1
|
Martins TM, Martins C, Silva Pereira C. Multiple degrees of separation in the central pathways of the catabolism of aromatic compounds in fungi belonging to the Dikarya sub-Kingdom. Adv Microb Physiol 2019; 75:177-203. [PMID: 31655737 DOI: 10.1016/bs.ampbs.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The diversity and abundance of aromatic compounds in nature is crucial for proper metabolism in all biological systems, and also impacts greatly the development of many industrial processes. Naturally, understanding their catabolism becomes fundamental for many scientific fields of research, from clinical and environmental to technological. The genetic basis of the central pathways for the catabolism of aromatic compounds in fungi, particularly of benzene derivatives, remains however poorly understood largely overlooking their significance. In some Dikarya species the genes of the central pathways are clustered in the genome, often in an array with peripheral pathway genes, even if the existence of a specific pathway does not necessarily mean that the composing genes are clustered. The current availability of many annotated fungal genomes in the postgenomic era creates conditions to reach a more holistic view of these processes through target analysis of the central pathways gene clusters. Inspired by this, we have critically analyzed the established biochemical and genetic data on the catabolism of aromatic compounds in Dikarya after dissecting the presence and distribution of central catabolic gene clusters (at times including also details on gene diversity, order and orientation) and of peripheral genes. Our methodological approach illustrates the multiple degrees of separation in these central pathways gene clusters across Dikarya. Surprisingly, they show a great degree of similarity irrespectively of the Dikarya division, emphasizing that knowledge established on either phyla can guide the identification of clusters of comparable composition (in-cluster plus peripheral genes) in uncharacterized species.
Collapse
Affiliation(s)
- Tiago M Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, Oeiras, Portugal
| | - Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, Oeiras, Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, Oeiras, Portugal
| |
Collapse
|
2
|
|
3
|
Yemendzhiev H, Peneva N, Zlateva P, Krastanov A, Alexieva Z. Growth ofTrametes Versicolorin Nitro and Hydroxyl Phenol Derivatives. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
4
|
Martins TM, Núñez O, Gallart-Ayala H, Leitão MC, Galceran MT, Silva Pereira C. New branches in the degradation pathway of monochlorocatechols by Aspergillus nidulans: a metabolomics analysis. JOURNAL OF HAZARDOUS MATERIALS 2014; 268:264-72. [PMID: 24509097 DOI: 10.1016/j.jhazmat.2014.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/11/2013] [Accepted: 01/05/2014] [Indexed: 05/07/2023]
Abstract
A collective view of the degradation of monochlorocatechols in fungi is yet to be attained, though these compounds are recognised as key degradation intermediates of numerous chlorinated aromatic hydrocarbons, including monochlorophenols. In the present contribution we have analysed the degradation pathways of monochlorophenols in Aspergillus nidulans using essentially metabolomics. Degradation intermediates herein identified included those commonly reported (e.g. 3-chloro-cis,cis-muconate) but also compounds never reported before in fungi revealing for 4-chlorocatechol and for 3-chlorocatechol unknown degradation paths yielding 3-chlorodienelactone and catechol, respectively. A different 3-chlorocatechol degradation path led to accumulation of 2-chloromuconates (a potential dead-end), notwithstanding preliminary evidence of chloromuconolactones and protoanemonin simultaneous formation. In addition, some transformation intermediates, of which sulfate conjugates of mono-chlorophenols/chlorocatechols were the most common, were also identified. This study provides critical information for understanding the role of fungi in the degradation of chlorinated aromatic hydrocarbons; furthering their utility in the development of innovative bioremediation strategies.
