1
|
He Y, Deng H, Hu Q, Zhu Z, Liu L, Zheng S, Song Q, Feng Q. Identification of the binding domains and key amino acids for the interaction of the transcription factors BmPOUM2 and BmAbd-A in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:41-50. [PMID: 27986639 DOI: 10.1016/j.ibmb.2016.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
The transcription factor BmPOUM2 interacted with another transcription factor BmAbd-A to regulate the expression of the wing cuticle protein gene BmWCP4 in Bombyx mori. In this study, the binding domains and amino acids for the interaction between BmPOUM2 and BmAbd-A were reported. Two isoforms of BmPOUM2 were identified. The short isoform (BmPOUM2-S) lacks a 114-amino acid sequence containing a POU-homeodomain and a nuclear localization signal peptide (NLS), as compared to the full-length isoform (BmPOUM2). Both BmPOUM2 and BmPOUM2-S proteins bound to the BmAbd-A through the POU-specific domain. When the six amino acids (Lys166, Gly173, Gln176, Ser192, Glu200 and Asn208) that are highly conserved in POU family genes were mutated, BmPOUM2 did not bind to BmAbd-A. BmAbd-A interacted with BmPOUM2 by the homeobox domain or the LCR2 (low complexity region) domain. When seven amino acids (Phe156/248, His158/250, Ala175/263, Cys180/265, Glu190/268, Trp196/274 and Val214/289) that are shared in the homeobox and LCR2 domains were mutated, BmAbd-A did not bind to BmPOUM2. Overexpression of either BmPOUM2 or BmAbd-A or both increased the activity of BmWCP4 promoter in CHO cells. ChIP assay and EMSA showed that BmAbd-A protein bound to the Hox cis-regulatory element in the BmWCP4 promoter, while the BmPOUM2 bound to the nearby POU CRE. A model for the interaction and action of BmPOUM2 and BmAbd-A in regulation of the BmWCP4 expression is proposed.
Collapse
Affiliation(s)
- Yong He
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Huimin Deng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Qihao Hu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zidan Zhu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lin Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sichun Zheng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Gao J, Chen Y, Yang Y, Liang J, Xie J, Liu J, Li S, Zheng G, Xie L, Zhang R. The transcription factor Pf-POU3F4 regulates expression of the matrix protein genes Aspein and Prismalin-14 in pearl oyster (Pinctada fucata). FEBS J 2016; 283:1962-78. [PMID: 26996995 DOI: 10.1111/febs.13716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/02/2016] [Accepted: 03/15/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Matrix proteins play key roles in shell formation in the pearl oyster, but little is known about how these proteins are regulated. Here, two POU domain family members, Pf-POU2F1 and Pf-POU3F4, were cloned and characterized. Functional domain analysis revealed that both them have conserved POUS and POUH domains; these domains are important for transcription factor function. The tissue distributions of Pf-POU2F1 and Pf-POU3F4 mRNAs in pearl oyster revealed different expression patterns, and the expression of Pf-POU3F4 mRNA was relatively high in the mantle. The promoters of the matrix protein genes Aspein and Prismalin-14 were cloned using genome-walking PCR. Relatively high transcriptional activities of these promoters were detected in HEK-293T cells. In transient co-transfection assays, Pf-POU3F4 greatly up-regulated the promoter activities of the Aspein and Prismalin-14 genes in a dose-dependent manner. Structural integrity of Pf-POU3F4 was essential for its activation function. One region of the Aspein gene promoter, -181 to -77 bp, and two binding sites in the Prismalin-14 gene promoter, -359 to -337 bp and -100 to -73 bp, were required for activation of Pf-POU3F4. An electrophoresis mobility shift assay demonstrated that Pf-POU3F4 directly bound these sites. Pf-POU3F4 knockdown led to a decrease in Aspein and Prismalin-14 gene expression. Furthermore, expression levels for the Pf-POU3F4 gene were similar to those of the Aspein and Prismalin-14 genes during five development stages. Taken together, these results suggest that the transcription factor Pf-POU3F4 regulates expression of the matrix protein genes Aspein and Prismalin-14 in pearl oyster. DATABASE The nucleotide sequence data of Pf-POU2F1 is available in the GenBank databases under the accession number KM588196. The nucleotide sequence data of Pf-POU3F4 is available in the GenBank databases under the accession number KM519606. The nucleotide sequence data of Aspein gene promoter is available in the GenBank databases under the accession number KM519607. The nucleotide sequence data of Prismalin-14 gene promoter is available in the GenBank databases under the accession number KM519601.
