1
|
Anedda R, Era B, Casu M, Fais A, Ceccarelli M, Corda M, Ruggerone P. Evidences of xenon-induced structural changes in the active site of cyano-metmyoglobins: a 1H NMR study. J Phys Chem B 2009; 112:15856-66. [PMID: 19368018 DOI: 10.1021/jp807959u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using xenon atoms as a biomolecular probe raises the concern of whether they may influence in some way the molecular and electronic structure of the system under study. In this paper, the relevance of guest-host interactions in xenon complexes with paramagnetic myoglobins (Mbs) is thoroughly analyzed, and the issue about the use of xenon to detect and characterize voids within flexible biomolecules is critically discussed. A detailed 1H NMR study useful for describing the hydrophobic cavities close to the active site of low-spin ferric myoglobins with respect to their interaction with the xenon atom is presented. The method is subsequently validated by the analysis of Xe-Mb with two different myoglobins, extracted from horse and pig. These myoglobins differ by 14 amino acids. One of these, Ile142 in horse Mb, is located in the proximal cavity, which is the main xenon binding site in horse Mb, and is replaced by Met142 in pig Mb. We demonstrated specific behaviors associated with the capacity of each of the two myoglobins to bind xenon and provided site-specific information on the host-guest interaction. Moreover, 1H NMR measurements produce a picture of xenon-related local distortions of the protein, associated with a functionally relevant residue located right at the active site, the proximal hystidine E7(His93). According to the 1H NMR data, xenon induces the tilt of the residue His93 relative to the heme plane and consequently causes an alteration of the magnetic axes. Similar conclusions are obtained both for pig cyano-myoglobin and for horse cyano-myoglobin, the structural deformation being in the former of minor entity.
Collapse
Affiliation(s)
- Roberto Anedda
- Department of Chemical Sciences, University of Cagliari, Monserrato-Sestu Km 0.700 1-09042, Monserrato, CA, Italy
| | | | | | | | | | | | | |
Collapse
|
2
|
Solution 1H NMR study of the active site structure for the double mutant H64Q/V68F cyanide complex from mouse neuroglobin. Biophys Chem 2008; 136:115-23. [DOI: 10.1016/j.bpc.2008.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/12/2008] [Accepted: 05/12/2008] [Indexed: 11/20/2022]
|
3
|
Bondarenko V, Wang J, Kalish H, Balch AL, La Mar GN. Solution 1H NMR study of the accommodation of the side chain of n-butyl-etiohemin-I incorporated into the active site of cyano-metmyoglobin. J Biol Inorg Chem 2005; 10:283-93. [PMID: 15821940 DOI: 10.1007/s00775-005-0640-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 03/01/2005] [Indexed: 11/24/2022]
Abstract
In order to identify the most readily deformable portion of the heme pocket in myoglobin, equine myoglobin was reconstituted with a meso-n-butyl substituent on centrosymmetric etiohemin-I. Solution 1H NMR data for the low-spin iron(III) cyanide complex of oxidized myoglobin that include 2D nuclear Overhauser enhancement spectroscopy contacts, paramagnetic relaxation, and dipolar shifts resulting from magnetic anisotropy show that the heme binds uniquely to the iron in a manner that arranges the methyl and ethyl substituents on a given pyrrole in a clockwise manner when viewed from the proximal side, and with the n-butyl group seated at the canonical alpha-meso position of native protohemin-IX. The butyl group is oriented sharply toward the proximal side and its protein contacts demonstrate that it is oriented largely into the "xenon hole" in myoglobin. The location of the n-butyl group on the proximal side near the vacancies places it within the region found to be most flexible in molecular dynamics simulation. A small, counterclockwise rotation of the pyrrole N-Fe-N vector of n-butyl-etiohemin-I relative to that for native protohemin, indicated by both the prosthetic group methyl contact shift pattern and the prosthetic group contacts to heme pocket residues, is proposed to allow the xenon hole to accommodate better the n-butyl group. In contrast to previous work, which showed that a bulky polar substituent on etiohemin-I preferentially seats at the canonical gamma-meso position, the nonpolar n-butyl group selects the alpha-meso position.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
4
|