Collapse
Affiliation(s)
- Tiago M Martins
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Oscar Núñez
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, E-08028 Barcelona, Spain
| | - Hector Gallart-Ayala
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, E-08028 Barcelona, Spain
| | - Maria Cristina Leitão
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Teresa Galceran
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, E-08028 Barcelona, Spain
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
5
|
Boissonneault KR, Henningsen BM, Bates SS, Robertson DL, Milton S, Pelletier J, Hogan DA, Housman DE. Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries. BMC Mol Biol 2013; 14:25. [PMID: 24180290 PMCID: PMC3832940 DOI: 10.1186/1471-2199-14-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudo-nitzschia multiseries Hasle (Hasle) (Ps-n) is distinctive among the ecologically important marine diatoms because it produces the neurotoxin domoic acid. Although the biology of Ps-n has been investigated intensely, the characterization of the genes and biochemical pathways leading to domoic acid biosynthesis has been limited. To identify transcripts whose levels correlate with domoic acid production, we analyzed Ps-n under conditions of high and low domoic acid production by cDNA microarray technology and reverse-transcription quantitative PCR (RT-qPCR) methods. Our goals included identifying and validating robust reference genes for Ps-n RNA expression analysis under these conditions. RESULTS Through microarray analysis of exponential- and stationary-phase cultures with low and high domoic acid production, respectively, we identified candidate reference genes whose transcripts did not vary across conditions. We tested eleven potential reference genes for stability using RT-qPCR and GeNorm analyses. Our results indicated that transcripts encoding JmjC, dynein, and histone H3 proteins were the most suitable for normalization of expression data under conditions of silicon-limitation, in late-exponential through stationary phase. The microarray studies identified a number of genes that were up- and down-regulated under toxin-producing conditions. RT-qPCR analysis, using the validated controls, confirmed the up-regulation of transcripts predicted to encode a cycloisomerase, an SLC6 transporter, phosphoenolpyruvate carboxykinase, glutamate dehydrogenase, a small heat shock protein, and an aldo-keto reductase, as well as the down-regulation of a transcript encoding a fucoxanthin-chlorophyll a-c binding protein, under these conditions. CONCLUSION Our results provide a strong basis for further studies of RNA expression levels in Ps-n, which will contribute to our understanding of genes involved in the production and release of domoic acid, an important neurotoxin that affects human health as well as ecosystem function.
Collapse
Affiliation(s)
- Katie Rose Boissonneault
- Department of Biological Sciences, Plymouth State University, MSC 64, 17 High St., Plymouth, NH 03264, USA
- Koch Institute, Massachusetts Institute of Technology, 76-553, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Brooks M Henningsen
- Department of Biological Sciences, Plymouth State University, MSC 64, 17 High St., Plymouth, NH 03264, USA
- Present address: Mascoma Corporation, 67 Etna Road Suite 300, Lebanon, NH 03766, USA
| | - Stephen S Bates
- Fisheries and Oceans Canada, Gulf Fisheries Centre, P.O. Box 5030, Moncton, New Brunswick E1C 9B6, Canada
| | - Deborah L Robertson
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Sean Milton
- Koch Institute, Massachusetts Institute of Technology, 76-553, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Present address: Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, MA 02139, USA
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Vail Building Room 208, Dartmouth Medical School, Hanover, NH 03755, USA
| | - David E Housman
- Koch Institute, Massachusetts Institute of Technology, 76-553, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Krastanov A, Alexieva Z, Yemendzhiev H. Microbial degradation of phenol and phenolic derivatives. Eng Life Sci 2013. [DOI: 10.1002/elsc.201100227] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Albert Krastanov
- Department of Biotechnology; University of Food Technologies; Plovdiv; Bulgaria
| | - Zlatka Alexieva
- Institute of Microbiology; Bulgarian Academy of Sciences; Sofia; Bulgaria
| | - Husein Yemendzhiev
- Department of Water Technology; University “Prof. Asen Zlatarov”; Burgas; Bulgaria
| |
Collapse
|
7
|
Michielse CB, van Wijk R, Reijnen L, Cornelissen BJC, Rep M. Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol 2009; 10:R4. [PMID: 19134172 PMCID: PMC2687792 DOI: 10.1186/gb-2009-10-1-r4] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/22/2008] [Accepted: 01/09/2009] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Fusarium oxysporum f. sp. lycopersici is the causal agent of vascular wilt disease in tomato. In order to gain more insight into the molecular processes in F. oxysporum necessary for pathogenesis and to uncover the genes involved, we used Agrobacterium-mediated insertional mutagenesis to generate 10,290 transformants and screened the transformants for loss or reduction of pathogenicity. RESULTS This led to the identification of 106 pathogenicity mutants. Southern analysis revealed that the average T-DNA insertion is 1.4 and that 66% of the mutants carry a single T-DNA. Using TAIL-PCR, chromosomal T-DNA flanking regions were isolated and 111 potential pathogenicity genes were identified. CONCLUSIONS Functional categorization of the potential pathogenicity genes indicates that certain cellular processes, such as amino acid and lipid metabolism, cell wall remodeling, protein translocation and protein degradation, seem to be important for full pathogenicity of F. oxysporum. Several known pathogenicity genes were identified, such as those encoding chitin synthase V, developmental regulator FlbA and phosphomannose isomerase. In addition, complementation and gene knock-out experiments confirmed that a glycosylphosphatidylinositol-anchored protein, thought to be involved in cell wall integrity, a transcriptional regulator, a protein with unknown function and peroxisome biogenesis are required for full pathogenicity of F. oxysporum.