Collapse
Affiliation(s)
- Jing Gao
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Yan Chen
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Yi Yang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Jian Liang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Jun Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Jun Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Shiguo Li
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Guilang Zheng
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Liping Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| | - Rongqing Zhang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Science, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Regulatory roles of Oct proteins in the mammary gland. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:812-9. [PMID: 27044595 DOI: 10.1016/j.bbagrm.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 11/21/2022]
Abstract
The expression of Oct-1 and -2 and their binding to the octamer motif in the mammary gland are developmentally and hormonally regulated, consistent with the expression of milk proteins. Both of these transcription factors constitutively bind to the proximal promoter of the milk protein gene β-casein and might be involved in the inhibition or activation of promoter activity via interactions with other transcription factors or cofactors at different developmental stages. In particular, the lactogenic hormone prolactin and glucocorticoids induce Oct-1 and Oct-2 binding and interaction with both the signal transducer and activator of transcription 5 (STAT5) and the glucocorticoid receptor on the β-casein promoter to activate β-casein expression. In addition, increasing evidence has shown the involvement of another Oct factor, Oct-3/4, in mammary tumorigenesis, making Oct-3/4 an emerging prognostic marker of breast cancer and a molecular target for the gene-directed therapeutic intervention, prevention and treatment of breast cancer. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
|
4
|
Biochemical characterization and functional analysis of the POU transcription factor POU-M2 of Bombyx mori. Int J Biol Macromol 2016; 86:701-8. [PMID: 26854886 DOI: 10.1016/j.ijbiomac.2016.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 11/21/2022]
Abstract
POU-M2 is a homeodomain transcription factor which plays important roles in the development and silk synthesis of Bombyx mori. In this study, we expressed, purified and characterized POU-M2 and studied its transcription regulation on fibroin heavy chain gene of Bombyx mori. Gel filtration showed POU-M2 existed as a dimer in solution. Far-UV circular dichroism spectra indicated POU-M2 had a well-defined α-helix structure and the α-helix content was about 26.4%. The thermal unfolding transition of POU-M2 was a cooperative process. Tm, ΔH and ΔS were 45.15 ± 0.2 °C, 138.4 ± 0.5 KJ/mol and 0.4349 ± 0.04 KJ/(mol·K), respectively. Western blotting analysis indicated the expression level of POU-M2 increased slightly from day 3 to day 7 of the fifth instar larvae in the posterior silk gland. POU-M2 was positioned in the nucleus of cells. The luciferase reporter assay demonstrated POU-M2 could stimulate the promoter activity of fibroin heavy chain gene, and the activation effect was dependent on the amount of POU-M2. Our study suggested POU-M2 may be involved in the transcriptional regulation of fibroin heavy chain gene. These findings expand toward a better understanding of the structure of POU-M2 and its function in silk synthesis of Bombyx mori.
Collapse
|
5
|
Fuxreiter M, Simon I, Bondos S. Dynamic protein-DNA recognition: beyond what can be seen. Trends Biochem Sci 2011; 36:415-23. [PMID: 21620710 DOI: 10.1016/j.tibs.2011.04.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/28/2022]
Abstract
Traditionally, specific DNA recognition is thought to rely on static contacts with the bases or phosphates. Recent results, however, indicate that residues far outside the binding context can crucially influence selectivity or binding affinity via transient, dynamic interactions with the DNA binding interface. These regions usually do not adopt a well-defined structure, even when bound to DNA, and thus form a fuzzy complex. Here, we propose the existence of a dynamic DNA readout mechanism, wherein distant segments modulate conformational preferences, flexibility or spacing of the DNA binding motifs or serve as competitive partners. Despite their low sequence similarity, these intrinsically disordered regions are often conserved at the structural level, and exploited for regulation of the transcription machinery via protein-protein interactions, post-translational modifications or alternative splicing.
Collapse
Affiliation(s)
- Monika Fuxreiter
- Department of Biological Chemistry, Weizmann Institute of Science, 7600 Rehovot, Israel.
| | | | | |
Collapse
|
6
|
Ahmad I, Hoessli DC, Walker-Nasir E, Rafik SM, Shakoori AR. Oct-2 DNA binding transcription factor: functional consequences of phosphorylation and glycosylation. Nucleic Acids Res 2006; 34:175-84. [PMID: 16431844 PMCID: PMC1326018 DOI: 10.1093/nar/gkj401] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Phosphorylation and O-GlcNAc modification often induce conformational changes and allow the protein to specifically interact with other proteins. Interplay of phosphorylation and O-GlcNAc modification at the same conserved site may result in the protein undergoing functional switches. We describe that at conserved Ser/Thr residues of human Oct-2, alternative phosphorylation and O-GlcNAc modification (Yin Yang sites) can be predicted by the YinOYang1.2 method. We propose here that alternative phosphorylation and O-GlcNAc modification at Ser191 in the N-terminal region, Ser271 and 274 in the linker region of two POU sub-domains and Thr301 and Ser323 in the POUh subdomain are involved in the differential binding behavior of Oct-2 to the octamer DNA motif. This implies that phosphorylation or O-GlcNAc modification of the same amino acid may result in a different binding capacity of the modified protein. In the C-terminal domain, Ser371, 389 and 394 are additional Yin Yang sites that could be involved in the modulation of Oct-2 binding properties.
