1
|
Noji T, Chiba Y, Saito K, Ishikita H. Energetics of the H-Bond Network in Exiguobacterium sibiricum Rhodopsin. Biochemistry 2024; 63:1505-1512. [PMID: 38745402 PMCID: PMC11155677 DOI: 10.1021/acs.biochem.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Exiguobacterium sibiricum rhodopsin (ESR) functions as a light-driven proton pump utilizing Lys96 for proton uptake and maintaining its activity over a wide pH range. Using a combination of methodologies including the linear Poisson-Boltzmann equation and a quantum mechanical/molecular mechanical approach with a polarizable continuum model, we explore the microscopic mechanisms underlying its pumping activity. Lys96, the primary proton uptake site, remains deprotonated owing to the loss of solvation in the ESR protein environment. Asp85, serving as a proton acceptor group for Lys96, does not form a low-barrier H-bond with His57. Instead, deprotonated Asp85 forms a salt-bridge with protonated His57, and the proton is predominantly located at the His57 moiety. Glu214, the only acidic residue at the end of the H-bond network exhibits a pKa value of ∼6, slightly elevated due to solvation loss. It seems likely that the H-bond network [Asp85···His57···H2O···Glu214] serves as a proton-conducting pathway toward the protein bulk surface.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yoshihiro Chiba
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
Tsujimura M, Saito K, Ishikita H. Stretching vibrational frequencies and pK a differences in H-bond networks of protein environments. Biophys J 2023; 122:4336-4347. [PMID: 37838831 PMCID: PMC10722396 DOI: 10.1016/j.bpj.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/22/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
The experimentally measured stretching vibrational frequencies of O-D [νO-D(donor)] and C=O [νC=O(donor)] H-bond donor groups can provide valuable information about the H-bonds in proteins. Here, using a quantum mechanical/molecular mechanical approach, the relationship between these vibrational frequencies and the difference in pKa values between H-bond donor and acceptor groups [ΔpKa(donor … acceptor)] in bacteriorhodopsin and photoactive yellow protein environments was investigated. The results show that νO-D(donor) is correlated with ΔpKa(donor … acceptor), regardless of the specific protein environment. νC=O(donor) is also correlated with ΔpKa(donor … acceptor), although the correlation is weak because the C=O bond does not have a proton. Importantly, the shifts in νO-D(donor) and νC=O(donor) are not caused by changes in pKa(donor) alone, but rather by changes in ΔpKa(donor … acceptor). Specifically, a decrease in ΔpKa(donor … acceptor) can lead to proton release from the H-bond donor group toward the acceptor group, resulting in shifts in the vibrational frequencies of the protein environment. These findings suggest that changes in the stretching vibrational frequencies, in particular νO-D(donor), can be used to monitor proton transfer in protein environments.
Collapse
Affiliation(s)
- Masaki Tsujimura
- Department of Advanced Interdisciplinary Studies, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Bertoldo JB, Rodrigues T, Dunsmore L, Aprile FA, Marques MC, Rosado LA, Boutureira O, Steinbrecher TB, Sherman W, Corzana F, Terenzi H, Bernardes GJL. A Water-Bridged Cysteine-Cysteine Redox Regulation Mechanism in Bacterial Protein Tyrosine Phosphatases. Chem 2017; 3:665-677. [PMID: 29094109 PMCID: PMC5656095 DOI: 10.1016/j.chempr.2017.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 06/01/2017] [Accepted: 07/07/2017] [Indexed: 11/25/2022]
Abstract
The emergence of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains highlights the need to develop more efficacious and potent drugs. However, this goal is dependent on a comprehensive understanding of Mtb virulence protein effectors at the molecular level. Here, we used a post-expression cysteine (Cys)-to-dehydrolanine (Dha) chemical editing strategy to identify a water-mediated motif that modulates accessibility of the protein tyrosine phosphatase A (PtpA) catalytic pocket. Importantly, this water-mediated Cys-Cys non-covalent motif is also present in the phosphatase SptpA from Staphylococcus aureus, which suggests a potentially preserved structural feature among bacterial tyrosine phosphatases. The identification of this structural water provides insight into the known resistance of Mtb PtpA to the oxidative conditions that prevail within an infected host macrophage. This strategy could be applied to extend the understanding of the dynamics and function(s) of proteins in their native state and ultimately aid in the design of small-molecule modulators.
Collapse
Affiliation(s)
- Jean B Bertoldo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.,Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970 Florianópolis-SC, Brazil
| | - Tiago Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Lavinia Dunsmore
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Francesco A Aprile
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Marta C Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Leonardo A Rosado
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970 Florianópolis-SC, Brazil
| | - Omar Boutureira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | - Woody Sherman
- Schrödinger, 120 West 45th Street, New York, NY 10036, USA
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970 Florianópolis-SC, Brazil
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
4
|
|
5
|
Kim E, Yeom MS. Structural Arrangement of Water Molecules around Highly Charged Nanoparticles: Molecular Dynamics Simulation. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.5.1501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
|
7
|
|
8
|
Schulten K, Humphrey W, Logunov I, Sheves M, Xu D. Molecular Dynamics Studies of Bacteriorhodopsin's Photocycles. Isr J Chem 2013. [DOI: 10.1002/ijch.199500042] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Althaus T, Eisfeld W, Lohrmann R, Stockburger M. Application of Raman Spectroscopy to Retinal Proteins. Isr J Chem 2013. [DOI: 10.1002/ijch.199500029] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Maeda A. Application of FTIR Spectroscopy to the Structural Study on the Function of Bacteriorhodopsin. Isr J Chem 2013. [DOI: 10.1002/ijch.199500038] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Saito K, Kandori H, Ishikita H. Factors that differentiate the H-bond strengths of water near the Schiff bases in bacteriorhodopsin and Anabaena sensory rhodopsin. J Biol Chem 2012; 287:34009-18. [PMID: 22865888 DOI: 10.1074/jbc.m112.388348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriorhodopsin (BR) functions as a light-driven proton pump, whereas Anabaena sensory rhodopsin (ASR) is believed to function as a photosensor despite the high similarity in their protein sequences. In Fourier transform infrared (FTIR) spectroscopic studies, the lowest O-D stretch for D(2)O was observed at ∼2200 cm(-1) in BR but was significantly higher in ASR (>2500 cm(-1)), which was previously attributed to a water molecule near the Schiff base (W402) that is H-bonded to Asp-85 in BR and Asp-75 in ASR. We investigated the factors that differentiate the lowest O-D stretches of W402 in BR and ASR. Quantum mechanical/molecular mechanical calculations reproduced the H-bond geometries of the crystal structures, and the calculated O-D stretching frequencies were corroborated by the FTIR band assignments. The potential energy profiles indicate that the smaller O-D stretching frequency in BR originates from the significantly higher pK(a)(Asp-85) in BR relative to the pK(a)(Asp-75) in ASR, which were calculated to be 1.5 and -5.1, respectively. The difference is mostly due to the influences of Ala-53, Arg-82, Glu-194-Glu-204, and Asp-212 on pK(a)(Asp-85) in BR and the corresponding residues Ser-47, Arg-72, Ser-188-Asp-198, and Pro-206 on pK(a)(Asp-75) in ASR. Because these residues participate in proton transfer pathways in BR but not in ASR, the presence of a strongly H-bonded water molecule near the Schiff base ultimately results from the proton-pumping activity in BR.
