Kolbanovskiy A, Tapias A, Cai Y, Broyde S, Geacintov NE, Egly JM. The human DNA repair factor XPC-HR23B distinguishes stereoisomeric benzo[a]pyrenyl-DNA lesions. EMBO J 2007; 26:2923-32. [PMID: 17525733 PMCID: PMC1894768 DOI: 10.1038/sj.emboj.7601730] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 04/30/2007] [Indexed: 12/27/2022] Open
Abstract
Benzo[a]pyrene (B[a]P), a known environmental pollutant and tobacco smoke carcinogen, is metabolically activated to highly tumorigenic B[a]P diol epoxide derivatives that predominantly form N(2)-guanine adducts in cellular DNA. Although nucleotide excision repair (NER) is an important cellular defense mechanism, the molecular basis of recognition of these bulky lesions is poorly understood. In order to investigate the effects of DNA adduct structure on NER, three stereoisomeric and conformationally different B[a]P-N(2)-dG lesions were site specifically incorporated into identical 135-mer duplexes and their response to purified NER factors was investigated. Using a permanganate footprinting assay, the NER lesion recognition factor XPC/HR23B exhibits, in each case, remarkably different patterns of helix opening that is also markedly distinct in the case of an intra-strand crosslinked cisplatin adduct. The different extents of helix distortions, as well as differences in the overall binding of XPC/HR23B to double-stranded DNA containing either of the three stereoisomeric B[a]P-N(2)-dG lesions, are correlated with dual incisions catalyzed by a reconstituted incision system of six purified NER factors, and by the full NER apparatus in cell-free nuclear extracts.
Collapse
Affiliation(s)
- Vincent Mocquet
- Chemistry Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | | | | | | | - Angels Tapias
- Chemistry Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | - Yuqin Cai
- Chemistry Department, New York University, New York, NY, USA
| | - Suse Broyde
- Biology Department, New York University, New York, NY, USA
| | - Nicholas E Geacintov
- Chemistry Department, New York University, New York, NY, USA
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA. Tel.: +1 212 998 8407; Fax: +1 212 998 8421; E-mail:
| | - Jean-Marc Egly
- Chemistry Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA. Tel.: +1 212 998 8407; Fax: +1 212 998 8421; E-mail:
| |
Collapse
|
27
|
Rodríguez FA, Cai Y, Lin C, Tang Y, Kolbanovskiy A, Amin S, Patel DJ, Broyde S, Geacintov NE. Exocyclic amino groups of flanking guanines govern sequence-dependent adduct conformations and local structural distortions for minor groove-aligned benzo[a]pyrenyl-guanine lesions in a GG mutation hotspot context. Nucleic Acids Res 2007; 35:1555-68. [PMID: 17287290 PMCID: PMC1865068 DOI: 10.1093/nar/gkm022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The environmental carcinogen benzo[a]pyrene (BP) is metabolized to reactive diol epoxides that bind to cellular DNA by predominantly forming N2-guanine adducts (G*). Mutation hotspots for these adducts are frequently found in 5′- ··· GG ··· dinucleotide sequences, but their origins are poorly understood. Here we used high resolution NMR and molecular dynamics simulations to investigate differences in G* adduct conformations in 5′- ··· CG*GC ··· and 5′- ··· CGG* C··· sequence contexts in otherwise identical 12-mer duplexes. The BP rings are positioned 5′ along the modified strand in the minor groove in both cases. However, subtle orientational differences cause strong distinctions in structural distortions of the DNA duplexes, because the exocyclic amino groups of flanking guanines on both strands compete for space with the BP rings in the minor groove, acting as guideposts for placement of the BP. In the 5′- ··· CGG* C ··· case, the 5′-flanking G · C base pair is severely untwisted, concomitant with a bend deduced from electrophoretic mobility. In the 5′- ··· CG*GC ··· context, there is no untwisting, but there is significant destabilization of the 5′-flanking Watson–Crick base pair. The minor groove width opens near the lesion in both cases, but more for 5′- ··· CGG*C···. Differential sequence-dependent removal rates of this lesion result and may contribute to the mutation hotspot phenomenon.
Collapse
Affiliation(s)
- Fabián A. Rodríguez
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yuqin Cai
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Chin Lin
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yijin Tang
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Alexander Kolbanovskiy
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Shantu Amin
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Dinshaw J. Patel
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Suse Broyde
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nicholas E. Geacintov
- Department of Chemistry and Biology, New York University, New York, NY, USA, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA and Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- *To whom correspondence should be addressed. +1 212 998 8407+1 212 998 8421
| |
Collapse
|
28
|
Chandani S, Loechler EL. Molecular modeling benzo[a]pyrene N2-dG adducts in the two overlapping active sites of the Y-family DNA polymerase Dpo4. J Mol Graph Model 2007; 25:658-70. [PMID: 16782374 DOI: 10.1016/j.jmgm.2006.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/03/2006] [Accepted: 05/03/2006] [Indexed: 11/18/2022]
Abstract
The potent, ubiquitous environmental mutagen/carcinogen benzo[a]pyrene (B[a]P) induces a single major adduct [+ta]-B[a]P-N2-dG, whose bypass in most cases results in either no mutation (dCTP insertion) or a G-->T mutation (dATP insertion). Translesion synthesis (TLS) of [+ta]-B[a]P-N2-dG generally requires DNA polymerases (DNAPs) in the Y-family, which exist in cells to bypass DNA damage caused by chemicals and radiation. A molecular dynamics (MD) study is described with dCTP opposite [+ta]-B[a]P-N2-dG in Dpo4, which is the best studied Y-family DNAP from a structural point of view. Two orientations of B[a]P-N2-dG (BPmi5 and BPmi3) are considered, along with two orientations of the dCTP (AS1 and AS2), as outlined next. Based on NMR studies, the pyrene moiety of B[a]P-N2-dG is in the minor groove, when paired with dC, and can point toward either the base on the 5'-side (BPmi5) or the 3'-side (BPmi3). Based on published X-ray structures, Dpo4 appears to have two partially overlapping active sites. The architecture of active site 1 (AS1) is similar to all other families of DNAPs (e.g., the shape of the dNTP). Active site 2 (AS2), however, is non-canonical (e.g., the beta- and gamma-phosphates in AS2 are approximately where the alpha- and beta-phosphates are in AS1). In the Dpo4 models generated herein, using the BPmi3 orientation the pyrene moiety of [+ta]-B[a]P-N2-dG points toward the duplex region of the DNA, and is accommodated without distortions in AS1, but with distortions in AS2. Considering the BPmi5 orientation, the pyrene moiety points toward the ss-region of DNA in Dpo4, and sits in a hole defined by the fingers and little fingers domain ("chimney"); BPmi5 is accommodated in AS2 without significant distortions, but poorly in AS1. In summary, when dCTP is paired with [+ta]-B[a]P-N2-dG in the two overlapping active sites in Dpo4, the pyrene in the BPmi3 orientation is accommodated better in active site 1 (AS1), while the pyrene in the BPmi5 orientation is accommodated better in AS2. Finally, we discuss why Y-family DNAPs might have two catalytic active sites.
