1
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
2
|
Mattila H, Mishra S, Tyystjärvi T, Tyystjärvi E. Singlet oxygen production by photosystem II is caused by misses of the oxygen evolving complex. THE NEW PHYTOLOGIST 2023; 237:113-125. [PMID: 36161283 PMCID: PMC10092662 DOI: 10.1111/nph.18514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/10/2022] [Indexed: 06/12/2023]
Abstract
Singlet oxygen (1 O2 ) is a harmful species that functions also as a signaling molecule. In chloroplasts, 1 O2 is produced via charge recombination reactions in photosystem II, but which recombination pathway(s) produce triplet Chl and 1 O2 remains open. Furthermore, the role of 1 O2 in photoinhibition is not clear. We compared temperature dependences of 1 O2 production, photoinhibition, and recombination pathways. 1 O2 production by pumpkin thylakoids increased from -2 to +35°C, ruling out recombination of the primary charge pair as a main contributor. S2 QA - or S2 QB - recombination pathways, in turn, had too steep temperature dependences. Instead, the temperature dependence of 1 O2 production matched that of misses (failures of the oxygen (O2 ) evolving complex to advance an S-state). Photoinhibition in vitro and in vivo (also in Synechocystis), and in the presence or absence of O2 , had the same temperature dependence, but ultraviolet (UV)-radiation-caused photoinhibition showed a weaker temperature response. We suggest that the miss-associated recombination of P680 + QA - is the main producer of 1 O2 . Our results indicate three parallel photoinhibition mechanisms. The manganese mechanism dominates in UV radiation but also functions in white light. Mechanisms that depend on light absorption by Chls, having 1 O2 or long-lived P680 + as damaging agents, dominate in red light.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| | - Sujata Mishra
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| | - Taina Tyystjärvi
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| |
Collapse
|
3
|
Han G, Chernev P, Styring S, Messinger J, Mamedov F. Molecular basis for turnover inefficiencies (misses) during water oxidation in photosystem II. Chem Sci 2022; 13:8667-8678. [PMID: 35974765 PMCID: PMC9337725 DOI: 10.1039/d2sc00854h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Photosynthesis stores solar light as chemical energy and efficiency of this process is highly important. The electrons required for CO2 reduction are extracted from water in a reaction driven by light-induced charge separations in the Photosystem II reaction center and catalyzed by the CaMn4O5-cluster. This cyclic process involves five redox intermediates known as the S0–S4 states. In this study, we quantify the flash-induced turnover efficiency of each S state by electron paramagnetic resonance spectroscopy. Measurements were performed in photosystem II membrane preparations from spinach in the presence of an exogenous electron acceptor at selected temperatures between −10 °C and +20 °C and at flash frequencies of 1.25, 5 and 10 Hz. The results show that at optimal conditions the turnover efficiencies are limited by reactions occurring in the water oxidizing complex, allowing the extraction of their S state dependence and correlating low efficiencies to structural changes and chemical events during the reaction cycle. At temperatures 10 °C and below, the highest efficiency (i.e. lowest miss parameter) was found for the S1 → S2 transition, while the S2 → S3 transition was least efficient (highest miss parameter) over the whole temperature range. These electron paramagnetic resonance results were confirmed by measurements of flash-induced oxygen release patterns in thylakoid membranes and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster that were determined recently by femtosecond X-ray crystallography. Thereby, possible “molecular errors” connected to the e− transfer, H+ transfer, H2O binding and O2 release are identified. Temperature dependence of the transition inefficiencies (misses) for the water oxidation process in photosystem II were studied by EPR spectroscopy and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster.![]()
Collapse
Affiliation(s)
- Guangye Han
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
4
|
Takemoto H, Sugiura M, Noguchi T. Proton Release Process during the S2-to-S3 Transition of Photosynthetic Water Oxidation As Revealed by the pH Dependence of Kinetics Monitored by Time-Resolved Infrared Spectroscopy. Biochemistry 2019; 58:4276-4283. [DOI: 10.1021/acs.biochem.9b00680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroshi Takemoto
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Miwa Sugiura
- Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
5
|
Pham LV, Janna Olmos JD, Chernev P, Kargul J, Messinger J. Unequal misses during the flash-induced advancement of photosystem II: effects of the S state and acceptor side cycles. PHOTOSYNTHESIS RESEARCH 2019; 139:93-106. [PMID: 30191436 PMCID: PMC6373315 DOI: 10.1007/s11120-018-0574-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/03/2018] [Indexed: 05/17/2023]
Abstract