Collapse
Affiliation(s)
- Ishtiaq Ahmad
- Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan
| | | | | | | | | |
Collapse
|
7
|
Langdon RC, Burr T, Pagan-Westphal S, Hochschild A. A chimeric activator of transcription that uses two DNA-binding domains to make simultaneous contact with pairs of recognition sites. Mol Microbiol 2001; 41:885-96. [PMID: 11532151 DOI: 10.1046/j.1365-2958.2001.02583.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many well-known transcriptional regulatory proteins are composed of at least two independently folding domains and, typically, only one of these is a DNA-binding domain. However, some transcriptional regulators have been described that have more than one DNA-binding domain. Regulators with a single DNA-binding domain often bind co-operatively to the DNA in homotypic or heterotypic combinations, and two or more DNA-binding domains of a single regulatory protein can also bind co-operatively to suitably positioned recognition sequences. Here, we examine the behaviour of a chimeric activator of transcription with two different DNA-binding domains, that of the bacteriophage lambda cI protein and that of the Escherichia coli cyclic AMP receptor protein. We show that these two DNA-binding moieties, when present in the same molecule, can bind co-operatively to a pair of cognate recognition sites located upstream of a test promoter, thereby permitting the chimera to function as a particularly strong activator of transcription from this promoter. Our results show how such a bivalent DNA-binding protein can be used to regulate transcription differentially from promoters that bear either one or both recognition sites.
Collapse
Affiliation(s)
- R C Langdon
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
8
|
Millevoi S, Thion L, Joseph G, Vossen C, Ghisolfi-Nieto L, Erard M. Atypical binding of the neuronal POU protein N-Oct3 to noncanonical DNA targets. Implications for heterodimerization with HNF-3 beta. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:781-91. [PMID: 11168419 DOI: 10.1046/j.1432-1327.2001.01934.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The capacity of POU proteins to recognize different DNA sequences and to bind target DNA in the form of monomers, cooperative dimers or heterodimers is important in relation to their transcriptional regulatory properties. The N-Oct3 neuron-specific protein binds to an octamer-like sequence (AAATAATGC) within the (-102/-72) neuronal promoter region of the human aromatic L-amino acid decarboxylase (AADC) gene. In this atypical case the POUh and POUs tetrameric subsites are spaced one nucleotide apart and in switched order as compared with the consensus octamer. Moreover this POU binding motif overlaps the hepatocyte nuclear factor HNF-3 beta binding site (TGCTCAGTAAA) which itself contains a heptamer-like sequence (CTCAGTA). Using the isolated DNA binding domains (DBD) of the two proteins, it is shown that, when binding to this unusual recognition sequence, N-Oct3 either exhibits noncooperative homodimerization or allows the simultaneous binding of the second transcription activator HNF-3 beta. CD studies indicate that the binding of N-Oct3 monomers/dimers and N-Oct3-HNF-3 beta heterodimers to the DNA induces conformational changes of both protein and DNA. Partial proteolysis/MALDI-MS was used in conjunction with molecular modelling to show that the protein conformational change resulting from binary N-Oct3/DNA complex formation occurs within the linker peptide joining the POUs and POUh subdomains. Furthermore, modelling the N-Oct3/HNF-3 beta/DNA ternary complex predicts a nucleotide rearrangement in the overlap region and an interaction between both transcription factors. In the light of our findings, which illustrate both site-dependent and site-independent protein and DNA conformational changes, general implications for the allosteric function of DNA response elements in transcriptional regulation are discussed.