Collapse
Affiliation(s)
- Sushil Chandani
- Biology Department, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
29
|
Zaliznyak T, Bonala R, Johnson F, de Los Santos C. Structure and stability of duplex DNA containing the 3-(deoxyguanosin-N2-yl)-2-acetylaminofluorene (dG(N2)-AAF) lesion: a bulky adduct that persists in cellular DNA. Chem Res Toxicol 2006; 19:745-52. [PMID: 16780352 DOI: 10.1021/tx060002i] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The carcinogenic environmental pollutant 2-nitrofluorene produces several DNA adducts including the minor 3-(deoxyguanosin-N(2)-yl)-2-acetylaminofluorene (dG(N(2))-AAF) lesion, which persists for long times in rat tissue DNA after discontinuation of carcinogen administration. Here, we present the solution structure of a dG(N(2))-AAF duplex as determined by NMR spectroscopy and restrained molecular dynamics. The data establish a regular right-handed conformation with Watson-Crick base pair alignments throughout the duplex. The AAF moiety resides in the minor grove of the helix with its long axis directed toward the 5'-end of the modified strand. Restrained molecular dynamics shows that the duplex structure adjusts to the AAF lesion, reducing its exposure to water molecules. Analysis of UV melting profiles shows that the presence of dG(N(2))-AAF increases the thermal and thermodynamic stability of duplex DNA, an effect that is driven by a favorable entropy. The structure and stability of the dG(N(2))-AAF duplex have important implications in understanding the recognition of bulky lesions by the DNA repair system.
Collapse
Affiliation(s)
- Tanya Zaliznyak
- Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794-8651, USA
| | | | | | | |
Collapse
|
30
|
Wang B, Sayer JM, Yagi H, Frank H, Seidel A, Jerina DM. Facile Interstrand Migration of the Hydrocarbon Moiety of a Dibenzo[a,l]pyrene 11,12-Diol 13,14-Epoxide Adduct atN 2of Deoxyguanosine in a Duplex Oligonucleotide. J Am Chem Soc 2006; 128:10079-84. [PMID: 16881636 DOI: 10.1021/ja0608038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When a synthesized deoxyribonucleotide duplex, 5'-CCATCGCTACC-3'.5'-GGTAGCGATGG-3', containing a trans 14R dibenzo[a,l]pyrene (DB[a,l]P) adduct, corresponding to trans opening of the (+)-(11S,12R)-diol (13R,14S)-epoxide by N (2) of the central G residue, was allowed to stand for 2-6 days at ambient temperature in neutral aqueous solution, three new products were observed on denaturing HPLC. One of these corresponded to loss of the DB[a,l]P moiety from the original adducted strand to give an 11-mer with an unmodified central dG. The other two products resulted from a highly unexpected migration of the hydrocarbon moiety to either dG5 or dG7 of the complementary strand, 5'-GGTAG5CG7ATGG-3'. Enzymatic hydrolysis of the two 11-mer migration products followed by CD spectroscopy of the isolated adducted nucleosides indicated that, in both cases, the hydrocarbon moiety had undergone configurational inversion at C14 to give the cis 14S DB[a,l]P dG adduct. MS/MS and partial enzymatic hydrolysis showed that the major 11-mer had the hydrocarbon at dG7. Two 11-mer oligonucleotides were synthesized with a single cis 14S DB[a,l]P dG adduct either at G7 or at G5 and were found to be chromatographically identical to the major and minor migration products, respectively. Although HPLC evidence suggested that a small extent of hydrocarbon migration from the trans 14S DB[a,l]P dG diastereomer also occurred, the very small amount of presumed migration products from this isomer precluded their detailed characterization. This interstrand migration appears unique to DB[a,l]P adducts and has not been observed for their fjord-region benzo[c]phenanthrene or bay-region benzo[a]pyrene analogues.