Collapse
Affiliation(s)
- Caroline B Michielse
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | - Ringo van Wijk
- Current address: Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | - Linda Reijnen
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | - Ben JC Cornelissen
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | - Martijn Rep
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| |
Collapse
|
8
|
Yemendzhiev H, Gerginova M, Krastanov A, Stoilova I, Alexieva Z. Growth of Trametes versicolor on phenol. J Ind Microbiol Biotechnol 2008; 35:1309-12. [DOI: 10.1007/s10295-008-0412-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 07/29/2008] [Indexed: 11/29/2022]
|
9
|
Cha CJ, Bruce NC. Stereo- and regiospecific cis,cis-muconate cycloisomerization by Rhodococcus rhodochrous N75. FEMS Microbiol Lett 2003; 224:29-34. [PMID: 12855164 DOI: 10.1016/s0378-1097(03)00395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
cis,cis-Muconate cycloisomerase was purified to homogeneity from cells of Rhodococcus rhodochrous N75 grown at the expense of benzoate and p-toluate as the sole sources of carbon. A single cycloisomerase was found to be induced in this organism with no isoforms being detected when R. rhodochrous N75 was grown on either benzoate or p-toluate as the sole source of carbon. The enzyme is hexameric with a single subunit Mr of 40,000. cis,cis-Muconate cycloisomerase from R. rhodochrous N75 displayed strict regio- and stereospecificity whereby cis,cis-muconate is cycloisomerized to (4S)-muconolactone and 2-methyl- and 3-methyl-substituted muconates are cycloisomerized to 2-methyl- and 4-methyl-substituted muconolactones by 1,4- and 3,6-cycloisomerization, respectively.
Collapse
Affiliation(s)
- Chang-Jun Cha
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK.
| | | |
Collapse
|
10
|
Vollmer MD, Hoier H, Hecht HJ, Schell U, Gröning J, Goldman A, Schlömann M. Substrate specificity of and product formation by muconate cycloisomerases: an analysis of wild-type enzymes and engineered variants. Appl Environ Microbiol 1998; 64:3290-9. [PMID: 9726873 PMCID: PMC106723 DOI: 10.1128/aem.64.9.3290-3299.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Muconate cycloisomerases play a crucial role in the bacterial degradation of aromatic compounds by converting cis,cis-muconate, the product of catechol ring cleavage, to (4S)-muconolactone. Chloromuconate cycloisomerases catalyze both the corresponding reaction and a dehalogenation reaction in the transformation of chloroaromatic compounds. This study reports the first thorough examination of the substrate specificity of the muconate cycloisomerases from Pseudomonas putida PRS2000 and Acinetobacter "calcoaceticus" ADP1. We show that they transform, in addition to cis,cis-muconate, 3-fluoro-, 2-methyl-, and 3-methyl-cis, cis-muconate with high specificity constants but not 2-fluoro-, 2-chloro-, 3-chloro-, or 2,4-dichloro-cis,cis-muconate. Based on known three-dimensional structures, variants of P. putida muconate cycloisomerase were constructed by site-directed mutagenesis to contain amino acids found in equivalent positions in chloromuconate cycloisomerases. Some of the variants had significantly increased specificity constants for 3-chloro- or 2,4-dichloromuconate (e.g., A271S and I54V showed 27- and 22-fold increases, respectively, for the former substrate). These kinetic improvements were not accompanied by a change from protoanemonin to cis,cis-dienelactone as the product of 3-chloro-cis,cis-muconate conversion. The rate of 2-chloro-cis,cis-muconate turnover was not significantly improved, nor was this compound dehalogenated to any significant extent. However, the direction of 2-chloro-cis,cis-muconate cycloisomerization could be influenced by amino acid exchange. While the wild-type enzyme discriminated only slightly between the two possible cycloisomerization directions, some of the enzyme variants showed a strong preference for either (+)-2-chloro- or (+)-5-chloromuconolactone formation. These results show that the different catalytic characteristics of muconate and chloromuconate cycloisomerases are due to a number of features that can be changed independently of each other.