Collapse
Affiliation(s)
- S Millevoi
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Toulouse, France
| | | | | | | | | | | |
Collapse
|
9
|
Schonemann MD, Ryan AK, Erkman L, McEvilly RJ, Bermingham J, Rosenfeld MG. POU domain factors in neural development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 449:39-53. [PMID: 10026784 DOI: 10.1007/978-1-4615-4871-3_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transcription factors serve critical roles in the progressive development of general body plan, organ commitment, and finally, specific cell types. Comparison of the biological roles of a series of individual members within a family permits some generalizations to be made regarding the developmental events that are likely to be regulated by a particular class of transcription factors. Here, we evidence that the developmental functions of the family of transcription factors characterized by the POU DNA binding motif exerts roles in mammalian development. The POU domain family of transcription factors was defined following the observation that the products of three mammalian genes, Pit-1, Oct-1, and Oct-2, and the protein encoded by the C. elegans gene unc-86, shared a region of homology, known as the POU domain. The POU domain is a bipartite DNA binding domain, consisting of two highly conserved regions, tethered by a variable linker. The approximately 75 amino acid N-terminal region was called the POU-specific domain and the C-terminal 60 amino acid region, the POU-homeodomain. High-affinity site-specific DNA binding by POU domain transcription factors requires both the POU-specific and the POU-homeodomain. Resolution of the crystal structures of Oct-1 and Pit-1 POU domains bound to DNA as a monomer and homodimer, respectively, confirmed several of the in vitro findings regarding interactions of this bipartite DNA binding domain with DNA and has provided important information regarding the flexibility and versatility of POU domain proteins. Overall the crystal structure of a monomer of the Oct-1 POU domain bound to the octamer element was similar to that predicted by the NMR solution structures of the POU-specific domain and the POU-homeodomain in isolation, with the POU-specific domain consists of four alpha helices, with the second and third helices forming a structure similar to the helix-turn-helix motif of the lambda and 434 repressors; several of the DNA base contacts are also conserved. A homodimer of the Pit-1 POU domain was crystallized bound to a Pit-1 dimer DNA element that is closely related to a site in the proximal promoter of the prolactin gene. The structure of the Pit-1 POU domain on DNA is very similar to that of Oct-1, and the Pit-1 POU-homeodomain/DNA structure is strikingly similar to that of other homeodomains, including the Oct-1 POU-homeodomain. The DNA contacts made by the Pit-1 POU-specific domain are also similar to those of Oct-1 and conserved with many made by the prokaryotic repressors. In the Oct-1 crystal, the POU-specific domain recognizes a GCAT half-site, while the corresponding sequence recognized by the Pit-1 POU-specific domain, GTAT, is on the opposing strand. As a result, the orientation of the Pit-1 POU-specific domain relative to the POU-homeodomain is flipped, as compared to the Oct-1 crystal structure, indicating the remarkable flexibility of the POU-specific domain in adapting to variations in sequence within the site. Also in contrast to the Oct-1 monomer structure is the observation that the POU-specific and POU-homeodomain of each Pit-1 molecule make major groove contacts on the same face of the DNA, consistent with the constraints imposed by its 15 amino acid linker. As a result, the Pit-1 POU domain homodimer essentially surrounds its DNA binding site. In the Pit-1 POU domain homodimer the dimerization interface is formed between the C-terminal end of helix 3 of the POU-homeodomain of one Pit-1 molecule and the N-terminus of helix 1 and the loop between helices 3 and 4 of the POU-specific domain of the other Pit-1 molecule. In contrast to other homeodomain crystal structures, the C-terminus of helix 3 in the Pit-1 POU-homeo-domain has an extended structure. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- M D Schonemann
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego 92093-0648, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kuo CL, Chen ML, Wang K, Chou CK, Vernooij B, Seto D, Koop BF, Hood L. A conserved sequence block in murine and human T cell receptor (TCR) Jalpha region is a composite element that enhances TCR alpha enhancer activity and binds multiple nuclear factors. Proc Natl Acad Sci U S A 1998; 95:3839-44. [PMID: 9520454 PMCID: PMC19924 DOI: 10.1073/pnas.95.7.3839] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A conserved sequence block (CSB) located in a noncoding region of the mouse and human TCR alpha/delta loci, showing six differences over 125 nucleotide positions (95% similar), was subjected to detailed analyses in this study. Transient transfection results showed that the CSB-containing element in conjunction with the TCR alpha enhancer up-regulated the alpha enhancer activity, whereas no enhancer activity was detected when CSB alone was assayed. In vitro occupancy analyses of CSB by nuclear factors reveal the existence of an unexpectedly intricate network of CSB-protein and protein-protein interactions. Lymphoid-specific as well as T-lineage-specific nuclear factors are involved to differentially form CSB-bound complexes in extracts of various tissues and cell lines. Liver was shown to contain factor(s) sequestering thymic CSB-binding factors. Furthermore, the putative binding sites for transcription factors known to be important for lymphoid-lineage development are present in CSB and are targeted by nuclear factors. On the basis of these results, we propose that the CSB element may play a role in shaping the chromatin structure by which the accessibility of TCR alpha/delta loci to the recombinase complex and/or to the transcriptional apparatus can be controlled.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites/genetics
- Conserved Sequence
- Enhancer Elements, Genetic/genetics
- Enhancer Elements, Genetic/immunology
- Humans
- Mice
- Molecular Sequence Data
- Nuclear Proteins/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Sequence Analysis
Collapse
Affiliation(s)
- C L Kuo
- Institute of Biochemical Sciences, College of Science, National Taiwan University, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Vahava O, Morell R, Lynch ED, Weiss S, Kagan ME, Ahituv N, Morrow JE, Lee MK, Skvorak AB, Morton CC, Blumenfeld A, Frydman M, Friedman TB, King MC, Avraham KB. Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science 1998; 279:1950-4. [PMID: 9506947 DOI: 10.1126/science.279.5358.1950] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The molecular basis for autosomal dominant progressive nonsyndromic hearing loss in an Israeli Jewish family, Family H, has been determined. Linkage analysis placed this deafness locus, DFNA15, on chromosome 5q31. The human homolog of mouse Pou4f3, a member of the POU-domain family of transcription factors whose targeted inactivation causes profound deafness in mice, was physically mapped to the 25-centimorgan DFNA15-linked region. An 8-base pair deletion in the POU homeodomain of human POU4F3 was identified in Family H. A truncated protein presumably impairs high-affinity binding of this transcription factor in a dominant negative fashion, leading to progressive hearing loss.