Collapse
Affiliation(s)
- Ben Wang
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, DHHS, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
31
|
Chandani S, Lee CH, Loechler EL. Free-energy perturbation methods to study structure and energetics of DNA adducts: results for the major N2-dG adduct of benzo[a]pyrene in two conformations and different sequence contexts. Chem Res Toxicol 2006; 18:1108-23. [PMID: 16022503 DOI: 10.1021/tx049646l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potent mutagen/carcinogen benzo[a]pyrene (B[a]P) is activated to (+)-anti-B[a]PDE, which induces a variety of mutations (e.g., G --> T, G --> A, etc.) via its major adduct [+ta]-B[a]P-N2-dG. One hypothesis is that adducts (such as [+ta]-B[a]P-N2-dG) induce different mutations via different conformations, probably when replicated by different lesion-bypass DNA polymerases (DNAPs). We showed that Escherichia coli DNAP V was responsible for G --> T mutations with [+ta]-B[a]P-N2-dG in a 5'-TGT sequence (Yin et al., (2004) DNA Repair 3, 323), so we wish to study conformations of this adduct/sequence context by molecular modeling. The development of a CHARMM-based molecular dynamics (MD) simulations protocol with free-energy calculations in the presence of solvent and counterions is described. A representative base-pairing and base-displaced conformation of [+ta]-B[a]P-N2-dG in the 5'-TGT sequence are used: (1) BPmi5, which has the B[a]P moiety in the minor groove pointing toward the base on the 5'-side of the adduct, and (2) Gma5, which has the B[a]P moiety stacked with the surrounding base pairs and the dG moiety displaced into the major groove. The MD output structures are reasonable when compared to known NMR structures. Changes in DNA sequence context dramatically affect the biological consequences (e.g., mutagenesis) of [+ta]-B[a]P-N2-dG. Consequently, we also developed a MD-based free-energy perturbation (FEP) protocol to study DNA sequence changes. FEP involves the gradual "fading-out" of atoms in a starting structure (A) and "fading-in" of atoms in a final structure (B), which allows a realistic assessment of the energetic and structural changes when two structures A and B are closely related. Two DNA sequence changes are described: (1) 5'-TGT --> 5'-TGG, which involves two steps [T:A --> T:C --> G:C], and (2) 5'-TGT --> 5'-TGC, which involves three steps [T:A --> T:2AP --> C:2AP --> C:G], where 2AP (2-aminopurine) is included, because T:2AP and C:2AP retain more-or-less normal pairing orientations between complementary bases. FEP is also used to evaluate the impact that a 5'-TGT to 5'-UGT sequence change might have on mutagenesis with [+ta]-B[a]P-N2-dG. In summary, we developed (1) a CHARMM-based molecular dynamics (MD) simulations protocol with free-energy calculations in the presence of solvent and counterions to study B[a]P-N2-dG adducts in DNA duplexes, and (2) a MD-based free-energy perturbation (FEP) protocol to study DNA sequence context changes around B[a]P-N2-dG adducts.
Collapse
Affiliation(s)
- Sushil Chandani
- Biology Department, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
32
|
Gillet LCJ, Schärer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 2006; 106:253-76. [PMID: 16464005 DOI: 10.1021/cr040483f] [Citation(s) in RCA: 466] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ludovic C J Gillet
- Institute for Molecular Cancer Research, University of Zürich, Switzerland
| | | |
Collapse
|
33
|
Affiliation(s)
- Mark Lukin
- Department of Pharmacological Sciences, State University of New York at Stony Brook, School of Medicine, 11794-8651, USA
| | | |
Collapse
|
34
|
Seo KY, Nagalingam A, Miri S, Yin J, Chandani S, Kolbanovskiy A, Shastry A, Loechler EL. Mirror image stereoisomers of the major benzo[a]pyrene N2-dG adduct are bypassed by different lesion-bypass DNA polymerases in E. coli. DNA Repair (Amst) 2006; 5:515-22. [PMID: 16483853 DOI: 10.1016/j.dnarep.2005.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/05/2005] [Accepted: 12/14/2005] [Indexed: 11/25/2022]
Abstract
The potent mutagen/carcinogen benzo[a]pyrene (B[a]P) is metabolically activated to (+)-anti-B[a]PDE, which induces a full spectrum of mutations (e.g., G-to-T, G-to-A, -1 frameshifts, etc.) via its major adduct [+ta]-B[a]P-N2-dG. We recently showed that the dominant G-to-T mutation depends on DNA polymerase V (DNAP V), but not DNAPs IV or II, when studied in a 5'-TG sequence in E. coli. Herein we investigate what DNAPs are responsible for non-mutagenic bypass with [+ta]-B[a]P-N2-dG, along with its mirror image adduct [-ta]-B[a]P-N2-dG. Each adduct is built into a 5'-TG sequence in a single stranded M13 phage vector, which is then transformed into eight different E. coli strains containing all combinations of proficiency and deficiency in the three lesion-bypass DNAPs II, IV and V. Based on M13 progeny output, non-mutagenic bypass with [-ta]-B[a]P-N2-dG depends on DNAP IV. In contrast, non-mutagenic bypass with [+ta]-B[a]P-N2-dG depends on both DNAPs IV and V, where arguments suggest that DNAP IV is involved in dCTP insertion, while DNAP V is involved in extension of the adduct-G:C base pair. Numerous findings indicate that DNAP II has a slight inhibitory effect on the bypass of [+ta]- and [-ta]-B[a]P-N2-dG in the case of both DNAPs IV and V. In conclusion, for efficient non-mutagenic bypass (dCTP insertion) in E. coli, [+ta]-B[a]P-N2-dG requires DNAPs IV and V, [-ta]-B[a]P-N2-dG requires only DNAP IV, while DNAP II is inhibitory to both, and experiments to investigate these differences should provide insights into the mechanism and purpose of these lesion-bypass DNAPs.
Collapse
Affiliation(s)
- Kwang Young Seo
- Biology Department, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhao B, Wang J, Geacintov NE, Wang Z. Poleta, Polzeta and Rev1 together are required for G to T transversion mutations induced by the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells. Nucleic Acids Res 2006; 34:417-25. [PMID: 16415180 PMCID: PMC1331986 DOI: 10.1093/nar/gkj446] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Benzo[a]pyrene is an important environmental mutagen and carcinogen. Its metabolism in cells yields the mutagenic, key ultimate carcinogen 7R,8S,9S,10R-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, (+)-anti-BPDE, which reacts via its 10-position with N2-dG in DNA to form the adduct (+)-trans-anti-BPDE-N2-dG. To gain molecular insights into BPDE-induced mutagenesis, we examined in vivo translesion synthesis and mutagenesis in yeast cells of a site-specific 10S (+)-trans-anti-BPDE-N2-dG adduct and the stereoisomeric 10R (−)-trans-anti-BPDE-N2-dG adduct. In wild-type cells, bypass products consisted of 76% C, 14% A and 7% G insertions opposite (+)-trans-anti-BPDE-N2-dG; and 89% C, 4% A and 4% G insertions opposite (−)-trans-anti-BPDE-N2-dG. Translesion synthesis was reduced by ∼26–37% in rad30 mutant cells lacking Polη, but more deficient in rev1 and almost totally deficient in rev3 (lacking Polζ) mutants. C insertion opposite the lesion was reduced by ∼24–33% in rad30 mutant cells, further reduced in rev1 mutant, and mostly disappeared in the rev3 mutant strain. The insertion of A was largely abolished in cells lacking either Polη, Polζ or Rev1. The insertion of G was not detected in either rev1 or rev3 mutant cells. The rad30 rev3 double mutant exhibited a similar phenotype as the single rev3 mutant with respect to translesion synthesis and mutagenesis. These results show that while the Polζ pathway is generally required for translesion synthesis and mutagenesis of the (+)- and (−)-trans-anti-BPDE-N2-dG DNA adducts, Polη, Polζ and Rev1 together are required for G→T transversion mutations, a major type of mutagenesis induced by these lesions. Based on biochemical and genetic results, we present mechanistic models of translesion synthesis of these two DNA adducts, involving both the one-polymerase one-step and two-polymerase two-step models.