Photosynthetic water oxidation is catalyzed by the oxygen-evolving complex (OEC) in photosystem II (PSII). This process is energetically driven by light-induced charge separation in the reaction center of PSII, which leads to a stepwise accumulation of oxidizing equivalents in the OEC (Si states, i = 0-4) resulting in O2 evolution after each fourth flash, and to the reduction of plastoquinone to plastoquinol on the acceptor side of PSII. However, the Si-state advancement is not perfect, which according to the Kok model is described by miss-hits (misses). These may be caused by redox equilibria or kinetic limitations on the donor (OEC) or the acceptor side. In this study, we investigate the effects of individual S state transitions and of the quinone acceptor side on the miss parameter by analyzing the flash-induced oxygen evolution patterns and the S2, S3 and S0 state lifetimes in thylakoid samples of the extremophilic red alga Cyanidioschyzon merolae. The data are analyzed employing a global fit analysis and the results are compared to the data obtained previously for spinach thylakoids. These two organisms were selected, because the redox potential of QA/QA- in PSII is significantly less negative in C. merolae (Em = - 104 mV) than in spinach (Em = - 163 mV). This significant difference in redox potential was expected to allow the disentanglement of acceptor and donor side effects on the miss parameter. Our data indicate that, at slightly acidic and neutral pH values, the Em of QA-/QA plays only a minor role for the miss parameter. By contrast, the increased energy gap for the backward electron transfer from QA- to Pheo slows down the charge recombination reaction with the S3 and S2 states considerably. In addition, our data support the concept that the S2 → S3 transition is the least efficient step during the oxidation of water to molecular oxygen in the Kok cycle of PSII.
Collapse
Affiliation(s)
- Long Vo Pham
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Julian David Janna Olmos
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Petko Chernev
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Joanna Kargul
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland.
| | - Johannes Messinger
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden.
- Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, 901 87, Umeå, Sweden.
| |
Collapse
|
6
|
Shimizu T, Sugiura M, Noguchi T. Mechanism of Proton-Coupled Electron Transfer in the S0-to-S1 Transition of Photosynthetic Water Oxidation As Revealed by Time-Resolved Infrared Spectroscopy. J Phys Chem B 2018; 122:9460-9470. [DOI: 10.1021/acs.jpcb.8b07455] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tatsuki Shimizu
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Miwa Sugiura
- Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
7
|
Michaeli K, Kantor-Uriel N, Naaman R, Waldeck DH. The electron's spin and molecular chirality - how are they related and how do they affect life processes? Chem Soc Rev 2018; 45:6478-6487. [PMID: 27734046 DOI: 10.1039/c6cs00369a] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recently discovered chiral induced spin selectivity (CISS) effect gives rise to a spin selective electron transmission through biomolecules. Here we review the mechanism behind the CISS effect and its implication for processes in Biology. Specifically, three processes are discussed: long-range electron transfer, spin effects on the oxidation of water, and enantioselectivity in bio-recognition events. These phenomena imply that chirality and spin may play several important roles in biology, which have not been considered so far.
Collapse
Affiliation(s)
- Karen Michaeli
- Department of Condensed Matter Physics, Weizmann Institute, Rehovot 76100, Israel
| | - Nirit Kantor-Uriel
- Department of Chemical Physics, Weizmann Institute, Rehovot 76100, Israel.
| | - Ron Naaman
- Department of Chemical Physics, Weizmann Institute, Rehovot 76100, Israel.
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
8
|
Najafpour MM, Madadkhani S, Akbarian S, Hołyńska M, Kompany-Zareh M, Tomo T, Singh JP, Chae KH, Allakhverdiev SI. A new strategy to make an artificial enzyme: photosystem II around nanosized manganese oxide. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01654a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A new strategy to make an artificial enzyme was reported.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Sepideh Madadkhani
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Somayyeh Akbarian
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| | - Mohsen Kompany-Zareh
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Tatsuya Tomo
- Department of Biology
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Jitendra Pal Singh
- Advanced Analysis Center
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Republic of Korea
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory
- Institute of Plant Physiology
- Russian Academy of Sciences
- Moscow 127276
- Russia
| |
Collapse
|
9
|
Guo Z, Barry BA. Cryogenic Trapping and Isotope Editing Identify a Protonated Water Cluster as an Intermediate in the Photosynthetic Oxygen-Evolving Reaction. J Phys Chem B 2016; 120:8794-808. [DOI: 10.1021/acs.jpcb.6b05283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhanjun Guo
- School of Chemistry and Biochemistry
and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bridgette A Barry
- School of Chemistry and Biochemistry
and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Siggel U, Schmitt FJ, Messinger J. Gernot Renger (1937-2013): his life, Max-Volmer Laboratory, and photosynthesis research. PHOTOSYNTHESIS RESEARCH 2016; 129:109-127. [PMID: 27312337 DOI: 10.1007/s11120-016-0280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Gernot Renger (October 23, 1937-January 12, 2013), one of the leading biophysicists in the field of photosynthesis research, studied and worked at the Max-Volmer-Institute (MVI) of the Technische Universität Berlin, Germany, for more than 50 years, and thus witnessed the rise and decline of photosynthesis research at this institute, which at its prime was one of the leading centers in this field. We present a tribute to Gernot Renger's work and life in the context of the history of photosynthesis research of that period, with special focus on the MVI. Gernot will be remembered for his thought-provoking questions and his boundless enthusiasm for science.