Collapse
Affiliation(s)
- Keisuke Saito
- 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
12
|
Clair ECS, Ogren JI, Mamaev S, Kralj JM, Rothschild KJ. Conformational changes in the archaerhodopsin-3 proton pump: detection of conserved strongly hydrogen bonded water networks. J Biol Phys 2011; 38:153-68. [PMID: 23277676 DOI: 10.1007/s10867-011-9246-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 10/25/2011] [Indexed: 11/30/2022] Open
Abstract
Archaerhodopsin-3 (AR3) is a light-driven proton pump from Halorubrum sodomense, but little is known about its photocycle. Recent interest has focused on AR3 because of its ability to serve both as a high-performance, genetically-targetable optical silencer of neuronal activity and as a membrane voltage sensor. We examined light-activated structural changes of the protein, retinal chromophore, and internal water molecules during the photocycle of AR3. Low-temperature and rapid-scan time-resolved FTIR-difference spectroscopy revealed that conformational changes during formation of the K, M, and N photocycle intermediates are similar, although not identical, to bacteriorhodopsin (BR). Positive/negative bands in the region above 3,600 cm( - 1), which have previously been assigned to structural changes of weakly hydrogen bonded internal water molecules, were substantially different between AR3 and BR. This included the absence of positive bands recently associated with a chain of proton transporting water molecules in the cytoplasmic channel and a weakly hydrogen bonded water (W401), which is part of a hydrogen-bonded pentagonal cluster located near the retinal Schiff base. However, many of the broad IR continuum absorption changes below 3,000 cm( - 1) assigned to networks of water molecules involved in proton transport through cytoplasmic and extracellular portions in BR were very similar in AR3. This work and subsequent studies comparing BR and AR3 structural changes will help identify conserved elements in BR-like proton pumps as well as bioengineer AR3 to optimize neural silencing and voltage sensing.
Collapse
Affiliation(s)
- Erica C Saint Clair
- Department of Physics, Photonics Center and Molecular Biophysics Laboratory, Boston University, Boston, MA 02215 USA
| | | | | | | | | |
Collapse
|
13
|
Baer M, Mathias G, Kuo IFW, Tobias DJ, Mundy CJ, Marx D. Spectral signatures of the pentagonal water cluster in bacteriorhodopsin. Chemphyschem 2009; 9:2703-7. [PMID: 19025752 DOI: 10.1002/cphc.200800473] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marcel Baer
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ. Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy. J Biol Chem 2008; 283:35033-41. [PMID: 18927082 DOI: 10.1074/jbc.m806353200] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Channelrhodopsin-2 (ChR2) is a microbial type rhodopsin and a light-gated cation channel that controls phototaxis in Chlamydomonas. We expressed ChR2 in COS-cells, purified it, and subsequently investigated this unusual photoreceptor by flash photolysis and UV-visible and Fourier transform infrared difference spectroscopy. Several transient photoproducts of the wild type ChR2 were identified, and their kinetics and molecular properties were compared with those of the ChR2 mutant E90Q. Based on the spectroscopic data we developed a model of the photocycle comprising six distinguishable intermediates. This photocycle shows similarities to the photocycle of the ChR2-related Channelrhodopsin of Volvox but also displays significant differences. We show that molecular changes include retinal isomerization, changes in hydrogen bonding of carboxylic acids, and large alterations of the protein backbone structure. These alterations are stronger than those observed in the photocycle of other microbial rhodopsins like bacteriorhodopsin and are related to those occurring in animal rhodopsins. UV-visible and Fourier transform infrared difference spectroscopy revealed two late intermediates with different time constants of tau = 6 and 40 s that exist during the recovery of the dark state. The carboxylic side chain of Glu(90) is involved in the slow transition. The molecular changes during the ChR2 photocycle are discussed with respect to other members of the rhodopsin family.
Collapse
Affiliation(s)
- Eglof Ritter
- Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
15
|
Morgan JE, Gennis RB, Maeda A. A role for internal water molecules in proton affinity changes in the Schiff base and Asp85 for one-way proton transfer in bacteriorhodopsin. Photochem Photobiol 2008; 84:1038-45. [PMID: 18557823 DOI: 10.1111/j.1751-1097.2008.00377.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Light-induced proton pumping in bacteriorhodospin is carried out through five proton transfer steps. We propose that the proton transfer to Asp85 from the Schiff base in the L-to-M transition is accompanied by the relocation of a water cluster on the cytoplasmic side of the Schiff base from a site close to the Schiff base in L to the Phe219-Thr46 region in M. The water cluster present in L, formed at 170 K, is more rigid than that at room temperature. This may be responsible for blocking the conversion of L to M at 170 K. In the photocycle at room temperature, this water cluster returns to the site close to the Schiff base in N, with a rigid structure similar to that of L at 170 K. The increase in the proton affinity of Asp85, which is a prerequisite for the one-way proton transfer in the M-to-N transition, is suggested to be facilitated by a structural change which disrupts interactions between Asp212 and the Schiff base, and between Asp212 and Arg82. We propose that this liberation of Asp212 is accompanied by a rearrangement of the structure of water molecules between Asp85 and Asp212, stabilizing the protonated Asp85 in M.