Collapse
Affiliation(s)
- O Vahava
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Veenstra GJ, van der Vliet PC, Destrée OH. POU domain transcription factors in embryonic development. Mol Biol Rep 1997; 24:139-55. [PMID: 9291088 DOI: 10.1023/a:1006855632268] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- G J Veenstra
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | | | |
Collapse
|
13
|
Ryan AK, Rosenfeld MG. POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev 1997; 11:1207-25. [PMID: 9171367 DOI: 10.1101/gad.11.10.1207] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A K Ryan
- Howard Hughes Medical Institute, Department and School of Medicine, University of California at San Diego, La Jolla 92093-0648, USA
| | | |
Collapse
|
14
|
Okazawa H, Imafuku I, Minowa MT, Kanazawa I, Hamada H, Mouradian MM. Regulation of striatal D1A dopamine receptor gene transcription by Brn-4. Proc Natl Acad Sci U S A 1996; 93:11933-8. [PMID: 8876240 PMCID: PMC38161 DOI: 10.1073/pnas.93.21.11933] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Brn-4 is a member of the POU transcription factor family and is expressed in the central nervous system. In this study, we addressed whether Brn-4 regulates expression of the D1A dopamine receptor gene. We found a functional Brn-4 responsive element in the intron of this gene by means of cotransfection chloramphenical acetyltransferase assays. This region contains two consensus sequences for binding of POU factors. Gel mobility-shift assays using glutathione S-transferase-Brn-4 fusion protein indicated that Brn-4 binds to these sequences. Both these sites are essential for transactivation by Brn-4 because deletion of either significantly reduced this enhancer activity. In situ hybridization revealed colocalization of Brn-4 and D1A mRNAs at the level of a single neuron in the rat striatum where this dopamine receptor is most abundantly expressed. Gel mobility-supershift assay using rat striatal nuclear extract and Brn-4 antibody confirmed the presence of Brn-4 in this brain region and its ability to bind to its consensus sequences in the D1A gene. These data suggest a functional role for Brn-4 in the expression of the D1A dopamine receptor gene both in vitro and in vivo.
Collapse
Affiliation(s)
- H Okazawa
- Department of Neurology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Herr W, Cleary MA. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev 1995; 9:1679-93. [PMID: 7622033 DOI: 10.1101/gad.9.14.1679] [Citation(s) in RCA: 322] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- W Herr
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
16
|
Morita EH, Shirakawa M, Hayashi F, Imagawa M, Kyogoku Y. Structure of the Oct-3 POU-homeodomain in solution, as determined by triple resonance heteronuclear multidimensional NMR spectroscopy. Protein Sci 1995; 4:729-39. [PMID: 7613470 PMCID: PMC2143109 DOI: 10.1002/pro.5560040412] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The POU-homeodomain (POUH) forms the bipartite DNA-binding POU domain in association with the POU-specific domain. The 1H, 15N, and 13C magnetic resonances of the 67-amino acid long POUH of mouse Oct-3 have almost completely been assigned, mainly through the combined use of three-dimensional triple resonance NMR methods. Based on the distance and dihedral angle constraints derived from the NMR data, the solution structure of the POUH domain has been calculated by the ab initio simulated annealing method. The average RMS deviation for all backbone heavy atoms of the 20 best calculated structures for residues 9-53 of the total 67 amino acid residues is 0.44 A. The POUH domain consists of three alpha-helices (helix-I, 10-20; helix-II, 28-38; and helix-III, 42-53), and helices-II and -III form a helix-turn-helix motif. In comparison with other classical homeodomains, the folding of the three helices is quite similar. However, the length of helix-III is fairly short. In the complex of the Oct-1 POU domain with an octamer site (Klemm JD, et al., 1994, Cell 77:21-32), the corresponding region is involved in helix-III. The structural difference between these two cases will be discussed.