Collapse
Affiliation(s)
| | | | | | - Zhigang Wang
- To whom correspondence should be addressed. Tel: +1 859 323 5784; Fax: +1 859 323 1059;
| |
Collapse
|
36
|
Choudhary S, Doherty KM, Handy CJ, Sayer JM, Yagi H, Jerina DM, Brosh RM. Inhibition of Werner syndrome helicase activity by benzo[a]pyrene diol epoxide adducts can be overcome by replication protein A. J Biol Chem 2005; 281:6000-9. [PMID: 16380375 DOI: 10.1074/jbc.m510122200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RecQ helicases are believed to function in repairing replication forks stalled by DNA damage and may also play a role in the intra-S-phase checkpoint, which delays the replication of damaged DNA, thus permitting repair to occur. Since little is known regarding the effects of DNA damage on RecQ helicases, and because the replication and recombination defects in Werner syndrome cells may reflect abnormal processing of damaged DNA associated with the replication fork, we examined the effects of specific bulky, covalent adducts at N(6) of deoxyadenosine (dA) or N(2) of deoxyguanosine (dG) on Werner (WRN) syndrome helicase activity. The adducts are derived from the optically active 7,8-diol 9,10-epoxide (DE) metabolites of the carcinogen benzo[a]pyrene (BaP). The results demonstrate that WRN helicase activity is inhibited in a strand-specific manner by BaP DE-dG adducts only when on the translocating strand. These adducts either occupy the minor groove without significant perturbation of DNA structure (trans adducts) or cause base displacement at the adduct site (cis adducts). In contrast, helicase activity is only mildly affected by intercalating BaP DE-dA adducts that locally perturb DNA double helical structure. This differs from our previous observation that intercalating dA adducts derived from benzo[c]phenanthrene (BcPh) DEs inhibit WRN activity in a strand- and stereospecific manner. Partial unwinding of the DNA helix at BaP DE-dA adduct sites may make such adducted DNAs more susceptible to the action of helicase than DNA containing the corresponding BcPh DE-dA adducts, which cause little or no destabilization of duplex DNA. The single-stranded DNA binding protein RPA, an auxiliary factor for WRN helicase, enabled the DNA unwinding enzyme to overcome inhibition by either the trans-R or cis-R BaP DE-dG adduct, suggesting that WRN and RPA may function together to unwind duplex DNA harboring specific covalent adducts that otherwise block WRN helicase acting alone.
Collapse
Affiliation(s)
- Saba Choudhary
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health/DHHS, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Seo KY, Nagalingam A, Tiffany M, Loechler EL. Mutagenesis studies with four stereoisomeric N2-dG benzo[a]pyrene adducts in the identical 5′-CGC sequence used in NMR studies: G→T mutations dominate in each case. Mutagenesis 2005; 20:441-8. [PMID: 16311255 DOI: 10.1093/mutage/gei061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon (PAH) and a potent mutagen/carcinogen found ubiquitously in the environment. B[a]P is primarily metabolized to diol epoxides, which react principally at N2-dG in DNA. B[a]P-N2-dG adducts have been shown to induce a variety of mutations, notably G-->T, G-->A, G-->C and -1 frameshifts. Four stereoisomers of B[a]P-N2-dG (designated: [+ta]-;, [+ca]-, [-ta] and [-ca]) were studied by NMR in duplex 11mers in a 5'-CGC sequence context, and each adopted a different adduct conformation (Geacintov, et al. (1997) Chem. Res. Toxicol., 10, 111). Herein these four identical B[a]P-containing 11mers are built into duplex plasmid genomes and mutagenesis studied in Escherichia coli following SOS-induction. In nucleotide excision repair (NER) proficient E.coli, no adduct-derived mutants are detected. In NER deficient E.coli, G-->T mutations dominate for all four stereoisomers [+ta]-, [+ca]-, [-ta] and [-ca]-B[a]P-N(2)-dG, and mutation frequency is similar. Thus, the mutagenic pattern for these four B[a]P-N2-dG stereoisomers is the same, in spite of the fact that they adopt dramatically different conformations in ds-oligonucleotides as determined by NMR. These findings suggest that adduct conformation must be fluid enough in the 5'-CGC sequence that the duplex DNA conformation can interconvert to mutagenic and non-mutagenic conformations during lesion-bypass. A comparison of all published studies with these four B[a]P-N2-dG stereoisomers in E.coli reveals that B[a]P-N2-dG adduct stereochemistry tends to have a lesser impact on mutagenic pattern (e.g. G-->T versus G-->A mutations) than does DNA sequence context, which is discussed.
Collapse
Affiliation(s)
- Kwang-Young Seo
- Biology Department, Boston University, 24 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
38
|
Scicchitano DA. Transcription past DNA adducts derived from polycyclic aromatic hydrocarbons. Mutat Res 2005; 577:146-54. [PMID: 15922365 DOI: 10.1016/j.mrfmmm.2005.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 12/20/2022]
Abstract
The ability of a DNA lesion to block transcription is a function of many variables: (1) the ability of the RNA polymerase active site to accommodate the damaged base; (2) the size and shape of the adduct, which includes the specific modified base; (3) the stereochemistry of the adduct; (4) the base incorporated into the growing transcript; (5) and the local DNA sequence. Each of these parameters, either alone or in combination, can influence how a particular lesion in the genome will affect transcription elongation, resulting in potential clearance of the lesion via transcription-coupled DNA repair or in the formation of truncated or full-length transcripts that might encode defective proteins.