Collapse
Affiliation(s)
- Ulrich Siggel
- Max-Volmer-Laboratorium, TU Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany.
| | - Franz-Josef Schmitt
- Max-Volmer-Laboratorium, TU Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Johannes Messinger
- Departmant of Chemistry, Umeå University, Linnaeus väg 6 (KBC huset), 90187, Umeå, Sweden.
| |
Collapse
|
11
|
Zaharieva I, Chernev P, Berggren G, Anderlund M, Styring S, Dau H, Haumann M. Room-Temperature Energy-Sampling Kβ X-ray Emission Spectroscopy of the Mn4Ca Complex of Photosynthesis Reveals Three Manganese-Centered Oxidation Steps and Suggests a Coordination Change Prior to O2 Formation. Biochemistry 2016; 55:4197-211. [PMID: 27377097 DOI: 10.1021/acs.biochem.6b00491] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In oxygenic photosynthesis, water is oxidized and dioxygen is produced at a Mn4Ca complex bound to the proteins of photosystem II (PSII). Valence and coordination changes in its catalytic S-state cycle are of great interest. In room-temperature (in situ) experiments, time-resolved energy-sampling X-ray emission spectroscopy of the Mn Kβ1,3 line after laser-flash excitation of PSII membrane particles was applied to characterize the redox transitions in the S-state cycle. The Kβ1,3 line energies suggest a high-valence configuration of the Mn4Ca complex with Mn(III)3Mn(IV) in S0, Mn(III)2Mn(IV)2 in S1, Mn(III)Mn(IV)3 in S2, and Mn(IV)4 in S3 and, thus, manganese oxidation in each of the three accessible oxidizing transitions of the water-oxidizing complex. There are no indications of formation of a ligand radical, thus rendering partial water oxidation before reaching the S4 state unlikely. The difference spectra of both manganese Kβ1,3 emission and K-edge X-ray absorption display different shapes for Mn(III) oxidation in the S2 → S3 transition when compared to Mn(III) oxidation in the S1 → S2 transition. Comparison to spectra of manganese compounds with known structures and oxidation states and varying metal coordination environments suggests a change in the manganese ligand environment in the S2 → S3 transition, which could be oxidation of five-coordinated Mn(III) to six-coordinated Mn(IV). Conceivable options for the rearrangement of (substrate) water species and metal-ligand bonding patterns at the Mn4Ca complex in the S2 → S3 transition are discussed.
Collapse
Affiliation(s)
- Ivelina Zaharieva
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Petko Chernev
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Gustav Berggren
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Magnus Anderlund
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Stenbjörn Styring
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Holger Dau
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Michael Haumann
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| |
Collapse
|
12
|
Shevela D, Arnold J, Reisinger V, Berends HM, Kmiec K, Koroidov S, Bue AK, Messinger J, Eichacker LA. Biogenesis of water splitting by photosystem II during de-etiolation of barley (Hordeum vulgare L.). PLANT, CELL & ENVIRONMENT 2016; 39:1524-1536. [PMID: 26836813 DOI: 10.1111/pce.12719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
Etioplasts lack thylakoid membranes and photosystem complexes. Light triggers differentiation of etioplasts into mature chloroplasts, and photosystem complexes assemble in parallel with thylakoid membrane development. Plastids isolated at various time points of de-etiolation are ideal to study the kinetic biogenesis of photosystem complexes during chloroplast development. Here, we investigated the chronology of photosystem II (PSII) biogenesis by monitoring assembly status of chlorophyll-binding protein complexes and development of water splitting via O2 production in plastids (etiochloroplasts) isolated during de-etiolation of barley (Hordeum vulgare L.). Assembly of PSII monomers, dimers and complexes binding outer light-harvesting antenna [PSII-light-harvesting complex II (LHCII) supercomplexes] was identified after 1, 2 and 4 h of de-etiolation, respectively. Water splitting was detected in parallel with assembly of PSII monomers, and its development correlated with an increase of bound Mn in the samples. After 4 h of de-etiolation, etiochloroplasts revealed the same water-splitting efficiency as mature chloroplasts. We conclude that the capability of PSII to split water during de-etiolation precedes assembly of the PSII-LHCII supercomplexes. Taken together, data show a rapid establishment of water-splitting activity during etioplast-to-chloroplast transition and emphasize that assembly of the functional water-splitting site of PSII is not the rate-limiting step in the formation of photoactive thylakoid membranes.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