Collapse
Affiliation(s)
- E H Morita
- Institute for Protein Research, Osaka University, Japan
| | | | | | | | | |
Collapse
|
17
|
Cleary MA, Herr W. Mechanisms for flexibility in DNA sequence recognition and VP16-induced complex formation by the Oct-1 POU domain. Mol Cell Biol 1995; 15:2090-100. [PMID: 7891704 PMCID: PMC230436 DOI: 10.1128/mcb.15.4.2090] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA binding by the Oct-1 protein is directed by its POU domain, a bipartite DNA-binding domain made up of a POU-specific (POUS) domain and a POU-homeo (POUH) domain, two helix-turn-helix-containing DNA-binding modules that cooperate in DNA recognition. Although the best-characterized DNA target for Oct-1 binding is the octamer sequence ATGCAAAT, Oct-1 also binds a number of different DNA sequence elements. For example, Oct-1 recognizes a form of the herpes simplex virus VP16-responsive TAATGARAT element, called the (OCTA-)TAATGARAT site, that lacks octamer site similarity. Our studies suggest two mechanisms by which Oct-1 achieves flexible DNA sequence recognition. First, an important arginine found in the Oct-1 POUS domain tolerates substitutions of its base contacts within the octamer site. Second, on the (OCTA-)TAATGARAT site, the POUS domain is located on the side of the POUH domain opposite from where it is located on an octamer site. This flexibility of the Oct-1 POU domain in DNA binding also has an impact on its participation in a multiprotein-DNA complex with VP16. We show that Oct-1 POUS domain residues that contact DNA have different effects on VP16-induced complex formation depending on whether the VP16-responsive element involved has overlapping octamer similarity or not.
Collapse
Affiliation(s)
- M A Cleary
- Cold Spring Harbor Laboratory, New York 11724
| | | |
Collapse
|
18
|
Damante G, Tell G, Leonardi A, Fogolari F, Bortolotti N, Di Lauro R, Formisano S. Analysis of the conformation and stability of rat TTF-1 homeodomain by circular dichroism. FEBS Lett 1994; 354:293-6. [PMID: 7957942 DOI: 10.1016/0014-5793(94)01145-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The conformational stability of TTF-1HD has been determined by CD-monitored thermal denaturation and isothermal urea unfolding studies. The Gibbs free energy of stabilization found are 1.44 and 1.26 kcal.mol-1, respectively. TTF-1HD exhibits a Tm of 42 degrees C and a delta Cp of 80 cal.mol-1.K-1 indicating that TTF-1HD, when free in solution, is a mobile flexible segment folded into loose helices. Such a flexibility would be relevant for the DNA-binding function of this homeodomain. In fact, a small reduction of the alpha-helical content of TTF-1HD significantly modifies its DNA-binding activity.
Collapse
Affiliation(s)
- G Damante
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Udine, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Sivaraja M, Botfield MC, Mueller M, Jancso A, Weiss MA. Solution structure of a POU-specific homeodomain: 3D-NMR studies of human B-cell transcription factor Oct-2. Biochemistry 1994; 33:9845-55. [PMID: 7914745 DOI: 10.1021/bi00199a005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The POU DNA-binding motif defines a conserved family of eukaryotic transcription factors involved in regulation of gene expression. This bipartite motif consists of an N-terminal POU-specific domain (POUs), a flexible linker, and a C-terminal POU-specific homeodomain (POUHD). Here we describe the solution structure of a POU-specific homeodomain. An NMR model is obtained from Oct-2, a human B-cell specific transcription factor which participates in the regulation of immunoglobulin genes. A fragment of Oct-2 containing POUHD and an adjoining linker was expressed in Escherichia coli and characterized by three-dimensional nuclear magnetic resonance (3D-NMR) spectroscopy. Complete 1H and 15N resonance assignment of the POUHD moiety is presented. The POUHD solution structure, as calculated by distance geometry and simulated annealing (DG/SA), is similar to that of canonical homeodomains. A salient difference between solution and crystal structures is observed in the C-terminal segment of alpha-helix 3 (the HTH recognition helix), which is not well ordered in solution. Because this segment presumably folds upon specific DNA binding, its flexibility in solution may reduce the intrinsic DNA affinity of POUHD in the absence of POUs.