Collapse
Affiliation(s)
- M D Vollmer
- Institute for Microbiology, D-70550 Stuttgart, and National Research Center for Biotechnology, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Boersma MG, Dinarieva TY, Middelhoven WJ, van Berkel WJ, Doran J, Vervoort J, Rietjens IM. 19F nuclear magnetic resonance as a tool to investigate microbial degradation of fluorophenols to fluorocatechols and fluoromuconates. Appl Environ Microbiol 1998; 64:1256-63. [PMID: 9546160 PMCID: PMC106138 DOI: 10.1128/aem.64.4.1256-1263.1998] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A method was developed to study the biodegradation and oxidative biodehalogenation of fluorinated phenols by 19F nuclear magnetic resonance (NMR). Characterization of the 19F NMR spectra of metabolite profiles of a series of fluorophenols, converted by purified phenol hydroxylase, catechol 1,2-dioxygenase, and/or by the yeast-like fungus Exophiala jeanselmei, provided possibilities for identification of the 19F NMR chemical shift values of fluorinated catechol and muconate metabolites. As an example, the 19F NMR method thus defined was used to characterize the time-dependent metabolite profiles of various halophenols in either cell extracts or in incubations with whole cells of E. jeanselmei. The results obtained for these two systems are similar, except for the level of muconates observed. Altogether, the results of the present study describe a 19F NMR method which provides an efficient tool for elucidating the metabolic pathways for conversion of fluorine-containing phenols by microorganisms, with special emphasis on possibilities for biodehalogenation and detection of the type of fluorocatechols and fluoromuconates involved. In addition, the method provides possibilities for studying metabolic pathways in vivo in whole cells.
Collapse
Affiliation(s)
- M G Boersma
- Laboratory of Biochemistry, Wageningen Agricultural University, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
12
|
Blasco R, Mallavarapu M, Wittich R, Timmis KN, Pieper DH. Evidence that Formation of Protoanemonin from Metabolites of 4-Chlorobiphenyl Degradation Negatively Affects the Survival of 4-Chlorobiphenyl-Cometabolizing Microorganisms. Appl Environ Microbiol 1997; 63:427-34. [PMID: 16535507 PMCID: PMC1389513 DOI: 10.1128/aem.63.2.427-434.1997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A rapid decline in cell viability of different PCB-metabolizing organisms was observed in soil microcosms amended with 4-chlorobiphenyl. The toxic effect could not be attributed to 4-chlorobiphenyl but was due to a compound formed from the transformation of 4-chlorobiphenyl by the natural microflora. Potential metabolites of 4-chlorobiphenyl, 4-chlorobenzoate and 4-chlorocatechol, caused similar toxic effects. We tested the hypothesis that the toxic effects are due to the formation of protoanemonin, a plant-derived antibiotic, which is toxic to microorganisms and which has been shown to be formed from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. Consistent with our hypothesis, addition to soil microcosms of strains able to reroute intermediary 4-chlorocatechol from the 3-oxoadipate pathway and into the meta-cleavage pathway or able to mineralize 4-chlorocatechol by a modified ortho-cleavage pathway resulted in reversal of this toxic effect. Surprisingly, while direct addition of protoanemonin influenced both the viability of fungi and the microbial activity of the soil microcosm, there was little effect on bacterial viability due to its rapid degradation. This rapid degradation accounts for our inability to detect this compound in soils amended with 4-chlorocatechol. However, significant accumulation of protoanemonin was observed by a mixed bacterial community enriched with benzoate or a mixture of benzoate and 4-methylbenzoate, providing the metabolic potential of the soil to form protoanemonin. The effects of soil heterogeneity and microcosm interactions are discussed in relation to the different effects of protoanemonin when applied as a shock load and when it is produced in small amounts from precursors over long periods.