Collapse
Affiliation(s)
- Joel E Morgan
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | |
Collapse
|
16
|
Royant A, Edman K, Ursby T, Pebay-Peyroula E, Landau EM, Neutze R. Spectroscopic Characterization of Bacteriorhodopsin's L-intermediate in 3D Crystals Cooled to 170 K¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740794scobsl2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Renthal R, Gracia N, Regalado R. Water and Carboxyl Group Environments in the Dehydration Blueshift of Bacteriorhodopsin¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720714wacgei2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Bergo V, Spudich EN, Spudich JL, Rothschild KJ. A Fourier Transform Infrared Study of Neurospora Rhodopsin: Similarities with Archaeal Rhodopsins¶†. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760341aftiso2.0.co2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Maeda A, Morgan JE, Gennis RB, Ebrey TG. Water as a cofactor in the unidirectional light-driven proton transfer steps in bacteriorhodopsin. Photochem Photobiol 2007; 82:1398-405. [PMID: 16634652 DOI: 10.1562/2006-01-16-ir-779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent evidence for involvement of internal water molecules in the mechanism of bacteriorhodopsin is reviewed. Water O-H stretching vibration bands in the Fourier transform IR difference spectra of the L, M and N intermediates of bacteriorhodopsin were analyzed by photoreactions at cryogenic temperatures. A broad vibrational band in L was shown to be due to formation of a structure of water molecules connecting the Schiff base to the Thr46-Asp96 region. This structure disappears in the M intermediate, suggesting that it is involved in transient stabilization of the L intermediate prior to proton transfer from the Schiff base to Asp85. The interaction of the Schiff base with a water molecule is restored in the N intermediate. We propose that water is a critical mobile component of bacteriorhodopsin, forming organized structures in the transient intermediates during the photocycle and, to a large extent, determining the chemical behavior of these transient states.
Collapse
Affiliation(s)
- Akio Maeda
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | | | | | |
Collapse
|
20
|
Morgan JE, Vakkasoglu AS, Gennis RB, Maeda A. Water structural changes in the L and M photocycle intermediates of bacteriorhodopsin as revealed by time-resolved step-scan Fourier transform infrared (FTIR) spectroscopy. Biochemistry 2007; 46:2787-96. [PMID: 17300175 PMCID: PMC3972897 DOI: 10.1021/bi0616596] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In previous Fourier transform infrared (FTIR) studies of the photocycle intermediates of bacteriorhodopsin at cryogenic temperatures, water molecules were observed in the L intermediate, in the region surrounded by protein residues between the Schiff base and Asp96. In the M intermediate, the water molecules had moved away toward the Phe219-Thr46 region. To evaluate the relevance of this scheme at room temperature, time-resolved FTIR difference spectra of bacteriorhodopsin, including the water O-H stretching vibration frequency regions, were recorded in the micro- and millisecond time ranges. Vibrational changes of weakly hydrogen-bonded water molecules were observed in L, M, and N. In each of these intermediates, the depletion of a water O-H stretching vibration at 3645 cm-1, originating from the initial unphotolyzed bacteriorhodopsin, was observed as a trough in the difference spectrum. This vibration is due to the dangling O-H group of a water molecule, which interacts with Asp85, and its absence in each of these intermediates indicates that there is perturbation of this O-H group. The formation of M is accompanied by the appearance of water O-H stretching vibrations at 3670 and 3657 cm-1, the latter of which persists to N. The 3670 cm-1 band of M is due to water molecules present in the region surrounded by Thr46, Asp96, and Phe219. The formation of L at 298 K is accompanied by the perturbations of Asp96 and the Schiff base, although in different ways from what is observed at 170 K. Changes in a broad water vibrational feature, centered around 3610 cm-1, are kinetically correlated with the L-M transition. These results imply that, even at room temperature, water molecules interact with Asp96 and the Schiff base in L, although with a less rigid structure than at cryogenic temperatures.
Collapse
Affiliation(s)
- Joel E. Morgan
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Room 2237, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180
| | - Ahmet S. Vakkasoglu
- Center for Biophysics and Computational Biology, University of Illinois at Urbana/Champaign, Urbana, IL, 61801
| | - Robert B. Gennis
- Center for Biophysics and Computational Biology, University of Illinois at Urbana/Champaign, Urbana, IL, 61801
- Department of Biochemistry, University of Illinois at Urbana/Champaign, Urbana, IL 61801
| | - Akio Maeda
- Department of Biochemistry, University of Illinois at Urbana/Champaign, Urbana, IL 61801
- Author to whom correspondence should be addressed. Phone and Fax: +81-774-22-8781.
| |
Collapse
|
21
|
Maeda A, Morgan JE, Gennis RB, Ebrey TG. Water as a Cofactor in the Unidirectional Light-Driven Proton Transfer Steps in Bacteriorhodopsin. Photochem Photobiol 2006. [DOI: 10.1111/j.1751-1097.2006.tb09791.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Edman K, Royant A, Larsson G, Jacobson F, Taylor T, van der Spoel D, Landau EM, Pebay-Peyroula E, Neutze R. Deformation of Helix C in the Low Temperature L-intermediate of Bacteriorhodopsin. J Biol Chem 2004; 279:2147-58. [PMID: 14532280 DOI: 10.1074/jbc.m300709200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-ray and electron diffraction studies of specific reaction intermediates, or reaction intermediate analogues, have produced a consistent picture of the structural mechanism of light-driven proton pumping by bacteriorhodopsin. Of central importance within this picture is the structure of the L-intermediate, which follows the retinal all-trans to 13-cis photoisomerization step of the K-intermediate and sets the stage for the primary proton transfer event from the positively charged Schiff base to the negatively charged Asp-85. Here we report the structural changes in bacteriorhodopsin following red light illumination at 150 K. Single crystal microspectrophotometry showed that only the L-intermediate is populated in three-dimensional crystals under these conditions. The experimental difference Fourier electron density map and refined crystallographic structure were consistent with those previously presented (Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2000) Nature 406, 645-648; Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2001) Photochem. Photobiol. 74, 794-804). Based on the refined crystallographic structures, molecular dynamic simulations were used to examine the influence of the conformational change of the protein that is associated with the K-to-L transition on retinal dynamics. Implications regarding the structural mechanism for proton pumping by bacteriorhodopsin are discussed.