| | - Janine Arnold
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Veronika Reisinger
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Hans-Martin Berends
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
| | - Karol Kmiec
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Sergey Koroidov
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94305, USA
| | - Ann Kristin Bue
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
| | - Lutz A Eichacker
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| |
Collapse
|
13
|
Dobrikova AG, Apostolova EL. Damage and protection of the photosynthetic apparatus from UV-B radiation. II. Effect of quercetin at different pH. JOURNAL OF PLANT PHYSIOLOGY 2015; 184:98-105. [PMID: 26282614 DOI: 10.1016/j.jplph.2015.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 05/03/2023]
Abstract
The effect of the exogenously added quercetin against the UV-B inhibition of the photosystem II (PSII) functions in isolated pea thylakoid membranes suspended at different pH of the medium (6.5, 7.6 and 8.4) was investigated. The data revealed that the interaction of this flavonoid with the membranes depends on the pH and influences the initial S0-S1 state distribution of PSII in the dark, the energy transfer between pigment-protein complexes of the photosynthetic apparatus and the membrane fluidity. Quercetin also displays a different UV-protective effect depending on its location in the membranes, as the effect is more pronounced at pH 8.4 when it is located at the membrane surface. The results suggest that quercetin induces structural changes in thylakoid membranes, one of the possible reasons for its protection of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - Emilia L Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria.
| |
Collapse
|
14
|
Han G, Mamedov F, Styring S. Misses during water oxidation in photosystem II are S state-dependent. J Biol Chem 2012; 287:13422-9. [PMID: 22374999 DOI: 10.1074/jbc.m112.342543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The period of four oscillation of the S state intermediates of the water oxidizing complex in Photosystem II (PSII) is commonly analyzed by the Kok parameters. The important miss factor determines the efficiency for each S transition. Commonly, an equal miss factor has been used in the analysis. We have used EPR signals which probe all S states in the same sample during S cycle advancement. This allows, for the first time, to measure directly the miss parameter for each S state transition. Experiments were performed in PSII membrane preparations from spinach in the presence of electron acceptor at 1 °C and 20 °C. The data show that the miss parameter is different in different transitions and shows different temperature dependence. We found no misses at 1 °C and 10% misses at 20 °C during the S(1)→S(2) transition. The highest miss factor was found in the S(2)→S(3) transition which decreased from 23% to 16% with increasing temperature. For the S(3)→S(0) transition the miss parameter was found to be 7% at 1 °C and decreased to 3% at 20 °C. For the S(0)→S(1) transition the miss parameter was found to be approximately 10% at both temperatures. The contribution from the acceptor side in the form of recombination reactions as well as from the donor side of PSII to the uneven misses is discussed. It is suggested that the different transition efficiency in each S transition partly reflects the chemistry at the CaMn(4)O(5) cluster. That consequently contributes to the uneven misses during S cycle turnover in PSII.