Collapse
Affiliation(s)
- David A Scicchitano
- Department of Biology, 1009 Silver Center, 100 Washington Square East, New York University, New York, NY 10003, USA.
| |
Collapse
|
39
|
Zhang N, Lin C, Huang X, Kolbanovskiy A, Hingerty BE, Amin S, Broyde S, Geacintov NE, Patel DJ. Methylation of cytosine at C5 in a CpG sequence context causes a conformational switch of a benzo[a]pyrene diol epoxide-N2-guanine adduct in DNA from a minor groove alignment to intercalation with base displacement. J Mol Biol 2004; 346:951-65. [PMID: 15701509 PMCID: PMC4694590 DOI: 10.1016/j.jmb.2004.12.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 12/09/2004] [Accepted: 12/14/2004] [Indexed: 12/20/2022]
Abstract
It is well known that CpG dinucleotide steps in DNA, which are highly methylated at the 5-position of cytosine (meC) in human tissues, exhibit a disproportionate number of mutations within certain codons of the p53 gene. There is ample published evidence indicating that the reactivity of guanine with anti-B[a]PDE (a metabolite of the environmental carcinogen benzo[a]pyrene) at CpG mutation hot spots is enhanced by the methylation of the cytosine residue flanking the target guanine residue on the 5'-side. In this work we demonstrate that such a methylation can also dramatically affect the conformational characteristics of an adduct derived from the reaction of one of the two enantiomers of anti-B[a]PDE with the exocyclic amino group of guanine ([BP]G adduct). A detailed NMR study indicates that the 10R (-)-trans-anti-[BP]G adduct undergoes a transition from a minor groove-binding alignment of the aromatic BP ring system in the unmethylated C-[BP]G sequence context, to an intercalative BP alignment with a concomitant displacement of the modified guanine residue into the minor groove in the methylated meC-[BP]G sequence context. By contrast, a minor groove-binding alignment was observed for the stereoisomeric 10S (+)-trans-anti-[BP]G adduct in both the C-[BP]G and meC-[BP]G sequence contexts. This remarkable conformational switch resulting from the presence of a single methyl group at the 5-position of the cytosine residue flanking the lesion on the 5'-side, is attributed to the hydrophobic effect of the methyl group that can stabilize intercalated adduct conformations in an adduct stereochemistry-dependent manner. Such conformational differences in methylated and unmethylated CpG sequences may be significant because of potential alterations in the cellular processing of the [BP]G adducts by DNA transcription, replication, and repair enzymes.
Collapse
Affiliation(s)
- Na Zhang
- Program in Cellular Biochemistry and Biophysics Memorial Sloan-Kettering Cancer Center, New York NY 10021, USA
| | - Chin Lin
- Program in Cellular Biochemistry and Biophysics Memorial Sloan-Kettering Cancer Center, New York NY 10021, USA
- Chemistry Department, New York University, New York NY 10003, USA
| | - Xuanwei Huang
- Chemistry Department, New York University, New York NY 10003, USA
| | | | - Brian E. Hingerty
- Life Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN 37831, USA
| | - Shantu Amin
- Department of Pharmacology Penn State College of Medicine Hershey, PA 17033, USA
| | - Suse Broyde
- Biology Department, New York University, New York, NY 10003, USA
| | | | - Dinshaw J. Patel
- Program in Cellular Biochemistry and Biophysics Memorial Sloan-Kettering Cancer Center, New York NY 10021, USA
- Corresponding author:
| |
Collapse
|
40
|
Wu M, Yan SF, Tan J, Patel DJ, Geacintov NE, Broyde S. Conformational searches elucidate effects of stereochemistry on structures of deoxyadenosine covalently bound to tumorigenic metabolites of benzo[C] phenanthrene. FRONT BIOSCI-LANDMRK 2004; 9:2807-18. [PMID: 15353316 PMCID: PMC4697942 DOI: 10.2741/1438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Remarkably different conformations can result when DNA binds with stereoisomeric compounds containing differing absolute configurations of substituents about chiral carbon atoms. Furthermore, the biochemical functions of covalent adducts with DNA are strongly affected by the stereochemistry of the ligands. Such stereochemical effects are manifested by DNA covalent adducts derived from metabolites of the non-planar fjord region environmental chemical carcinogen benzo[c]phenanthrene. To analyze these phenomena, an extensive conformational investigation for R and S stereoisomeric adducts to deoxyadenosine, derived from trans addition of enantiomeric anti diol epoxide metabolites of benzo[c]phenanthrene, has been carried out. We have surveyed the potential energy surface of the two adducts by varying systematically at 5 degree intervals in combination, the three important torsion angles that govern conformational flexibility of the carcinogen bulk with respect to the linked nucleoside. We carried out a grid search by creating 373, 248 structures for each isomer, and evaluated their molecular mechanical energies. This has permitted us to map the potential energy surface of each adduct in these three variables, and to delineate their low energy regions. The maps have a symmetric relationship which stems from the near mirror-image stereochemistry in the R and S isomers. This produces near mirror-image low energy structures in the nucleoside adducts. The limited sets of stereoisomer-dependent conformational domains delineated are determined by steric effects. Moreover, these features have been experimentally demonstrated to play governing structural roles in such carcinogen-damaged DNA duplexes: opposite orientations in the stereoisomer pairs computed for the nucleosides are observed by high-resolution NMR in the similarly modified DNA double helices, and are likely to play important roles in their interactions with enzymes involved in DNA transactions, and hence their biological activities.