Collapse
Affiliation(s)
- M Sivaraja
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
20
|
Botfield MC, Jancso A, Weiss MA. An invariant asparagine in the POU-specific homeodomain regulates the specificity of the Oct-2 POU motif. Biochemistry 1994; 33:8113-21. [PMID: 7912957 DOI: 10.1021/bi00192a016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The homeodomain defines a family of transcription factors broadly involved in the regulation of gene expression. DNA recognition, as observed in three representative complexes (Engrailed, Antennapedia, and MAT alpha 2), is mediated in the major groove by a helix-turn-helix (HTH) element and in the minor groove by an N-terminal arm. The three complexes share similar overall features, but they also exhibit significant differences in DNA interactions. Because these differences may distinguish the biological activities of different classes of homeodomains, we have investigated the contribution of the Oct-2 POU-specific homeodomain (POUHD) to the specificity of the bipartite POU motif. Comparative studies of variant protein-DNA complexes demonstrate the following. (i) Mutations in an invariant residue in the POUHD HTH (N347; residue 10 of the putative recognition alpha-helix) reduce octamer binding with the relaxation of specificity at one position (5'-ATGCAAAT). The inferred HTH side chain-base interaction, although not observed in the solution structure of the Antennapedia complex, is in accord with homologous contacts in the Engrailed and MAT alpha 2 cocrystal structures. (ii) Comparison of the DNA-binding properties of POU and POUHD demonstrates that POUs and POUHD independently regulate specificity at opposite ends of the DNA site (5'-TATGCAAAT). Both domains contact the two central bases (5'-TATGCAAAT) where coordinate binding of POUS in the major groove overrides the intrinsic specificity of POUHD in the minor groove. (iii) The differential sensitivity of POU and POUHD to 2'-deoxyinosine substitutions (a minor-groove modification) suggests that POUS binding repositions the POUHD N-terminal "arm".(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C Botfield
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
21
|
Botfield MC, Jancso A, Weiss MA. Mapping critical residues in eukaryotic DNA-binding proteins: a plasmid-based genetic selection strategy with application to the Oct-2 POU motif. Biochemistry 1994; 33:6177-85. [PMID: 8193131 DOI: 10.1021/bi00186a017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Discrimination between allowed and disallowed amino acid substitutions provides a powerful method for analysis of protein structure and function. Site-directed mutagenesis allows specific hypotheses to be tested, but its systematic application to entire structural motifs is inefficient. This limitation may be overcome by genetic selection, which allows rapid scoring of thousands of randomly (or pseudorandomly) generated mutants. To facilitate structural dissection of DNA-binding proteins, we have designed two generally applicable bacterial selection systems: pPLUS selects for the ability of a protein to bind to a user-defined DNA sequence, whereas pMINUS selects against such binding. Complementary positive and negative selections allow rapid mapping of critical residues. To test and calibrate the systems, we have investigated the bipartite POU domain of the human B-cell-specific transcription factor Oct-2. (i) An invariant residue (Asn347) in the DNA-recognition helix of the POU-specific homeodomain (POUHD) was substituted by each of the 19 other possible amino acids. The mutant proteins each exhibited decreased specific DNA binding as defined in vivo by genetic selection and in vitro by gel retardation; relative affinities correlate with phenotypes in the positive and negative selection systems. An essential role for Asn347 in wild-type POUHD-DNA recognition is consistent with homologous Asn-adenine interactions in cocrystal structures of canonical homeodomains. (ii) Extension of pPLUS/pMINUS selection to the POU-specific subdomain (POUs) is demonstrated by analysis of mutations in its putative helix-turn-helix (HTH) element.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C Botfield
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
22
|
Jancso A, Botfield MC, Sowers LC, Weiss MA. An altered-specificity mutation in a human POU domain demonstrates functional analogy between the POU-specific subdomain and phage lambda repressor. Proc Natl Acad Sci U S A 1994; 91:3887-91. [PMID: 8171007 PMCID: PMC43687 DOI: 10.1073/pnas.91.9.3887] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The POU motif, conserved among a family of eukaryotic transcription factors, contains two DNA-binding domains: an N-terminal POU-specific domain (POUS) and a C-terminal homeodomain (POUHD). Surprisingly, POUS is similar in structure to the helix-turn-helix domains of bacteriophage repressor and Cro proteins. Such similarity predicts a common mechanism of DNA recognition. To test this prediction, we have studied the DNA-binding properties of the human Oct-2 POU domain by combined application of chemical synthesis and site-directed mutagenesis. The POUS footprint of DNA contacts, identified by use of modified bases, is analogous to those of bacteriophage repressor-operator complexes. Moreover, a loss-of-contact substitution in the putative POUS recognition alpha-helix leads to relaxed specificity at one position in the DNA target site. The implied side chain-base contact is identical to that of bacteriophage repressor and Cro proteins. These results establish a functional analogy between the POUS and prokaryotic helix-turn-helix elements and suggest that their DNA specificities may be governed by a shared set of rules.
Collapse
Affiliation(s)
- A Jancso
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | | | |
Collapse
|
23
|
Klemm JD, Rould MA, Aurora R, Herr W, Pabo CO. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 1994; 77:21-32. [PMID: 8156594 DOI: 10.1016/0092-8674(94)90231-3] [Citation(s) in RCA: 391] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The structure of an Oct-1 POU domain-octamer DNA complex has been solved at 3.0 A resolution. The POU-specific domain contacts the 5' half of this site (ATGCAAAT), and as predicted from nuclear magnetic resonance studies, the structure, docking, and contacts are remarkably similar to those of the lambda and 434 repressors. The POU homeodomain contacts the 3' half of this site (ATGCAAAT), and the docking is similar to that of the engrailed, MAT alpha 2, and Antennapedia homeodomains. The linker region is not visible and there are no protein-protein contacts between the domains, but overlapping phosphate contacts near the center of the octamer site may favor cooperative binding. This novel arrangement raises important questions about cooperativity in protein-DNA recognition.