Collapse
Affiliation(s)
- Guangye Han
- Photochemistry and Molecular Science, the Department of Chemistry-Ångström, Box 523, Uppsala University, 751 20 Uppsala, Sweden
| | | | | |
Collapse
|
15
|
Dilbeck PL, Hwang HJ, Zaharieva I, Gerencser L, Dau H, Burnap RL. The D1-D61N Mutation in Synechocystis sp. PCC 6803 Allows the Observation of pH-Sensitive Intermediates in the Formation and Release of O2 from Photosystem II. Biochemistry 2012; 51:1079-91. [DOI: 10.1021/bi201659f] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Preston L. Dilbeck
- Department of Microbiology and
Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078-4034, United States
| | - Hong Jin Hwang
- Department of Microbiology and
Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078-4034, United States
| | | | | | - Holger Dau
- Department of Physics, Free University Berlin, Berlin, Germany
| | - Robert L. Burnap
- Department of Microbiology and
Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078-4034, United States
| |
Collapse
|
16
|
Chen G, Han G, Göransson E, Mamedov F, Styring S. Stability of the S3 and S2 State Intermediates in Photosystem II Directly Probed by EPR Spectroscopy. Biochemistry 2011; 51:138-48. [PMID: 22112168 DOI: 10.1021/bi200627j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guiying Chen
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Guangye Han
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Erik Göransson
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| |
Collapse
|
17
|
Zaharieva I, Wichmann JM, Dau H. Thermodynamic limitations of photosynthetic water oxidation at high proton concentrations. J Biol Chem 2011; 286:18222-8. [PMID: 21464129 PMCID: PMC3093894 DOI: 10.1074/jbc.m111.237941] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 03/30/2011] [Indexed: 11/06/2022] Open
Abstract
In oxygenic photosynthesis, solar energy drives the oxidation of water catalyzed by a Mn(4)Ca complex bound to the proteins of Photosystem II. Four protons are released during one turnover of the water oxidation cycle (S-state cycle), implying thermodynamic limitations at low pH. For proton concentrations ranging from 1 nm (pH 9) to 1 mm (pH 3), we have characterized the low-pH limitations using a new experimental approach: a specific pH-jump protocol combined with time-resolved measurement of the delayed chlorophyll fluorescence after nanosecond flash excitation. Effective pK values were determined for low-pH inhibition of the light-induced S-state transitions: pK(1)=3.3 ± 0.3, pK(2)=3.5 ± 0.2, and pK(3)≈pK(4)=4.6 ± 0.2. Alkaline inhibition was not observed. An extension of the classical Kok model facilitated assignment of these four pK values to specific deprotonation steps in the reaction cycle. Our results provide important support to the extended S-state cycle model and criteria needed for assessment of quantum chemical calculations of the mechanism of water oxidation. They also imply that, in intact organisms, the pH in the lumen compartment can hardly drop below 5, thereby limiting the ΔpH contribution to the driving force of ATP synthesis.
Collapse
Affiliation(s)
- Ivelina Zaharieva
- From the Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jörg M. Wichmann
- From the Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Holger Dau
- From the Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
18
|
Gerencsér L, Dau H. Water Oxidation by Photosystem II: H2O−D2O Exchange and the Influence of pH Support Formation of an Intermediate by Removal of a Proton before Dioxygen Creation. Biochemistry 2010; 49:10098-106. [DOI: 10.1021/bi101198n] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- László Gerencsér
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Holger Dau
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
19
|
Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem 2010. [DOI: 10.1002/cctc.201000126] [Citation(s) in RCA: 1320] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Dau H, Zaharieva I. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc Chem Res 2009; 42:1861-70. [PMID: 19908828 DOI: 10.1021/ar900225y] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photosynthesis in plants and cyanobacteria involves two protein-cofactor complexes which are denoted as photosystems (PS), PSII and PSI. These solar-energy converters have powered life on earth for approximately 3 billion years. They facilitate light-driven carbohydrate formation from H(2)O and CO(2), by oxidizing the former and reducing the latter. PSII splits water in a process driven by light. Because all attractive technologies for fuel production driven by solar energy involve water oxidation, recent interest in this process carried out by PSII has increased. In this Account, we describe and apply a rationale for estimating the solar-energy conversion efficiency (eta(SOLAR)) of PSII: the fraction of the incident solar energy absorbed by the antenna pigments and eventually stored in form of chemical products. For PSII at high concentrations, approximately 34% of the incident solar energy is used for creation of the photochemistry-driving excited state, P680*, with an excited-state energy of 1.83 eV. Subsequent electron transfer results in the reduction of a bound quinone (Q(A)) and oxidation of the Tyr(Z) within 1 micros. This radical-pair state is stable against recombination losses for approximately 1 ms. At this level, the maximal eta(SOLAR) is 23%. After the essentially irreversible steps of quinone reduction and water oxidation (the final steps catalyzed by the PSII complex), a maximum of 50% of the excited-state energy is stored in chemical form; eta(SOLAR) can be as high as 16%. Extending our considerations to a photosynthetic organism optimized to use PSII and PSI to drive H(2) production, the theoretical maximum of the solar-energy conversion efficiency would be as high as 10.5%, if all electrons and protons derived from water oxidation were used for H(2) formation. The above performance figures are impressive, but they represent theoretical maxima and do not account for processes in an intact organism that lower these yields, such as light saturation, photoinhibitory, protective, and repair processes. The overpotential for catalysis of water oxidation at the Mn(4)Ca complex of PSII may be as low as 0.3 V. To address the specific energetics of water oxidation at the Mn complex of PSII, we propose a new conceptual framework that will facilitate quantitative considerations on the basis of oxidation potentials and pK values. In conclusion, photosynthetic water oxidation works at high efficiency and thus can serve as both an inspiring model and a benchmark in the development of future technologies for production of solar fuels.