Collapse
Affiliation(s)
- Karl Edman
- Department of Chemistry and Bioscience, Chalmers University of Technology, Box 462, S-40530 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Maeda A, Verhoeven MA, Lugtenburg J, Gennis RB, Balashov SP, Ebrey TG. Water Rearrangement around the Schiff Base in the Late K (KL) Intermediate of the Bacteriorhodopsin Photocycle. J Phys Chem B 2003. [DOI: 10.1021/jp030484w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akio Maeda
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Chemistry Department, Gorlaeus Labs, Leiden University, Leiden, The Netherlands, and Department of Biology, University of Washington, Seattle, Washington 98195
| | - Michiel A. Verhoeven
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Chemistry Department, Gorlaeus Labs, Leiden University, Leiden, The Netherlands, and Department of Biology, University of Washington, Seattle, Washington 98195
| | - Johan Lugtenburg
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Chemistry Department, Gorlaeus Labs, Leiden University, Leiden, The Netherlands, and Department of Biology, University of Washington, Seattle, Washington 98195
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Chemistry Department, Gorlaeus Labs, Leiden University, Leiden, The Netherlands, and Department of Biology, University of Washington, Seattle, Washington 98195
| | - Sergei P. Balashov
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Chemistry Department, Gorlaeus Labs, Leiden University, Leiden, The Netherlands, and Department of Biology, University of Washington, Seattle, Washington 98195
| | - Thomas G. Ebrey
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, Chemistry Department, Gorlaeus Labs, Leiden University, Leiden, The Netherlands, and Department of Biology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
24
|
Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM. Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:144-67. [PMID: 12409192 DOI: 10.1016/s0005-2736(02)00566-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pK(a) of the Schiff base (the primary proton donor) and the low pK(a) of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.
Collapse
Affiliation(s)
- Richard Neutze
- Department of Molecular Biotechnology, Chalmers University of Technology, Box 462, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
25
|
Bergo V, Spudich EN, Spudich JL, Rothschild KJ. A Fourier transform infrared study of Neurospora rhodopsin: similarities with archaeal rhodopsins. Photochem Photobiol 2002; 76:341-9. [PMID: 12403457 DOI: 10.1562/0031-8655(2002)076<0341:aftiso>2.0.co;2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NOP-1 gene from the eukaryote Neurospora crassa, a filamentous fungus, has recently been shown to encode an archaeal rhodopsin-like protein NOP-1. To explore the functional mechanism of NOP-1 and its possible similarities to archaeal and visual rhodopsins, static and time-resolved Fourier transform infrared difference spectra were measured from wild-type NOP-1 and from a mutant containing an Asp-->Glu substitution in the Schiff base (SB) counterion, Asp131 (D131E). Several conclusions could be drawn about the molecular mechanism of NOP-1: (1) the NOP-1 retinylidene chromophore undergoes an all-trans to 13-cis isomerization, which is typical of archaeal rhodopsins, and closely resembles structural changes of the chromophore in sensory rhodopsin II; (2) the NOP-1 SB counterion, Asp131, has a very similar environment and behavior compared with the SB counterions in bacteriorhodopsin (BR) and sensory rhodopsin II; (3) the O-H stretching of a structurally active water molecule(s) in NOP-1 is similar to water detected in BR and is most likely located near the SB and SB counterion in these proteins; and (4) one or more cysteine residues undergo structural changes during the NOP-1 photocycle. Overall, these results indicate that many features of the active sites of the archaeal rhodopsins are conserved in NOP-1, despite its eukaryotic origin.
Collapse
Affiliation(s)
- Vladislav Bergo
- Department of Physics, Molecular Biophysics Laboratory, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
26
|
Hayashi S, Tajkhorshid E, Schulten K. Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle. Biophys J 2002; 83:1281-97. [PMID: 12202355 PMCID: PMC1302228 DOI: 10.1016/s0006-3495(02)73900-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Early intermediates of bacteriorhodopsin's photocycle were modeled by means of ab initio quantum mechanical/molecular mechanical and molecular dynamics simulations. The photoisomerization of the retinal chromophore and the formation of photoproducts corresponding to the early intermediates were simulated by molecular dynamics simulations. By means of the quantum mechanical/molecular mechanical method, the resulting structures were refined and the respective excitation energies were calculated. Two sequential intermediates were found with absorption maxima that exhibit red shifts from the resting state. The intermediates were therefore assigned to the K and KL states. In K, the conformation of the retinal chromophore is strongly deformed, and the N--H bond of the Schiff base points almost perpendicular to the membrane normal toward Asp-212. The strongly deformed conformation of the chromophore and weakened interaction of the Schiff base with the surrounding polar groups are the means by which the absorbed energy is stored. During the K-to-KL transition, the chromophore undergoes further conformational changes that result in the formation of a hydrogen bond between the N--H group of the Schiff base and Thr-89 as well as other rearrangements of the hydrogen-bond network in the vicinity of the Schiff base, which are suggested to play a key role in the proton transfer process in the later phase of the photocycle.
Collapse
Affiliation(s)
- Shigehiko Hayashi
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | | | | |
Collapse
|
27
|
Royant A, Edman K, Ursby T, Pebay-Peyroula E, Landau EM, Neutze R. Spectroscopic characterization of bacteriorhodopsin's L-intermediate in 3D crystals cooled to 170 K. Photochem Photobiol 2001; 74:794-804. [PMID: 11783935 DOI: 10.1562/0031-8655(2001)074<0794:scobsl>2.0.co;2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Spectra are presented from a single 3D microcrystal of bacteriorhodopsin (bR) cooled to 170 K under various illumination conditions. This set is necessary and sufficient to assign the relevant crystal reference spectra. A spectral decomposition of the difference spectrum obtained following the trapping protocol of Royant et al. (2000) (Nature 406, 645-648) is given, confirming that the low temperature L-intermediate was the species that dominated the structural rearrangements previously reported. Smaller contributions from the K and M spectral intermediates are also quantified. Mechanistic insights derived from the X-ray structures of the early bR intermediates are discussed.