Collapse
|
13
|
Abstract
The beta-ketoadipate pathway is a chromosomally encoded convergent pathway for aromatic compound degradation that is widely distributed in soil bacteria and fungi. One branch converts protocatechuate, derived from phenolic compounds including p-cresol, 4-hydroxybenzoate and numerous lignin monomers, to beta-ketoadipate. The other branch converts catechol, generated from various aromatic hydrocarbons, amino aromatics, and lignin monomers, also to beta-ketoadipate. Two additional steps accomplish the conversion of beta-ketoadipate to tricarboxylic acid cycle intermediates. Enzyme studies and amino acid sequence data indicate that the pathway is highly conserved in diverse bacteria, including Pseudomonas putida, Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Rhodococcus erythropolis, and many others. The catechol branch of the beta-ketoadipate pathway appears to be the evolutionary precursor for portions of the plasmid-borne ortho-pathways for chlorocatechol degradation. However, accumulating evidence points to an independent and convergent evolutionary origin for the eukaryotic beta-ketoadipate pathway. In the face of enzyme conservation, the beta-ketoadipate pathway exhibits many permutations in different bacterial groups with respect to enzyme distribution (isozymes, points of branch convergence), regulation (inducing metabolites, regulatory proteins), and gene organization. Diversity is also evident in the behavioral responses of different bacteria to beta-ketoadipate pathway-associated aromatic compounds. The presence and versatility of transport systems encoded by beta-ketoadipate pathway regulons is just beginning to be explored in various microbial groups. It appears that in the course of evolution, natural selection has caused the beta-ketoadipate pathway to assume a characteristic set of features or identity in different bacteria. Presumably such identities have been shaped to optimally serve the diverse lifestyles of bacteria.
Collapse
Affiliation(s)
- C S Harwood
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
14
|
Prucha M, Wray V, Pieper DH. Metabolism of 5-chlorosubstituted muconolactones. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:357-66. [PMID: 8647073 DOI: 10.1111/j.1432-1033.1996.00357.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The stereochemistry of the four stereoforms of 5-chloro-3-methylmuconolactones could be deduced from NMR and stability data, and from the comparison with authentic (4R, 5S)-5-chloromuconolactone. Muconolactone isomerase of Alcaligenes eutrophus JMP 134 was shown to catalyze syn-elimination of hydrogen chloride from (4R, 5R)-5-chloro-3-methylmuconolactone, (4R, 5S)-5-chloro-3 -methylmuconolactone and (4R, 5S)-5-chloromuconolactone to form 3-methyl-trans-dienelactone, 3-methyl-cis-dienelactone and a 3:1 mixture of cis- and trans-dienelactone, respectively. 3-Methyl-trans-dienelactone was a substrate of pJP4-encoded dienelactone hydrolase of A. eutrophus JMP 134, whereas 3-methyl-cis-dienelactone transformation was negligible indicating a restricted substrate specificity of this enzyme. Both substrates were transformed into 3-methylmaleylacetate which in turn was a substrate for maleylacetate reductase. This compound was shown to possess a cyclic structure (4-hydroxy-3-methyl-muconolactone) under acidic conditions.
Collapse
Affiliation(s)
- M Prucha
- Department of Microbiology, National Research Centre for Biotechnology, Braunschweig, Germany
| | | | | |
Collapse
|
15
|
Blasco R, Wittich RM, Mallavarapu M, Timmis KN, Pieper DH. From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 1995; 270:29229-35. [PMID: 7493952 DOI: 10.1074/jbc.270.49.29229] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Chloroaromatics, a major class of industrial pollutants, may be oxidatively metabolized to chlorocatechols by soil and water microorganisms that have evolved catabolic activities toward these xenobiotics. We show here that 4-chlorocatechol can be further transformed by enzymes of the ubiquitous 3-oxoadipate pathway. However, whereas chloromuconate cycloisomerases catalyze the dechlorination of 3-chloro-cis,cis-muconate to form cis-dienelactone, muconate cycloisomerases catalyze a novel reaction, i.e. the dechlorination and concomitant decarboxylation to form 4-methylenebut-2-en-4-olide (protoanemonin), an ordinarily plant-derived antibiotic that is toxic to microorganisms.