Collapse
Affiliation(s)
- Holger Dau
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Ivelina Zaharieva
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
21
|
Renger G, Hanssum B. Oxygen detection in biological systems. PHOTOSYNTHESIS RESEARCH 2009; 102:487-98. [PMID: 19543804 DOI: 10.1007/s11120-009-9434-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 05/06/2009] [Indexed: 05/12/2023]
Abstract
This article presents a brief description of analytical tools for monitoring evolution and consumption of molecular dioxygen in biological organisms. Based on its nature as a gas and its physical and chemical properties of the ground state ³Σ(g)O₂; different approaches have been developed for quantitative determinations: (i) manometry, (ii) formation of titratable sediments, (iii) solid state electrodes, (iv) EPR oximetry, (v) luminescence quenching, (vi) biological sensoring, (vii) mass spectrometry and (viii) amperometry. Among these methods mass spectrometry and amperometry are of special relevance for studies on the mechanisms of photosynthetic dioxygen evolution. Mass spectrometry is described in the article of Beckman et al. in this special issue. Therefore, the major part of this contribution focuses on amperometric methods that are currently widely used. Two different types of electrodes are described: (i) Clark-type electrode and (ii) Joliot-type electrode. The complementary advantages of both systems are outlined. A more detailed description comprises the potential of the Joliot-type electrode for mechanistic studies on the reactivity of the different redox states of the water oxidizing complex (WOC).
Collapse
Affiliation(s)
- Gernot Renger
- Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | | |
Collapse
|
22
|
Mino H, Kawamori A. The differences in microenvironments and functions of tyrosine radicals YZ and YD in photosystem II studied by EPR. PHOTOSYNTHESIS RESEARCH 2008; 98:151-157. [PMID: 18985433 DOI: 10.1007/s11120-008-9380-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 10/09/2008] [Indexed: 05/27/2023]
Abstract
Electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) were performed to investigate the difference in microenvironments and functions between tyrosine Z (Y(Z)) and tyrosine D (Y(D)). Mn-depletion or Ca(2+)-depletion causes extension of the lifetime of tyrosine radical Y(Z)(*), which can be trapped by rapid freezing after illumination at about 250 K. Above pH 6.5, Y(Z)(*) radical in Mn-depleted PS II shows similar EPR and ENDOR spectra similar to that of Y(D)(*) radical, which are ascribed to a typical neutral tyrosine radical. Below pH 6.5, Y(Z)(*) radical shows quite different EPR and ENDOR spectra. ENDOR spectra show the spin density distribution of the low-pH form of Y(Z)(*) that has been quite different from the high-pH form of Y(Z)(*). The spin density distribution of the low-pH Y(Z)(*) can be explained by a cation radical or the neutral radical induced by strong electrostatic interaction. The pH dependence of the activation energy of the recombination rate between Y(Z)(*) and Q(A)(-) shows a gap of 4.4 kJ/mol at pH 6.0-6.5. In the Ca(2+)-depleted PS II, Y(Z)(*) signal was the mixture of the cation-like and normal neutral radicals, and the pH dependence of Y(Z)(*) spectrum in Ca(2+)-depleted PS II is considerably different from the neutral radical found in Mn-depleted PS II. Based on the recent structure data of cyanobacterial PS II, the pH dependence of Y(Z)(*) could be ascribed to the modification of the local structure and hydrogen-bonding network induced by the dissociation of ASP170 near Y(Z).
Collapse
Affiliation(s)
- Hiroyuki Mino
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan.
| | | |
Collapse
|
23
|
Nöring B, Shevela D, Renger G, Messinger J. Effects of methanol on the Si-state transitions in photosynthetic water-splitting. PHOTOSYNTHESIS RESEARCH 2008; 98:251-260. [PMID: 18819015 DOI: 10.1007/s11120-008-9364-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 09/04/2008] [Indexed: 05/26/2023]
Abstract
From a chemical point of view methanol is one of the closest analogues of water. Consistent with this idea EPR spectroscopy studies have shown that methanol binds at-or at least very close to-the Mn(4)O(x)Ca cluster of photosystem II (PSII). In contrast, Clark-type oxygen rate measurements demonstrate that the O(2) evolving activity of PSII is surprisingly unaffected by methanol concentrations of up to 10%. Here we study for the first time in detail the effect of methanol on photosynthetic water-splitting by employing a Joliot-type bare platinum electrode. We demonstrate a linear dependence of the miss parameter for S( i ) state advancement on the methanol concentrations in the range of 0-10% (v/v). This finding is consistent with the idea that methanol binds in PSII with similar affinity as water to one or both substrate binding sites at the Mn(4)O(x)Ca cluster. The possibility is discussed that the two substrate water molecules bind at different stages of the cycle, one during the S(4) --> S(0) and the other during the S(2) --> S(3) transition.