Collapse
Affiliation(s)
- A Royant
- Institut de Biologie Structurale, UMR 5075-CEA-CNRS-Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | |
Collapse
|
28
|
Swartz TE, Corchnoy SB, Christie JM, Lewis JW, Szundi I, Briggs WR, Bogomolni RA. The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J Biol Chem 2001; 276:36493-500. [PMID: 11443119 DOI: 10.1074/jbc.m103114200] [Citation(s) in RCA: 432] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plant blue light receptor, phot1, a member of the phototropin family, is a plasma membrane-associated flavoprotein that contains two ( approximately 110 amino acids) flavin-binding domains, LOV1 and LOV2, within its N terminus and a typical serine-threonine protein kinase domain at its C terminus. The LOV (light, oxygen, and voltage) domains belong to the PAS domain superfamily of sensor proteins. In response to blue light, phototropins undergo autophosphorylation. E. coli-expressed LOV domains bind riboflavin-5'-monophosphate, are photochemically active, and have major absorption peaks at 360 and 450 nm, with the 450 nm peak having vibronic structure at 425 and 475 nm. These spectral features correspond to the action spectrum for phototropism in higher plants. Blue light excitation of the LOV2 domain generates, in less than 30 ns, a transient approximately 660 nm-absorbing species that spectroscopically resembles a flavin triplet state. This putative triplet state subsequently decays with a 4-micros time constant into a 390 nm-absorbing metastable form. The LOV2 domain (450 nm) recovers spontaneously with half-times of approximately 50 s. It has been shown that the metastable species is likely a flavin-cysteine (Cys(39) thiol) adduct at the flavin C(4a) position. A LOV2C39A mutant generates the early photoproduct but not the adduct. Titrations of LOV2 using chromophore fluorescence as an indicator suggest that Cys(39) exists as a thiolate.
Collapse
Affiliation(s)
- T E Swartz
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kandori H, Shichida Y. Direct Observation of the Bridged Water Stretching Vibrations Inside a Protein. J Am Chem Soc 2000. [DOI: 10.1021/ja0032069] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hideki Kandori
- Department of Biophysics, Graduate School of Science Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
30
|
Renthal R, Gracia N, Regalado R. Water and carboxyl group environments in the dehydration blueshift of bacteriorhodopsin. Photochem Photobiol 2000; 72:714-8. [PMID: 11107860 DOI: 10.1562/0031-8655(2000)072<0714:wacgei>2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proton channels of the bacteriorhodopsin (BR) proton pump contain bound water molecules. The channels connect the purple membrane surfaces with the protonated retinal Schiff base at the membrane center. Films of purple membrane equilibrated at low relative humidity display a shift of the 570 nm retinal absorbance maximum to 528 nm, with most of the change occurring below 15% relative humidity. Purple membrane films were dehydrated to defined humidities between about 50 and 4.5% and examined by Fourier transform infrared difference spectroscopy. In spectra of dehydrated-minus-hydrated purple membrane, troughs are observed at 3645 and 3550 cm-1, and peaks are observed at 3665 and 3500 cm-1. We attribute these changes to water dissociation from the proton uptake channel and the resulting changes in hydrogen bonding of water that remains bound. Also, in the carboxylic acid spectral region, a trough was observed at 1742 cm-1 and a peak at 1737 cm-1. The magnitude of the trough to peak difference between 1737 and 1742 cm-1 correlates linearly with the extent of the 528 nm pigment. This suggests that a carboxylic acid group or groups is undergoing a change in environment as a result of dehydration, and that this change is linked to the appearance of the 528 nm pigment. Dehydration difference spectra with BR mutants D96N and D115N show that the 1737-1742 cm-1 change is due to Asp 96 and Asp 115. A possible mechanism is suggested that links dissociation of water in the proton uptake channel to the environmental change at the Schiff base site.
Collapse
Affiliation(s)
- R Renthal
- Division of Life Sciences, University of Texas at San Antonio 78249, USA.
| | | | | |
Collapse
|
31
|
Abstract
Internal water molecules are considered to play a crucial role in the functional processes of proton pump proteins. They may participate in hydrogen-bonding networks inside proteins that constitute proton pathways. In addition, they could participate in the switch reaction by mediating an essential proton transfer at the active site. Nevertheless, little has been known about the structure and function of internal water molecules in such proteins. Recent progress in infrared spectroscopy and X-ray crystallography provided new information on water molecules inside bacteriorhodopsin, the light-driven proton pump. The accumulated knowledge on bacteriorhodopsin in the last decade of the 20th century will lead to a realistic picture of internal water molecules at work in the 21st century. In this review, I describe how the role of water molecules has been studied in bacteriorhodopsin, and what should be known about the role of water molecules in the future.
Collapse
Affiliation(s)
- H Kandori
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, 606-8502, Kyoto, Japan.
| |
Collapse
|
32
|
Balashov SP. Protonation reactions and their coupling in bacteriorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:75-94. [PMID: 10984592 DOI: 10.1016/s0005-2728(00)00131-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Light-induced changes of the proton affinities of amino acid side groups are the driving force for proton translocation in bacteriorhodopsin. Recent progress in obtaining structures of bacteriorhodopsin and its intermediates with an increasingly higher resolution, together with functional studies utilizing mutant pigments and spectroscopic methods, have provided important information on the molecular architecture of the proton transfer pathways and the key groups involved in proton transport. In the present paper I consider mechanisms of light-induced proton release and uptake and intramolecular proton transport and mechanisms of modulation of proton affinities of key groups in the framework of these data. Special attention is given to some important aspects that have surfaced recently. These are the coupling of protonation states of groups involved in proton transport, the complex titration of the counterion to the Schiff base and its origin, the role of the transient protonation of buried groups in catalysis of the chromophore's thermal isomerization, and the relationship between proton affinities of the groups and the pH dependencies of the rate constants of the photocycle and proton transfer reactions.
Collapse
Affiliation(s)
- S P Balashov
- Center for Biophysics and Computational Biology, Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, B107 CLSL, 601 S. Goodwin Ave., 61801, Urbana, IL, USA.
| |
Collapse
|
33
|
Betancourt FM, Glaeser RM. Chemical and physical evidence for multiple functional steps comprising the M state of the bacteriorhodopsin photocycle. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:106-18. [PMID: 10984594 DOI: 10.1016/s0005-2728(00)00133-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the photocycle of bacteriorhodopsin (bR), light-induced transfer of a proton from the Schiff base to an acceptor group located in the extracellular half of the protein, followed by reprotonation from the cytoplasmic side, are key steps in vectorial proton pumping. Between the deprotonation and reprotonation events, bR is in the M state. Diverse experiments undertaken to characterize the M state support a model in which the M state is not a static entity, but rather a progression of two or more functional substates. Structural changes occurring in the M state and in the entire photocycle of wild-type bR can be understood in the context of a model which reconciles the chloride ion-pumping phenotype of mutants D85S and D85T with the fact that bR creates a transmembrane proton-motive force.