Tran ATT, Kolczak U, La Mar GN. Solution 1H NMR study of the active site molecular structure and magnetic properties of the cyanomet complex of the isolated, tetrameric beta-chain from human adult hemoglobin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1701:75-87. [PMID: 15450177 DOI: 10.1016/j.bbapap.2004.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 06/03/2004] [Accepted: 06/09/2004] [Indexed: 10/26/2022]
Abstract
The solution molecular structure and the electronic and magnetic properties of the heme pocket of the cyanomet complex of the isolated beta-chain of human adult hemoglobin, HbA, have been investigated by homonuclear 2D (1)H NMR in order to assess the extent of assignments allowed by (1)H NMR of a homo-tetrameric 65-kDa protein, to guide the future assignments of the heterotetrameric complex of HbA, and to compare the structure of the beta-chain to the crystallographically characterized complexes that contains the beta-chain. The target residues are those that exhibit significant (>|0.2| ppm) dipolar shifts, as predicted by a "preliminary" set of magnetic axes determined from a small set of easily assigned active site residues. All 104 target residues ( approximately 70% of total) were assigned by taking advantage of the temperature dependence predicted by the "preliminary" magnetic axes for the polypeptide backbone; they include all residues proposed to play a significant role in modulating the ligand affinity in the tetramer HbA. Left unassigned are the A-helix, the end of the G-helix and the beginning of the H-helix where dipolar shifts are less than |0.2| ppm. These comprehensive assignments allow the determination of a robust set of orientation and anisotropies of the paramagnetic susceptibility tensor that leads to quantitative interpretation of the dipolar shifts of the beta-chain in terms of the crystal coordinates of the beta-subunit in ligated HbA which, in turn, confirms a largely conserved molecular structure of the isolated beta-chain relative to that in the intact R-state HbA. The major magnetic axis, which is correlated with the tilt of the Fe-CN unit, is tilted approximately 10 degrees from the heme normal so that the Fe-CN unit is tilted toward the beta-meso-H in a fashion remarkably similar to the Fe-CO tilt in the beta-subunit of HbCO. It is concluded that a set of "preliminary" magnetic axes and the use of variable temperature 2D NMR spectra are crucial to effective assignments in the tetrameric cyanomet beta-chain and that this approach should be similarly effective in HbA.
Collapse
Affiliation(s)
- Anh-Tuyet T Tran
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
5
|
La Mar GN, Asokan A, Espiritu B, Yeh DC, Auclair K, Ortiz De Montellano PR. Solution 1H NMR of the active site of substrate-bound, cyanide-inhibited human heme oxygenase. comparison to the crystal structure of the water-ligated form. J Biol Chem 2001; 276:15676-87. [PMID: 11297521 DOI: 10.1074/jbc.m009974200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of the active site residues of cyanide-inhibited, substrate-bound human heme oxygenase have been assigned on the basis of two-dimensional NMR using the crystal structure of the water-ligated substrate complex as a guide (Schuller, D. J., Wilks, A., Ortiz de Montellano, P. R., and Poulos, T. L. (1999) Nat. Struct. Biol. 6, 860-867). The proximal helix and the N-terminal portion of the distal helix are found to be identical to those in the crystal except that the heme for the major isomer ( approximately 75-80%) in solution is rotated 180 degrees about the alpha-gamma-meso axis relative to the unique orientation in the crystal. The central portion of the distal helix in solution is translated slightly over the heme toward the distal ligand, and a distal four-ring aromatic cluster has moved 1-2 A closer to the heme, which allows for strong hydrogen bonds between the hydroxyls of Tyr-58 and Tyr-137. These latter interactions are proposed to stabilize the closed pocket conducive to the high stereospecificity of the alpha-meso ring opening. The determination of the magnetic axes, for which the major axis is controlled by the Fe-CN orientation, reveals a approximately 20 degrees tilt of the distal ligand from the heme normal in the direction of the alpha-meso bridge, demonstrating that the close placement of the distal helix over the heme exerts control of stereospecificity by both blocking access to the beta, gamma, and delta-meso positions and tilting the axial ligand, a proposed peroxide, toward the alpha-meso position.