Collapse
Affiliation(s)
- Birgit Nöring
- Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
24
|
Clausen J, Junge W. The terminal reaction cascade of water oxidation: proton and oxygen release. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1311-8. [PMID: 18640091 DOI: 10.1016/j.bbabio.2008.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/09/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
In cyanobacteria, algae and plants Photosystem II produces the oxygen we breathe. Driven and clocked by light quanta, the catalytic Mn(4)Ca-tyrosine centre accumulates four oxidising equivalents before it abstracts four electrons from water, liberating dioxygen and protons. Aiming at intermediates of the terminal four-electron cascade, we previously have suppressed this reaction by elevating the oxygen pressure, thereby stabilising one redox intermediate. Here, we established a similar suppression by increasing the proton concentration. Data were analysed in terms of only one (peroxy) redox intermediate between the fourfold oxidised Mn(4)Ca-tyrosine centre and oxygen release. The surprising result was that the release into the bulk of one proton per dioxygen is linked to the first and rate-limiting electron transfer in the cascade rather than to the second which produces free oxygen. The penultimate intermediate might thus be conceived as a fully deprotonated peroxy-moiety.
Collapse
Affiliation(s)
- Juergen Clausen
- Abteilung Biophysik, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| | | |
Collapse
|
25
|
Shevela D, Klimov V, Messinger J. Interactions of photosystem II with bicarbonate, formate and acetate. PHOTOSYNTHESIS RESEARCH 2007; 94:247-64. [PMID: 17653834 DOI: 10.1007/s11120-007-9200-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 05/16/2007] [Indexed: 05/16/2023]
Abstract
In this study, we probe the effects of bicarbonate (hydrogencarbonate), BC, removal from photosystem II in spinach thylakoids by measuring flash-induced oxygen evolution patterns (FIOPs) with a Joliot-type electrode. For this we compared three commonly employed methods: (1) washing in BC-free medium, (2) formate addition, and (3) acetate addition. Washing of the samples with buffers depleted of BC and CO2 by bubbling with argon (Method 1) under our conditions leads to an increase in the double hit parameter of the first flash (beta 1), while the miss parameter and the overall activity remain unchanged. In contrast, addition of 40-50 mM formate or acetate results in a significant increase in the miss parameter and to an approximately 50% (formate) and approximately 10% (acetate) inhibition of the overall oxygen evolution activity, but not to an increased beta 1 parameter. All described effects could be reversed by washing with formate/acetate free buffer and/or addition of 2-10 mM bicarbonate. The redox potential of the water-oxidizing complex (WOC) in samples treated by Method 1 is compared to samples containing 2 mM bicarbonate in two ways: (1) The lifetimes of the S0, S2, and S3 states were measured, and no differences were found between the two sample types. (2) The S1, S0, S(-1), and S(-2) states were probed by incubation with small concentrations of NH2OH. These experiments displayed a subtle, yet highly reproducible difference in the apparent Si/S(-i) state distribution which is shown to arise from the interaction of BC with PSII in the already reduced states of the WOC. These data are discussed in detail by also taking into account the CO2 concentrations present in the buffers after argon bubbling and during the measurements. These values were measured by membrane-inlet mass spectrometry (MIMS).
Collapse
Affiliation(s)
- Dmitriy Shevela
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
26
|
Gasanov R, Aliyeva S, Arao S, Ismailova A, Katsuta N, Kitade H, Yamada S, Kawamori A, Mamedov F. Comparative study of the water oxidizing reactions and the millisecond delayed chlorophyll fluorescence in photosystem II at different pH. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2007; 86:160-4. [PMID: 17067808 DOI: 10.1016/j.jphotobiol.2006.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 08/01/2006] [Indexed: 11/18/2022]
Abstract
Water splitting activity, the multiline EPR signal associated with S(2)-state of the CaMn(4)-cluster and the fast and slow phases of the induction curve of the millisecond delayed chlorophyll fluorescence from photosystem II (PSII) in the pH range of 4.5-8.5 were studied in the thylakoid membranes and purified PSII particles. It has been found that O(2) evolution and the multiline EPR signal were inhibited at acidic (pK approximately 5.3) and alkaline (pK approximately 8.1) pH values, and were maximal at pH 6.0-7.0. Our results indicate that the loss of O(2) evolution and the S(2)-state multiline EPR signal associated with the decrease of the millisecond delayed chlorophyll fluorescence only in alkaline region (pH 7.0-8.5). Possible correlations of the millisecond delayed chlorophyll fluorescence components with the donor side reactions in PSII are discussed.