Collapse
Affiliation(s)
- F M Betancourt
- Life Sciences Division, Donner Laboratory, Lawrence Berkeley, National Laboratory, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
34
|
Luecke H. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:133-56. [PMID: 10984596 DOI: 10.1016/s0005-2728(00)00135-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
High-resolution X-ray crystallographic studies of bacteriorhodopsin have tremendously advanced our understanding of this light-driven ion pump during the last 2 years, and emphasized the crucial role of discrete internal water molecules in the pump cycle. In the extracellular region an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base via water 402 and the initial proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline kink. The bulge is stabilized by hydrogen bonding of the main chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located in the otherwise very hydrophobic region between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The M intermediate trapped in the D96N mutant corresponds to a late M state in the transport cycle, after protonation of Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. The M intermediate from the E204Q mutant corresponds to an earlier M, as in this mutant the Schiff base deprotonates without proton release. The structures of these two M states reveal progressive displacements of the retinal, main chain and side chains induced by photoisomerization of the retinal to 13-cis,15-anti, and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pK(a)s of the Schiff base, Asp85, the proton release group and Asp96. The structure for the M state from E204Q suggests, moreover, that relaxation of the steric conflicts of the distorted 13-cis,15-anti retinal plays a critical role in the reprotonation of the Schiff base by Asp96. Two additional waters now connect Asp96 to the carbonyl of residue 216, in what appears to be the beginning of a hydrogen-bonded chain that would later extend to the retinal Schiff base. Based on the ground state and M intermediate structures, models of the molecular events in the early part of the photocycle are presented, including a novel model which proposes that bacteriorhodopsin pumps hydroxide (OH(-)) ions from the extracellular to the cytoplasmic side.
Collapse
Affiliation(s)
- H Luecke
- Departments of Molecular Biology and Biochemistry and Physiology and Biophysics, UCI Program in Macromolecular Structure, University of California, 92697-3900, Irvine, CA, USA.
| |
Collapse
|
35
|
Dencher NA, Sass HJ, Büldt G. Water and bacteriorhodopsin: structure, dynamics, and function. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:192-203. [PMID: 10984600 DOI: 10.1016/s0005-2728(00)00139-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A wealth of information has been gathered during the past decades that water molecules do play an important role in the structure, dynamics, and function of bacteriorhodopsin (bR) and purple membrane. Light-induced structural alterations in bR as detected by X-ray and neutron diffraction at low and high resolution are discussed in relationship to the mechanism of proton pumping. The analysis of high resolution intermediate structures revealed photon-induced rearrangements of water molecules and hydrogen bonds concomitant with conformational changes in the chromophore and the protein. These observations led to an understanding of key features of the pumping mechanism, especially the vectoriality and the different modes of proton translocation in the proton release and uptake domain of bR. In addition, water molecules influence the function of bR via equilibrium fluctuations, which must occur with adequate amplitude so that energy barriers between conformational states can be overcome.
Collapse
Affiliation(s)
- N A Dencher
- Technische Universität Darmstadt, Institute of Biochemistry, Physical Biochemistry, Petersenstrasse 22, D-64287 Darmstadt, Germany.
| | | | | |
Collapse
|
36
|
Herzfeld J, Tounge B. NMR probes of vectoriality in the proton-motive photocycle of bacteriorhodopsin: evidence for an 'electrostatic steering' mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:95-105. [PMID: 10984593 DOI: 10.1016/s0005-2728(00)00132-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In recent years, significant progress has been made in elucidating the structure of bacteriorhodopsin. However, the molecular mechanism by which vectorial proton motion is enforced remains unknown. Given the advantages of a protonated Schiff base for both photoisomerization and thermal reisomerization of the chromophore, a five-state proton pump can be rationalized in which the switch in the connectivity of the Schiff base between the two sides of the membrane is decoupled from double bond isomerization. This decoupling requires tight control of the Schiff base until it is deprotonated and decisive release after it is deprotonated. NMR evidence has been obtained for both the tight control and the decisive release: strain develops in the chromophore in the first half of the photocycle and disappears after deprotonation. The strain is associated with a strong interaction between the Schiff base and its counterion, an interaction that is broken when the Schiff base deprotonates. Thus the counterion appears to play a critical role in energy transduction, controlling the Schiff base in the first half of the photocycle by 'electrostatic steering'. NMR also detects other events during the photocycle, but it is argued that these are secondary to the central mechanism.
Collapse
Affiliation(s)
- J Herzfeld
- Department of Chemistry, MS #015, Brandeis University, 02454-9110, Waltham, MA, USA.
| | | |
Collapse
|
37
|
Sass HJ, Büldt G, Gessenich R, Hehn D, Neff D, Schlesinger R, Berendzen J, Ormos P. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature 2000; 406:649-53. [PMID: 10949308 DOI: 10.1038/35020607] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transport of protons across membranes is an important process in cellular bioenergetics. The light-driven proton pump bacteriorhodopsin is the best-characterized protein providing this function. Photon energy is absorbed by the chromophore retinal, covalently bound to Lys 216 via a protonated Schiff base. The light-induced all-trans to 13-cis isomerization of the retinal results in deprotonation of the Schiff base followed by alterations in protonatable groups within bacteriorhodopsin. The changed force field induces changes, even in the tertiary structure, which are necessary for proton pumping. The recent report of a high-resolution X-ray crystal structure for the late M intermediate of a mutant bacteriorhopsin (with Asp 96-->Asn) displays the structure of a proton pathway highly disturbed by the mutation. To observe an unperturbed proton pathway, we determined the structure of the late M intermediate of wild-type bacteriorhodopsin (2.25 A resolution). The cytoplasmic side of our M2 structure shows a water net that allows proton transfer from the proton donor group Asp 96 towards the Schiff base. An enlarged cavity system above Asp 96 is observed, which facilitates the de- and reprotonation of this group by fluctuating water molecules in the last part of the cycle.