Collapse
Affiliation(s)
- J D Klemm
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Cox M, Dekker N, Boelens R, Verrijzer CP, van der Vliet PC, Kaptein R. NMR studies of the POU-specific DNA-binding domain of Oct-1: sequential 1H and 15N assignments and secondary structure. Biochemistry 1993; 32:6032-40. [PMID: 8507639 DOI: 10.1021/bi00074a014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The 1H and 15N resonances of the POU-specific DNA-binding domain of transcription factor Oct-1 have been assigned sequentially using two-dimensional homo- and heteronuclear NMR techniques, as well as three-dimensional heteronuclear NMR techniques, including TOCSY, 2D NOE, and NOESY-HMQC experiments. A number of typical short- and medium-range NOE contacts, as well as amide proton exchange data, gave evidence for the presence of four alpha-helices, in the peptide segments 1-19, 23-34, 40-49, and 54-71, which are connected by short loops of irregular structure. Interestingly, the second helix contains three glycine residues and the fourth helix a proline in the middle of the helix. Although the regular pattern of hydrogen bonds in the fourth helix is interrupted, due to the absence of an amide proton in proline, the helix is remarkably stable. All four helices are amphipathic, which suggests a packing of the apolar sides of the helices in the folded structure of the protein.
Collapse
Affiliation(s)
- M Cox
- Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Wegner M, Drolet DW, Rosenfeld MG. POU-domain proteins: structure and function of developmental regulators. Curr Opin Cell Biol 1993; 5:488-98. [PMID: 8352967 DOI: 10.1016/0955-0674(93)90015-i] [Citation(s) in RCA: 207] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
POU-domain proteins are a group of developmental regulators found in organisms as distant as worm and man. The sequence conservation of the POU-domain has allowed the characterization of increasing numbers of proteins containing the domain, many of which act to control the generation and maintenance of differentiated cell phenotypes in organs as diverse as skin and brain. Analysis of the means by which POU-domain proteins regulate transcription has led to a further understanding of how this group initiates specific developmental programs.
Collapse
Affiliation(s)
- M Wegner
- Howard Hughes Medical Institute, University of California, San Diego, School of Medicine, La Jolla 92093-0648
| | | | | |
Collapse
|
27
|
Dekker N, Cox M, Boelens R, Verrijzer CP, van der Vliet PC, Kaptein R. Solution structure of the POU-specific DNA-binding domain of Oct-1. Nature 1993; 362:852-5. [PMID: 8479524 DOI: 10.1038/362852a0] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The transcription factor Oct-1 belongs to a family containing a POU DNA-binding domain. This bipartite domain is composed of a POU-specific domain (POUs) and a POU-homeodomain (POUhd) connected by a flexible linker. The left half of the optimal POU binding site, the octamer ATGCAAAT, is recognized by POUs and the right half by POUhd. We have determined the solution structure of POUs by nuclear magnetic resonance. It consists of four alpha-helices connected by short loops. Helices I and IV are in a parallel coiled-coil arrangement. The folding topology appears to be similar to that of the bacteriophage lambda-repressor and 434 repressor. For the well defined parts of the protein (residues 1-71), the average root-mean square deviation for the backbone atoms is 0.9 A. Based on the observed selective exchange broadening in the (15N,1H)-HMQC (heteronuclear multiple quantum coherence) spectrum of the POUs-DNA complex we conclude that DNA-binding is mediated by helix III. We propose a model for the POU-DNA complex in which both recognition helices from the two subdomains have adjacent positions in the major groove.
Collapse
Affiliation(s)
- N Dekker
- Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Verrijzer CP, Van der Vliet PC. POU domain transcription factors. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1173:1-21. [PMID: 8485147 DOI: 10.1016/0167-4781(93)90237-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- C P Verrijzer
- Laboratory for Physiological Chemistry, University of Utrecht, The Netherlands
| | | |
Collapse
|
29
|
Morita EH, Shirakawa M, Hayashi F, Imagawa M, Kyogoku Y. Secondary structure of the oct-3 POU homeodomain as determined by 1H-15N NMR spectroscopy. FEBS Lett 1993; 321:107-10. [PMID: 8097478 DOI: 10.1016/0014-5793(93)80088-c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most of the 1H and 15N magnetic resonances of the 66 amino acid long POU homeodomain of mouse Oct-3 have been assigned by the combined use of the two-dimensional homonuclear, and two- and three-dimensional heteronuclear NMR methods. The sequential NOE connectivities and amide proton exchange measurements indicate the presence of three helical regions within the domain. The positions of the three helices correspond well to those of other homeodomains, the three-dimensional structures of which have already been determined. The present NMR study provides the first experimental evidence for the existence of a helix-turn-helix motif in the oct-3 POU homeodomain.
Collapse
Affiliation(s)
- E H Morita
- Institute for Protein Research, Osaka University, Japan
| | | | | | | | | |
Collapse
|