Collapse
Affiliation(s)
- Min Wu
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | | | | | |
Collapse
|
41
|
Jankowiak R, Rogan EG, Cavalieri EL. Role of Fluorescence Line-Narrowing Spectroscopy and Related Luminescence-Based Techniques in the Elucidation of Mechanisms of Tumor Initiation by Polycyclic Aromatic Hydrocarbons and Estrogens†. J Phys Chem B 2004. [DOI: 10.1021/jp0402838] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Gómez-Pinto I, Cubero E, Kalko SG, Monaco V, van der Marel G, van Boom JH, Orozco M, González C. Effect of bulky lesions on DNA: solution structure of a DNA duplex containing a cholesterol adduct. J Biol Chem 2004; 279:24552-60. [PMID: 15047709 DOI: 10.1074/jbc.m311751200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional solution structure of two DNA decamers of sequence d(CCACXGGAAC)-(GTTCCGGTGG) with a modified nucleotide containing a cholesterol derivative (X) in its C1 '(chol)alpha or C1 '(chol)beta diastereoisomer form has been determined by using NMR and restrained molecular dynamics. This DNA derivative is recognized with high efficiency by the UvrB protein, which is part of the bacterial nucleotide excision repair, and the alpha anomer is repaired more efficiently than the beta one. The structures of the two decamers have been determined from accurate distance constraints obtained from a complete relaxation matrix analysis of the NOE intensities and torsion angle constraints derived from J-coupling constants. The structures have been refined with molecular dynamics methods, including explicit solvent and applying the particle mesh Ewald method to properly evaluate the long range electrostatic interactions. These calculations converge to well defined structures whose conformation is intermediate between the A- and B-DNA families as judged by the root mean square deviation but with sugar puckerings and groove shapes corresponding to a distorted B-conformation. Both duplex adducts exhibit intercalation of the cholesterol group from the major groove of the helix and displacement of the guanine base opposite the modified nucleotide. Based on these structures and molecular dynamics calculations, we propose a tentative model for the recognition of damaged DNA substrates by the UvrB protein.
Collapse
Affiliation(s)
- Irene Gómez-Pinto
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, C/. Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yakovleva L, Handy CJ, Sayer JM, Pirrung M, Jerina DM, Shuman S. Benzo[c]phenanthrene adducts and nogalamycin inhibit DNA transesterification by vaccinia topoisomerase. J Biol Chem 2004; 279:23335-42. [PMID: 15044474 DOI: 10.1074/jbc.m401203200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vaccinia DNA topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a specific target site 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrow N(-1) in duplex DNA. Here we study the effects of position-specific DNA intercalators on the rate and extent of single-turnover DNA transesterification. Chiral C-1 R and S trans-opened 3,4-diol 1,2-epoxide adducts of benzo[c]phenanthrene (BcPh) were introduced at single N2-deoxyguanosine and N6-deoxyadenosine positions within the 3'-G(+5)G(+4)G(+3)A(+2)A(+1)T(-1)A(-2) sequence of the nonscissile DNA strand. Transesterification was unaffected by BcPh intercalation between the +6 and +5 base pairs, slowed 4-fold by intercalation between the +5 and +4 base pairs, and virtually abolished by BcPh intercalation between the +4 and +3 base pairs and the +3 and +2 base pairs. Intercalation between the +2 and +1 base pairs by the +2R BcPh dA adduct abolished transesterification, whereas the overlapping +1S BcPh dA adduct slowed the rate of transesterification by a factor of 2700, with little effect upon the extent of the reaction. Intercalation at the scissile phosphodiester (between the +1 and -1 base pairs) slowed transesterification by a factor of 450. BcPh intercalation between the -1 and -2 base pairs slowed cleavage by two orders of magnitude, but intercalation between the -2 and -3 base pairs had little effect. The anthracycline drug nogalamycin, a non-covalent intercalator with preference for 5'-TG dinucleotides, inhibited the single-turnover DNA cleavage reaction of vaccinia topoisomerase with an IC50 of 0.7 microM. Nogalamycin was most effective when the drug was pre-incubated with DNA and when the cleavage target site was 5'-CCCTT/G instead of 5'-CCCTT/A. These findings demarcate upstream and downstream boundaries of the functional interface of vaccinia topoisomerase with its DNA target site.
Collapse
Affiliation(s)
- Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
44
|
Karle IL, Yagi H, Sayer JM, Jerina DM. Crystal and molecular structure of a benzo[a]pyrene 7,8-diol 9,10-epoxide N2-deoxyguanosine adduct: absolute configuration and conformation. Proc Natl Acad Sci U S A 2004; 101:1433-8. [PMID: 14757823 PMCID: PMC341736 DOI: 10.1073/pnas.0307305101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Benzo[a]pyrene 7,8-diol 9,10-epoxide adducts in DNA are implicated in mutagenesis, and their formation from the diol epoxides and subsequent incorrect replication by human DNA polymerases provide an attractive mechanism for the induction of cancer by this highly carcinogenic hydrocarbon and its diol epoxide metabolites. Here, we describe the crystal structure of such an adduct at the exocyclic amino group of a purine nucleoside. The present adduct derives from trans opening at C10 of the (-)-(7S,8R)-diol (9R,10S)-epoxide enantiomer by the exocyclic N(2)-amino group of deoxyguanosine. In the crystal, the pyrene rings of adjacent molecules stack with each other, but the guanine bases do not stack either intermolecularly with each other or intramolecularly with the pyrene. The most notable features of the molecular structure are (i) independent and unambiguous proof of the absolute configuration of the adduct based on the spatial relationship between the known chiral carbon atoms of the deoxyribose and the four asymmetric centers in the hydrocarbon moiety; (ii) visualization of the relative orientations of the pyrene and guanine ring systems as well as the conformation of the partially saturated hydrocarbon ring (comprising carbon atoms 7, 8, 9, and 10), both of which conformational features in the crystal are in good agreement with deductions from NMR and CD measurements in solution; and (iii) the presence in the crystal of a syn glycosidic torsion angle, a conformation that is unusual in B-DNA but that may be involved in error-prone replication of these benzo[a]pyrene 7,8-diol 9,10-epoxide deoxyguanosine adducts by DNA polymerases.