Collapse
Affiliation(s)
- H J Sass
- Institute of Structural Biology, Research Centre Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Royant A, Edman K, Ursby T, Pebay-Peyroula E, Landau EM, Neutze R. Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 2000; 406:645-8. [PMID: 10949307 DOI: 10.1038/35020599] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A wide variety of mechanisms are used to generate a proton-motive potential across cell membranes, a function lying at the heart of bioenergetics. Bacteriorhodopsin, the simplest known proton pump, provides a paradigm for understanding this process. Here we report, at 2.1 A resolution, the structural changes in bacteriorhodopsin immediately preceding the primary proton transfer event in its photocycle. The early structural rearrangements propagate from the protein's core towards the extracellular surface, disrupting the network of hydrogen-bonded water molecules that stabilizes helix C in the ground state. Concomitantly, a bend of this helix enables the negatively charged primary proton acceptor, Asp 85, to approach closer to the positively charged primary proton donor, the Schiff base. The primary proton transfer event would then neutralize these two groups, cancelling their electrostatic attraction and facilitating a relaxation of helix C to a less strained geometry. Reprotonation of the Schiff base by Asp 85 would thereby be impeded, ensuring vectorial proton transport. Structural rearrangements also occur near the protein's surface, aiding proton release to the extracellular medium.
Collapse
Affiliation(s)
- A Royant
- Institut de Biologie Structurale, CEA-CNRS-Université Joseph Fourier, UMR 5075, Grenoble, France
| | | | | | | | | | | |
Collapse
|
39
|
Murata K, Fujii Y, Enomoto N, Hata M, Hoshino T, Tsuda M. A study on the mechanism of the proton transport in bacteriorhodopsin: the importance of the water molecule. Biophys J 2000; 79:982-91. [PMID: 10920028 PMCID: PMC1300994 DOI: 10.1016/s0006-3495(00)76352-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mechanism of proton transport around the Schiff base in bacteriorhodopsin was investigated by ab initio molecular orbital (MO) calculations. Computations were performed for the case where there is a water molecule between the Schiff base and the Asp residue and for the case where there is no water molecule. Changes in the atomic configuration and potential energy through the proton transport process were compared between two cases. In the absence of water, the protonated Schiff base was not stable, and a proton was spontaneously detached from the Schiff base. On the other hand, a stable structure of the protonated Schiff base was obtained in the presence of water. This suggests that the presence of a water molecule is required for stability in the formation of a protonated Schiff base.
Collapse
Affiliation(s)
- K Murata
- Faculty of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Luecke H, Schobert B, Cartailler JP, Richter HT, Rosengarth A, Needleman R, Lanyi JK. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. J Mol Biol 2000; 300:1237-55. [PMID: 10903866 DOI: 10.1006/jmbi.2000.3884] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to understand how isomerization of the retinal drives unidirectional transmembrane ion transport in bacteriorhodopsin, we determined the atomic structures of the BR state and M photointermediate of the E204Q mutant, to 1.7 and 1.8 A resolution, respectively. Comparison of this M, in which proton release to the extracellular surface is blocked, with the previously determined M in the D96N mutant indicates that the changes in the extracellular region are initiated by changes in the electrostatic interactions of the retinal Schiff base with Asp85 and Asp212, but those on the cytoplasmic side originate from steric conflict of the 13-methyl retinal group with Trp182 and distortion of the pi-bulge of helix G. The structural changes suggest that protonation of Asp85 initiates a cascade of atomic displacements in the extracellular region that cause release of a proton to the surface. The progressive relaxation of the strained 13-cis retinal chain with deprotonated Schiff base, in turn, initiates atomic displacements in the cytoplasmic region that cause the intercalation of a hydrogen-bonded water molecule between Thr46 and Asp96. This accounts for the lowering of the pK(a) of Asp96, which then reprotonates the Schiff base via a newly formed chain of water molecules that is extending toward the Schiff base.
Collapse
Affiliation(s)
- H Luecke
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The photon-driven proton translocator bacteriorhodopsin is considered to be the best understood membrane protein so far. It is nowadays regarded as a model system for photosynthesis, ion pumps and seven transmembrane receptors. The profound knowledge came from the applicability of a variety of modern biophysical techniques which have often been further developed with research on bacteriorhodopsin and have delivered major contributions also to other areas. Most prominent examples are electron crystallography, solid-state NMR spectroscopy and time-resolved vibrational spectroscopy. The recently introduced method of crystallising a membrane protein in the lipidic cubic phase led to high-resolution structures of ground state bacteriorhodopsin and some of the photocycle intermediates. This achievement in combination with spectroscopic results will strongly advance our understanding of the functional mechanism of bacteriorhodopsin on the atomic level. We present here the current knowledge on specific aspects of the structural and functional dynamics of the photoreaction of bacteriorhodopsin with a focus on techniques established in our institute.
Collapse
|
42
|
Abstract
The pKa of bovine rhodopsin is greater than 15; that of the long-wave-length-sensitive gecko P521 pigment ranges from 8.4 to 10.5 depending on chloride concentration; and that of octopus, an invertebrate, is 10.5. These pKa values are much higher than are needed just to maintain the Schiff base in its protonated state in the photoreceptor cell. The high pKa of the Schiff base may be at least partially related to a low pKa of its counterion, which would lower the frequency of thermal isomerization of the chromophore and thus lower the dark noise in the photoreceptor cell. After light absorption, the high pKa of the protonated Schiff base of a vertebrate visual pigment must get lowered enough to allow it to deprotonate, a required step in vertebrate visual excitation. This deprotonation step is not required in invertebrate visual excitation.
Collapse
Affiliation(s)
- T G Ebrey
- Department of Cell and Structural Biology, School of Molecular and Cellular Biology, University of Illinois, Urbana 61801, USA
| |
Collapse
|
43
|
Heberle J. Proton transfer reactions across bacteriorhodopsin and along the membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:135-47. [PMID: 10812029 DOI: 10.1016/s0005-2728(00)00064-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteriorhodopsin is probably the best understood proton pump so far and is considered to be a model system for proton translocating membrane proteins. The basis of a molecular description of proton translocation is set by having the luxury of six highly resolved structural models at hand. Details of the mechanism and reaction dynamics were elucidated by a whole variety of biophysical techniques. The current molecular picture of catalysis by BR will be presented with examples from time-resolved spectroscopy. FT-IR spectroscopy monitors single proton transfer events within bacteriorhodopsin and judiciously positioned pH indicators detect proton migration at the membrane surface. Emerging properties are briefly outlined that underlie the efficient proton transfer across and along biological membranes.