Collapse
Affiliation(s)
- G N La Mar
- University of California, Department of Chemistry, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
6
|
Nguyen BD, Xia Z, Cutruzzolá F, Allocatelli CT, Brunori M, La Mar GN. Solution (1)H NMR study of the influence of distal hydrogen bonding and N terminus acetylation on the active site electronic and molecular structure of Aplysia limacina cyanomet myoglobin. J Biol Chem 2000; 275:742-51. [PMID: 10625603 DOI: 10.1074/jbc.275.2.742] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sea hare Aplysia limacina possesses a myoglobin in which a distal H-bond is provided by Arg E10 rather than the common His E7. Solution (1)H NMR studies of the cyanomet complexes of true wild-type (WT), recombinant wild-type (rWT), and the V(E7)H/R(E10)T and V(E7)H mutants of Aplysia Mb designed to mimic the mammalian Mb heme pocket reveal that the distal His in the mutants is rotated out of the heme pocket and is unable to provide a stabilizing H-bond to bound ligand and that WT and rWT differ both in the thermodynamics of heme orientational disorder and in heme contact shift pattern. The mean of the four heme methyl shifts is shown to serve as a sensitive indicator of variations in distal H-bonding among a set of mutant cyanomet globins. The heme pocket perturbations in rWT relative to WT were traced to the absence of the N-terminal acetyl group in rWT that participates in an H-bond to the EF corner in WT. Analysis of dipolar contacts between heme and axial His and between heme and the protein matrix reveal a small approximately 2 degrees rotation of the axial His in rWT relative to true WT and a approximately 3 degrees rotation of the heme in the double mutant relative to rWT Mb. It is demonstrated that both the direction and magnitude of the rotation of the axial His relative to the heme can be determined from the change in the pattern of the contact-dominated heme methyl shift and from the dipolar-dominated heme meso-H shift. However, only NOE data can determine whether it is the His or heme that actually rotates in the protein matrix.
Collapse
Affiliation(s)
- B D Nguyen
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
7
|
Xia Z, Zhang W, Nguyen BD, Mar GN, Kloek AP, Goldberg DE. 1H NMR investigation of the distal hydrogen bonding network and ligand tilt in the cyanomet complex of oxygen-avid Ascaris suum hemoglobin. J Biol Chem 1999; 274:31819-26. [PMID: 10542205 DOI: 10.1074/jbc.274.45.31819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The O(2)-avid hemoglobin from the parasitic nematode Ascaris suum exhibits one of the slowest known O(2) off rates. Solution (1)H NMR has been used to investigate the electronic and molecular structural properties of the active site for the cyano-met derivative of the recombinant first domain of this protein. Assignment of the heme, axial His, and majority of the residues in contact with the heme reveals a molecular structure that is the same as reported in the A. suum HbO(2) crystal structure (Yang, J., Kloek, A., Goldberg, D. E., and Mathews, F. S. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 4224-4228) with the exception that the heme in solution is rotated by 180 degrees about the alpha,gamma-meso axis relative to that in the crystal. The observed dipolar shifts, together with the crystal coordinates of HbO(2), provide the orientation of the magnetic axes in the molecular framework. The major magnetic axis, which correlates with the Fe-CN vector, is found oriented approximately 30 degrees away from the heme normal and indicates significant steric tilt because of interaction with Tyr(30)(B10). The three side chain labile protons for the distal residues Tyr(30)(B10) and Gln(64)(E7) were identified, and their relaxation, dipolar shifts, and nuclear Overhauser effects to adjacent residues used to place them in the distal pocket. It is shown that these two distal residues exhibit the same orientations ideal for H bonding to the ligand and to each other, as found in the A. suum HbO(2) crystal. It is concluded that the ligated cyanide participates in the same distal H bonding network as ligated O(2). The combination of the strong steric tilt of the bound cyanide and slow ring reorientation of the Tyr(30)(B10) side chain supports a crowded and constrained distal pocket.