Collapse
Affiliation(s)
- Isabella L Karle
- Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375-5341.
| | | | | | | |
Collapse
|
45
|
Cho BP. Dynamic conformational heterogeneities of carcinogen-DNA adducts and their mutagenic relevance. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2004; 22:57-90. [PMID: 16291518 DOI: 10.1081/lesc-200038217] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Arylamines and polycyclic aromatic hydrocarbons (PAHs), which are known as "bulky" carcinogens, have been studied extensively and upon activation in vivo, react with cellular DNA to form DNA-adducts. The available structure data accumulated thus far has revealed that conformational heterogeneity is a common theme among duplex DNA modified with these carcinogens. Several conformationally diverse structures have been elucidated and found to be in equilibrium in certain cases. The dynamics of the heterogeneity appear to be modulated by the nature of the adduct structure and the base sequences neighboring the lesion site. These can be termed as "adduct- and sequence-induced conformational heterogeneities," respectively. Due to the small energy differences, the population levels of these conformers could readily be altered within the active sites of repair or replicate enzymes. Thus, the complex role of "enzyme-induced conformational heterogeneity" must also be taken into consideration for the establishment of a functional structure-mutation relationship. Ultimately, a major challenge in mutation structural biology is to carry out adduct- and site-specific experiments in a conformationally specific manner within biologically relevant environments. Results from such experiments should provide an accurate account of how a single chemically homogenous adduct gives rise to complex multiple mutations, the earliest step in the induction of cancer.
Collapse
Affiliation(s)
- Bongsup P Cho
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02882, USA.
| |
Collapse
|
46
|
Johnson AA, Sayer JM, Yagi H, Kalena GP, Amin R, Jerina DM, Pommier Y. Position-specific suppression and enhancement of HIV-1 integrase reactions by minor groove benzo[a]pyrene diol epoxide deoxyguanine adducts: implications for molecular interactions between integrase and substrates. J Biol Chem 2003; 279:7947-55. [PMID: 14627697 DOI: 10.1074/jbc.m311263200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The viral protein HIV-1 integrase is required for insertion of the viral genome into human chromosomes and for viral replication. Integration proceeds in two consecutive integrase-mediated reactions: 3'-processing and strand transfer. To investigate the DNA minor groove interactions of integrase relative to known sites of integrase action, we synthesized oligodeoxynucleotides containing single covalent adducts of known absolute configuration derived from trans-opening of benzo-[a]pyrene 7,8-diol 9,10-epoxide by the exocyclic 2-amino group of deoxyguanosine at specific positions in a duplex sequence corresponding to the terminus of the viral U5 DNA. Because the orientations of the hydrocarbon in the minor groove are known from NMR solution structures of duplex oligonucleotides containing these deoxyguanosine adducts, a detailed analysis of the relationship between the position of minor groove ligands and integrase interactions is possible. Adducts placed in the DNA minor groove two or three nucleotides from the 3'-processing site inhibited both 3'-processing and strand transfer. Inosine substitution showed that the guanine 2-amino group is required for efficient 3'-processing at one of these positions and for efficient strand transfer at the other. Mapping of the integration sites on both strands of the DNA substrates indicated that the adducts both inhibit strand transfer specifically at the minor groove bound sites and enhance integration at sites up to six nucleotides away from the adducts. These experiments demonstrate the importance of position-specific minor groove contacts for both the integrase-mediated 3'-processing and strand transfer reactions.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/analogs & derivatives
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacology
- Binding Sites
- DNA/chemistry
- DNA/metabolism
- DNA, Viral/chemistry
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/chemistry
- Deoxyguanosine/pharmacology
- HIV Integrase/metabolism
- Magnetic Resonance Spectroscopy
- Recombinant Proteins
Collapse
Affiliation(s)
- Allison A Johnson
- Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Yakovleva L, Tian L, Sayer JM, Kalena GP, Kroth H, Jerina DM, Shuman S. Site-specific DNA transesterification by vaccinia topoisomerase: effects of benzo[alpha]pyrene-dA, 8-oxoguanine, 8-oxoadenine and 2-aminopurine modifications. J Biol Chem 2003; 278:42170-7. [PMID: 12909623 DOI: 10.1074/jbc.m308079200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vaccinia DNA topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a specific target site 5'-C+5C+4C+3T+2T+1p downward arrow N-1 in duplex DNA. Here we study the effects of base modifications on the rate and extent of single-turnover DNA transesterification. Chiral trans opened C-10 R and S adducts of benzo[a]pyrene (BP) 7,8-diol 9,10-epoxide were introduced at single N6-deoxyadenosine (dA) positions within the 3'-G+5G+4G+3A+2A+1T-1A-2 sequence of the nonscissile DNA strand. The R and S BPdA adducts intercalate from the major groove on the 5' and 3' sides of the modified base, respectively, and perturb local base stacking. We found that R and S BPdA modifications at +1A reduced the transesterification rate by a factor of 700-1000 without affecting the yield of the covalent topoisomerase-DNA complex. BPdA modifications at +2A reduced the extent of transesterification and elicited rate decrements of 200- and 7000-fold for the S and R diastereomers, respectively. In contrast, BPdA adducts at the -2 position had no effect on the extent of the reaction and relatively little impact on the rate of cleavage. A more subtle probe of major groove contacts entailed substituting each of the purines of the nonscissile strand with its 8-oxo analog. The +3 oxoG modification slowed transesterification 35-fold, whereas other 8-oxo modifications were benign. 8-Oxo substitutions at the -1 position in the scissile strand slowed single-turnover cleavage by a factor of six but had an even greater slowing effect on religation, which resulted in an increase in the cleavage equilibrium constant. 2-Aminopurine at positions +3, +4, or +5 in the nonscissile strand had no effect on transesterification per se but had synergistic effects when combined with 8-oxoA at position -1 in the scissile strand. These findings illuminate the functional interface of vaccinia topoisomerase with the DNA major groove.