Collapse
Affiliation(s)
- J Heberle
- Research Centre Jülich, IBI-2: Structural Biology, D-52425, Jülich, Germany.
| |
Collapse
|
44
|
Wang J, El-Sayed MA. Proton Polarizability of Hydrogen-Bonded Network and its Role in Proton Transfer in Bacteriorhodopsin. J Phys Chem A 2000. [DOI: 10.1021/jp994460u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianping Wang
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Mostafa A. El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| |
Collapse
|
45
|
Birge RR, Gillespie NB, Izaguirre EW, Kusnetzow A, Lawrence AF, Singh D, Song QW, Schmidt E, Stuart JA, Seetharaman S, Wise KJ. Biomolecular Electronics: Protein-Based Associative Processors and Volumetric Memories. J Phys Chem B 1999. [DOI: 10.1021/jp991883n] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert R. Birge
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244
| | - Nathan B. Gillespie
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244
| | - Enrique W. Izaguirre
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244
| | - Anakarin Kusnetzow
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244
| | - Albert F. Lawrence
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244
| | - Deepak Singh
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244
| | - Q. Wang Song
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244
| | - Edward Schmidt
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244
| | - Jeffrey A. Stuart
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244
| | - Sukeerthi Seetharaman
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244
| | - Kevin J. Wise
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244
| |
Collapse
|
46
|
Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol 1999; 291:899-911. [PMID: 10452895 DOI: 10.1006/jmbi.1999.3027] [Citation(s) in RCA: 1156] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Th?e atomic structure of the light-driven ion pump bacteriorhodopsin and the surrounding lipid matrix was determined by X-ray diffraction of crystals grown in cubic lipid phase. In the extracellular region, an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base and the proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline? kink. The bulge is stabilized by hydrogen-bonding of the main-chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The results indicate extensive involvement of bound water molecules in both the structure and the function of this seven-helical membrane protein. A bilayer of 18 tightly bound lipid chains forms an annulus around the protein in the crystal. Contacts between the trimers in the membrane plane are mediated almost exclusively by lipids.
Collapse
Affiliation(s)
- H Luecke
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Bacteriorhodopsin is a seven-transmembrane helical protein that contains all-trans retinal. In this light-driven pump, a reaction cycle initiated by photoisomerization to 13-cis causes translocation of a proton across the membrane. Local changes in the geometry of the protonated Schiff base and the proton acceptor Asp85, and the proton conductivities of the half channels that lead from this active site to the two membrane surfaces, interact so as to allow timely proton transfers that result in proton release on the extracellular side and proton uptake on the cytoplasmic one. The details of the steps in this photocycle, and the underlying principles that ensure unidirectionality of the movement of a proton across the protein, provide strong clues to how ion pumps function.
Collapse
Affiliation(s)
- J K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine 92697-4560, USA
| |
Collapse
|
48
|
Bullough PA, Henderson R. The projection structure of the low temperature K intermediate of the bacteriorhodopsin photocycle determined by electron diffraction. J Mol Biol 1999; 286:1663-71. [PMID: 10064722 DOI: 10.1006/jmbi.1999.2570] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriorhodopsin (bR) is an integral membrane protein which absorbs visible light and pumps protons across the cell membrane of Halobacterium salinarium. bR is one of the few membrane-bound pumps whose structure is known at atomic resolution. Changes in the protein structure of bR are a crucial element in the mechanism of proton pumping and can be followed by a variety of spectroscopic, and diffraction methods. A number of intermediates in the photocycle have been identified spectroscopically and a number of laboratories have been successful in reporting the structural changes taking place in the later stages of the photocycle over the millisecond time-scale using diffraction techniques. These studies have revealed significant changes in the protein structure, possibly involving changes in flexibility and/or movement of helices. Earlier intermediates which arise and decay on the picosecond to microsecond time-scale have proven more difficult to trap. Here, we report for the first time the successful trapping and diffraction analysis of bR in a low temperature state resembling the very early intermediate, K. We have calculated a projection difference map to 3.5 A resolution. The map reveals no significant structural changes in the molecule, despite having a very low background noise level. This does not rule out the possibility of movements in a direction perpendicular to the plane of the membrane. However, the data are consistent with other evidence that significant structural changes do not occur in the protein itself.
Collapse
Affiliation(s)
- P A Bullough
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2UH, UK.
| | | |
Collapse
|
49
|
Abstract
The atomic structure of bacteriorhodopsin and the outlines of its proton transport mechanism are now available. Photoisomerization of the retinal in the chromophore creates a steric and electrostatic conflict at the retinal binding site. The free energy gain sets off a sequence of reactions in which directed proton transfers take place between the protonated retinal Schiff base, Asp-85, and Asp-96. These internal steps, and other proton transfers at and near the two aqueous interfaces, add up to the translocation of a proton from the cytoplasmic to the extracellular side of the membrane. Bound water plays a crucial role in proton conduction in both extracellular and cytoplasmic regions, but the means by which the protons move from site to site differ. Proton release to the extracellular surface is through interaction of a hydrogen-bonded chain of identified aspartic acid, arginine, water, and glutamic acid residues with Asp-85, while proton uptake from the cytoplasmic surface utilizes a single aspartic acid, Asp-96, whose protonation state appears to be regulated by the protein conformation dependent hydration of this region. The directionality of the translocation is ensured by the accessibility of the Schiff base to the extracellular and cytoplasmic directions after the retinal is photoisomerized, as well as the changing proton affinities of the acceptor Asp-85 and donor Asp-96.
Collapse
Affiliation(s)
- J K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, California, 92697, USA.
| |
Collapse
|
50
|
Kandori H, Kinoshita N, Shichida Y, Maeda A. Protein Structural Changes in Bacteriorhodopsin upon Photoisomerization As Revealed by Polarized FTIR Spectroscopy. J Phys Chem B 1998. [DOI: 10.1021/jp981949z] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hideki Kandori
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Norimichi Kinoshita
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akio Maeda
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|