Collapse
Affiliation(s)
- Z Xia
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
8
|
Yamamoto Y, Kurihara N, Egawa T, Shimada H, Ishimura Y. Hydrogen bonding interaction of the amide group of Asn and Gln at distal E7 of bovine myoglobin with bound-ligand and its functional consequences. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1433:27-44. [PMID: 10446357 DOI: 10.1016/s0167-4838(99)00125-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asn and Gln with an amide group at gamma- and delta-positions, respectively, were substituted for distal His-E7 of bovine myoglobin to establish a system where hydrogen bonding interaction between the distal residue and bound-ligand can be altered by changing donor-acceptor distance. Two mutant myoglobins showed nearly identical (1)H-NMR spectral pattern for resolved heme peripheral side-chain and amino acid proton signals and similar two-dimensional NMR connectivities irrespective of cyanide-bound and -unbound states, indicating that the heme electronic structure and the molecular structure of the active site are not affected by a difference in one methylene group at the E7 position. Chemical exchange rate of Asn-E7 N(delta)H proton in met-cyano myoglobin is larger than that of Gln-E7 N(epsilon)H proton by at least two orders of magnitude, suggesting a considerable difference in the strength of hydrogen bond between the E7 side-chain and bound-ligand, due to the differential donor-acceptor distance between the two mutants. Thus a comparative study between the two proteins provides an ideal system to delineate a relationship between the stabilization of bound-ligand by the hydrogen bond and myoglobin's ligand affinity. The Asn-mutant showed a faster dissociation of cyano ion from met-myoglobin than the Gln-mutant by over 30-fold. Similarly, oxygen dissociation is faster in the Asn-mutant than in the Gln-mutant by approximately 100-fold. Association of cyanide anion to the mutant met-myoglobin was accelerated by changing Gln to Asn by a 4-fold. Likewise, oxygen binding was accelerated by approximately 2-fold by the above substitution. The present findings confirm that hydrogen bonding with the distal residue is a dominant factor for determining the ligand dissociation rate, whereas steric hindrance exerted by the distal residue is a primary determinant for the ligand association.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan.
| | | | | | | | | |
Collapse
|
9
|
Nguyen BD, Zhao X, Vyas K, La Mar GN, Lile RA, Brucker EA, Phillips GN, Olson JS, Wittenberg JB. Solution and crystal structures of a sperm whale myoglobin triple mutant that mimics the sulfide-binding hemoglobin from Lucina pectinata. J Biol Chem 1998; 273:9517-26. [PMID: 9545280 DOI: 10.1074/jbc.273.16.9517] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bivalve mollusc Lucina pectinata harbors sulfide-oxidizing chemoautotrophic bacteria and expresses a monomeric hemoglobin I, HbI, with normal O2, but extraordinarily high sulfide affinity. The crystal structure of aquomet Lucina HbI has revealed an active site with three residues not commonly found in vertebrate globins: Phe(B10), Gln(E7), and Phe(E11) (Rizzi, M., Wittenberg, J. B., Coda, A., Fasano, M., Ascenzi, P., and Bolognesi, M. (1994) J. Mol. Biol. 244, 86-89). Engineering these three residues into sperm whale myoglobin results in a triple mutant with approximately 700-fold higher sulfide affinity than for wild-type. The single crystal x-ray structure of the aquomet derivative of the myoglobin triple mutant and the solution 1H NMR active site structures of the cyanomet derivatives of both the myoglobin mutant and Lucina HbI have been determined to examine further the structural origin of their unusually high sulfide affinities. The major differences in the distal pocket is that in the aquomet form the carbonyl of Gln64(E7) serves as a H-bond acceptor, whereas in the cyanomet form the amido group acts as H-bond donor to the bound ligand. Phe68(E11) is rotated approximately 90 degrees about chi2 and located approximately 1-2 A closer to the iron atom in the myoglobin triple mutant relative to its conformation in Lucina HbI. The change in orientation potentially eliminates the stabilizing interaction with sulfide and, together with the decrease in size of the distal pocket, accounts for the 7-fold lower sulfide affinity of the myoglobin mutant compared with that of Lucina HbI.