Collapse
Affiliation(s)
- Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Lee CH, Loechler EL. Molecular modeling of the major benzo[a]pyrene N2-dG adduct in cases where mutagenesis results are known in double stranded DNA. Mutat Res 2003; 529:59-76. [PMID: 12943920 DOI: 10.1016/s0027-5107(03)00107-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The potent mutagen/carcinogen benzo[a]pyrene (B[a]P) is metabolically activated to (+)-anti-B[a]PDE, which induces a full spectrum of mutations (e.g. GC-->TA, GC-->AT, etc.). One hypothesis for this complexity is that different mutations are induced by different conformations of its major adduct [+ta]-B[a]P-N2-dG when bypassed during DNA replication (probably by different DNA polymerases). Previous molecular modeling studies suggested that B[a]P-N2-dG adducts can in principle adopt at least 16 potential conformational classes in ds-DNA. Herein we report on molecular modeling studies with the eight conformations most likely to be relevant to base substitution mutagenesis in 10 cases where mutagenesis has been studied in ds-DNA plasmids in E. coli with B[a]P-N2-dG adducts of differing stereoisomers and DNA sequence contexts, as well as in five cases where the conformation is known by NMR. Of the approximately 11,000 structures generated in this study, the computed lowest energy structures are reported for 120 cases (i.e. eight conformations and 15 examples), and their conformations compared. Of the eight conformations, four are virtually always computed to be high in energy. The remaining four lower energy conformations include two with the BP moiety in the minor groove (designated: BPmi5 and BPmi3), and two base-displaced conformations, one with the dG moiety in the major groove (designated: Gma5) and one with the dG in the minor groove (designated: Gmi3). Interestingly, these four are the only conformations that have been observed for B[a]P-N2-dG adducts in NMR studies. Independent of sequence contexts and adduct stereochemistry, BPmi5 structures tend to look reasonably similar, as do BPmi3 structures, while the base-displaced structures Gma5 and BPmi3 tend to show greater variability in structure. A correlation was sought between modeling and mutagenesis results in the case of the low energy conformations BPmi5, BPmi3, Gma5 and Gma3. Plots of log[(G-->T)/(G-->A)] versus energy[(conformation X)-(conformation Y)] were constructed for all six pairwise combinations of these four conformations, and the only plot giving a straight line involved Gma5 and Gmi3. While this finding is striking, its significance is unclear (as discussed).
Collapse
Affiliation(s)
- Chiu Hong Lee
- Biology Department, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | |
Collapse
|
49
|
Kramata P, Zajc B, Sayer JM, Jerina DM, Wei CSJ. A single site-specific trans-opened 7,8,9,10-tetrahydrobenzo[a]pyrene 7,8-diol 9,10-epoxide N2-deoxyguanosine adduct induces mutations at multiple sites in DNA. J Biol Chem 2003; 278:14940-8. [PMID: 12595542 DOI: 10.1074/jbc.m211557200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-specific mutagenicity of trans-opened adducts at the exocyclic N(2)-amino group of guanine by the (+)-(7R,8S,9S,10R)- and (-)-(7S,8R,9R,10S)-enantiomers of a benzo[a]pyrene 7,8-diol 9,10-epoxide (7-hydroxyl and epoxide oxygen are trans, BPDE-2) has been determined in Chinese hamster V79 cells and their repair-deficient counterpart, V-H1 cells. Four vectors containing single 10S-BPDE-dG or 10R-BPDE-dG adducts positioned at G(0) or G(-1) in the analyzed 5'-ACTG(0)G(-1)GA sequence of the non-transcribed strand were separately transfected into the cells. Mutations at each of the seven nucleotides were analyzed by a novel primer extension assay using a mixture of one dNTP complementary to the mutated nucleotide and three other ddNTPs and were optimized to quantify levels of a mutation as low as 1%. Only G --> T mutations were detected at the adducted sites; the 10S adduct derived from the highly carcinogenic (+)-diol epoxide was 40-50 and 75-140% more mutagenic than the 10R adduct in V79 and V-H1 cells, respectively. Importantly, the 10S adducts, but not the 10R adducts, induced separate non-targeted mutations at sites 5' to the G(-1) and G(0) lesions (G(0) --> T and C --> T, respectively) in both cell lines. Neither the T 5' to G(0) nor sites 3' to the lesions showed mutations. Non-targeted mutations may enhance overall mutagenicity of the 10S-BPDE-dG lesion and contribute to the much higher carcinogenicity and mutagenicity of (+)-BPDE-2 compared with its (-)-enantiomer. Our study reports a definitive demonstration of mutations distal to a site-specific polycyclic aromatic hydrocarbon adduct.
Collapse
Affiliation(s)
- Pavel Kramata
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, College of Pharmacy, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854-8020, USA.
| | | | | | | | | |
Collapse
|
50
|
Yan S, Wu M, Patel DJ, Geacintov NE, Broyde S. Simulating structural and thermodynamic properties of carcinogen-damaged DNA. Biophys J 2003; 84:2137-48. [PMID: 12668423 PMCID: PMC1302781 DOI: 10.1016/s0006-3495(03)75020-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A pair of stereoisomeric covalent adducts to guanine in double-stranded DNA, derived from the reaction of mutagenic and tumorigenic metabolites of benzo[a]pyrene, have been well characterized structurally and thermodynamically. Both high-resolution NMR solution structures and an array of thermodynamic data are available for these 10S (+)- and 10R (-)-trans-anti -[BP]-N(2)-dG adducts in double-stranded deoxyoligonucleotides. The availability of experimentally well-characterized duplexes containing these two stereoisomeric guanine adducts provides an opportunity for evaluating the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method for computing thermodynamic properties from molecular dynamics ensembles. We have carried out 3-ns molecular dynamics simulations, using NMR solution structures as the starting models for the 10S (+)- and 10R (-)-trans-anti-dG adducts in a DNA duplex 11-mer using AMBER 6.0. We employed the MM-PBSA method to compute the free energies, enthalpies, and entropies of the two adducts. Our complete thermodynamic analysis agrees quite well with the full experimental thermodynamic characterization of these adducts, showing essentially equal stabilities of the two adducts. We also calculated the nuclear Overhauser effect (NOE) distances from the molecular dynamics trajectories, and compared them against the experimental NMR-derived NOE distances. Our results showed that the simulated structures are in good agreement with the NMR experimental NOE data. Furthermore, the molecular dynamics simulations provided new structural and biological insights. Specifically, the puzzling observation that the BP aromatic ring system in the 10S (+)-trans-anti-dG adduct is more exposed to the aqueous solvent than the 10R (-)-trans-anti-dG adduct, is rationalized in terms of the adduct structures. The structural and thermodynamic features of these stereoisomeric adducts are also discussed in relation to their reported low susceptibilities to nucleotide excision repair.
Collapse
Affiliation(s)
- Shixiang Yan
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|