Collapse
Affiliation(s)
- R Blasco
- Division of Microbiology, National Research Center for Biotechnology, Braunschweig, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
16
|
Elsemore DA, Ornston LN. Unusual ancestry of dehydratases associated with quinate catabolism in Acinetobacter calcoaceticus. J Bacteriol 1995; 177:5971-8. [PMID: 7592351 PMCID: PMC177426 DOI: 10.1128/jb.177.20.5971-5978.1995] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Catabolism of quinate to protocatechuate requires the consecutive action of quinate dehydrogenase (QuiA), dehydroquinate dehydratase (QuiB), and dehydroshikimate dehyratase (QuiC), Genes for catabolism of protocatechuate are encoded by the pca operon in the Acinetobacter calcoaceticus chromosome. Observations reported here demonstrate that A. calcoaceticus qui genes are clustered in the order quiBCXA directly downstream from the pca operon. Sequence comparisons indicate that quiX encodes a porin, but the specific function of this protein has not been clearly established. Properties of mutants created by insertion of omega elements show that quiBC is expressed as part of a single transcript, but there is also an independent transcriptional initiation site directly upstream of quiA. The deduced amino acid sequence of QuiC does not resemble any other known sequence. A. calcoaceticus QuiB is most directly related to a family of enzymes with identical catalytic activity and biosynthetic AroD function in coliform bacteria. Evolution of A. calcoaceticus quiB appears to have been accompanied by fusion of a leader sequence for transport of the encoded protein into the inner membrane, and the location of reactions catalyzed by the mature enzyme may account for the failure of A. calcoaceticus aroD to achieve effective complementation of null mutations in quiB. Analysis of a genetic site where a DNA segment encoding a leader sequence was transposed adds to evidence suggesting horizontal transfer of nucleotide sequences within genes during evolution.
Collapse
Affiliation(s)
- D A Elsemore
- Department of Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
17
|
Mazur P, Henzel WJ, Mattoo S, Kozarich JW. 3-Carboxy-cis,cis-muconate lactonizing enzyme from Neurospora crassa: an alternate cycloisomerase motif. J Bacteriol 1994; 176:1718-28. [PMID: 8132467 PMCID: PMC205260 DOI: 10.1128/jb.176.6.1718-1728.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
3-Carboxy-cis,cis-muconate lactonizing enzyme (CMLE; EC 5.5.1.5) from Neurospora crassa catalyzes the reversible gamma-lactonization of 3-carboxy-cis,cis-muconate by a syn-1,2 addition-elimination reaction. The stereochemical and regiochemical course of the reaction is (i) opposite that of CMLE from Pseudomonas putida (EC 5.5.1.2) and (ii) identical to that of cis,cis-muconate lactonizing enzyme (MLE; EC 5.5.1.1) from P. putida. In order to determine the mechanistic and evolutionary relationships between N. crassa CMLE and the procaryotic cycloisomerases, we have purified CMLE from N. crassa to homogeneity and determined its nucleotide sequence from a cDNA clone isolated from a p-hydroxybenzoate-induced N. crassa cDNA library. The deduced amino acid sequence predicts a protein of 41.2 kDa (365 residues) which does not exhibit sequence similarity with any of the bacterial cycloisomerases. The cDNA encoding N. crassa CMLE was expressed in Escherichia coli, and the purified recombinant protein exhibits physical and kinetic properties equivalent to those found for the isolated N. crassa enzyme. We also report that N. crassa CMLE possesses substantially reduced yet significant levels of MLE activity with cis,cis-muconate and, furthermore, does not appear to be dependent on divalent metals for activity. These data suggest that the N. crassa CMLE may represent a novel eucaryotic motif in the cycloisomerase enzyme family.
Collapse
Affiliation(s)
- P Mazur
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742
| | | | | | | |
Collapse
|