Collapse
Affiliation(s)
- B D Nguyen
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang W, Cutruzzolá F, Allocatelli CT, Brunori M, La Mar GN. A myoglobin mutant designed to mimic the oxygen-avid Ascaris suum hemoglobin: elucidation of the distal hydrogen bonding network by solution NMR. Biophys J 1997; 73:1019-30. [PMID: 9251819 PMCID: PMC1180999 DOI: 10.1016/s0006-3495(97)78135-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The solution 1H NMR structure of the active site and ligand dissociation rate for the cyanomet complex have been determined for a sperm whale myoglobin triple mutant Leu29(B10)-->Tyr, His64(E7)-->Gln, Thr67(E10)-->Arg that mimics the distal residue configuration of the oxygen-avid hemoglobin from Ascaris suum. A double mutant that retains Leu29(B10) was similarly investigated. Two-dimensional NMR analysis of the iron-induced dipolar shifts, together with the conserved proximal side structure for the two mutants, allowed the determination of the orientations of the paramagnetic susceptibility tensor for each complex. The resulting magnetic axes, together with paramagnetic relaxation and steady-state NOEs, led to a quantitative description of the distal residue orientations. The distal Tyr29(B10) in the triple mutant provides a strong hydrogen bond to the bound cyanide comparable to that provided by His64(E7) in wild-type myoglobin. The distal Gln64(E7) in the triple mutant is sufficiently close to the bound cyanide to severe as a hydrogen bond donor, but the angle is not consistent with a strong hydrogen bond. Dipolar contacts between the Arg67(E10) guanidinium group and the Gln64(E7) side chain in both mutants support a hydrogen-bond to the Gln64(E7) carbonyl group. The much lower oxygen affinity of this triple mutant relative to that of Ascaris hemoglobin is concluded to arise from side-chain orientations that do not allow hydrogen bonds between the Gln64(E7) side-chain NHs and both the ligand and Tyr29(B10) hydroxyl oxygen. Cyanide dissociation rates for the reduced cyanide complexes are virtually unaffected by the mutations and are consistent with a model of the rate-determining step as the intrinsically slow Fe-C bond breaking that is largely independent of any hydrogen bonds to the cyanide nitrogen.
Collapse
Affiliation(s)
- W Zhang
- Department of Chemistry, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|
11
|
Wu Y, Basti M, Gambacurta A, Chiancone E, Ascoli F, La Mar GN. Proton-NMR investigation of the heme cavity in the cyanomet derivative of the cooperative homodimeric hemoglobin from Scapharca inaequivalvis. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1298:261-75. [PMID: 8980651 DOI: 10.1016/s0167-4838(96)00137-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The active-site structure of the paramagnetic cyanomet complex of the cooperative homodimeric hemoglobin from Scapharca inaequivalvis has been investigated by solution homonuclear NMR. In spite of the large size (32 kDa), the residues on the key proximal F- and distal E-helices could be sequence-specifically assigned and placed in the heme pocket in a manner common to diamagnetic systems. These backbone assignments were greatly facilitated by the significant dispersion of backbone chemical shifts by the highly anisotropic paramagnetic susceptibility tensor of the low-spin ferric state. The remainder of the residues in contact with the heme are assigned based on unique contacts to the heme predicted by the crystal structure and the observations of scalar connectivities diagnostic for the residues. The magnitude of the dipolar shifts for non-ligated residues was used to determine the anisotropy and orientation of the paramagnetic susceptibility tensor, and the major axis found tilted from the normal in a manner similar to that found for the Fe-CO unit in the crystal structure. The combination of NOESY inter-residue and heme-residue contacts, paramagnetic-induced relaxation and correlation between observed and dipolar shifts provide a description of the heme cavity in cyanomet Hb that is essentially the same as found in the carbonmonoxy Hb crystal structure. The pattern of both the heme methyl dominant contact shifts and the heme meso-proton dominant dipolar shifts are shown to be consistent with the orientation of the axial His. It is concluded that the present homonuclear NMR methods allow effective solution structure determination in the cyanomet form for dimeric Hb and suggest profitable extension to the tetrameric vertebrate hemoglobins.
Collapse
Affiliation(s)
- Y Wu
- Department of Chemistry, University of California, Davis 95616, USA
| | | | | | | | | | | |
Collapse
|
12
|
1H NMR investigation of distal mutant deoxy myoglobins. Interpretation of proximal His contact shifts in terms of a localized distal water molecule. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43927-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|