Collapse
Affiliation(s)
- Ralphreed Gasanov
- Biophysics Laboratory, Institute of Botany, National Academy of Sciences, Patamdar Road 40, Baku AZ-1073, Azerbaijan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Apostolova EL, Dobrikova AG, Ivanova PI, Petkanchin IB, Taneva SG. Relationship between the organization of the PS II super complex and the functions of the photosynthetic apparatus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2006; 83:114-22. [PMID: 16464603 DOI: 10.1016/j.jphotobiol.2005.12.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 12/20/2005] [Accepted: 12/20/2005] [Indexed: 10/25/2022]
Abstract
The chlorophyll fluorescence and the photosynthetic oxygen evolution (flash-induced oxygen yield patterns and oxygen bursts under continuous irradiation) were investigated in the thylakoid membranes with different stoichiometry and organization of the chlorophyll-protein complexes. Data show that the alteration in the organization of the photosystem II (PS II) super complex, i.e. the amount and the organization of the light-harvesting chlorophyll a/b protein complex (LHCII), which strongly modifies the electric properties of the membranes, influences both the energy redistribution between the two photosystems and the oxygen production reaction. The decrease of surface electric parameters (charge density and dipole moments), associated with increased degree of LHCII oligomerization, correlates with the strong reduction of the energy transfer from PS II to PSI. In the studied pea thylakoid membranes (wild types Borec, Auralia and their mutants Coeruleovireus 2/16, Costata2/133, Chlorotica XV/1422) with enhanced degree of oligomerization of LHCII was observed: (i) an increase of the S(0) populations of PS II in darkness; (ii) an increase of the misses; (iii) an alteration of the decay kinetics of the oxygen bursts under continuous irradiation. There is a strict correlation between the degree of LHCII oligomerization in the investigated pea mutants and the ratio of functionally active PS II alpha to PS II beta centers, while in thylakoid membranes without oligomeric structure of LHCII (Chlorina f2 barley mutant) the PS II alpha centers are not registered.
Collapse
Affiliation(s)
- Emilia L Apostolova
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria.
| | | | | | | | | |
Collapse
|
28
|
Shinkarev VP. Flash-induced oxygen evolution in photosynthesis: simple solution for the extended S-state model that includes misses, double-hits, inactivation, and backward-transitions. Biophys J 2005; 88:412-21. [PMID: 15475587 PMCID: PMC1305018 DOI: 10.1529/biophysj.104.050898] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 09/29/2004] [Indexed: 11/18/2022] Open
Abstract
Flash-induced oxygen evolution in higher plants, algae, and cyanobacteria exhibits damped period-four oscillations. To explain such oscillations, Kok suggested a simple phenomenological S-state model, in which damping is due to empirical misses and double-hits. Here we developed an analytical solution for the extended Kok model that includes misses, double-hits, inactivation, and backward-transitions. The solution of the classic Kok model (with misses and double-hits only) can be obtained as a particular case of this solution. Simple equations describing the flash-number dependence of individual S-states and oxygen evolution in both cases are almost identical and, therefore, the classic Kok model does not have a significant advantage in its simplicity over the extended version considered in this article. Developed equations significantly simplify the fitting of experimental data via standard nonlinear regression analysis and make unnecessary the use of many previously developed methods for finding parameters of the model. The extended Kok model considered here can provide additional insight into the effect of dark relaxation between flashes and inactivation.
Collapse
Affiliation(s)
- Vladimir P Shinkarev
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
29
|
Zhang L, Zhang F, Zhang SY, Guo YL, Xu CH. Acetonitrile-induced unfolding of the photosystem II manganese-stabilizing protein studied by electrospray mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:2151-6. [PMID: 15988731 DOI: 10.1002/rcm.2043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper an acetonitrile-induced unfolding of the manganese-stabilizing protein (MSP) of photosystem II was discovered. More distinct unfolding states of MSP were identified than previously by using mainly electrospray ionization mass spectrometry (ESI-MS), together with fluorescence spectra and far-UV circular dichroism (CD) at pH 2.0, 6.2 or 11.6, and with acetonitrile concentrations from 0 to 50%. At pH 6.2 with acetonitrile concentration changing from 0 to 10%, relatively broad charge-state distributions and poor intensity were observed in ESI-MS, indicating the presence of coexisting conformers. It was concluded that the structure of the MSP protein is unlikely to be a tightly folded form. When the concentration of acetonitrile was 20-40%, simulating the state in the biological membrane, changes in the state of unfolding of MSP were observed to a certain extent using ESI-MS, fluorescence and CD spectroscopy. The charge-state distribution in ESI-MS was found to move toward high states (from 13+ to 27+ to 15+ to 31+) with increasing acetonitrile concentration. At pH 2.0, the MSP structure is rearranged into an unfolded state, and at pH 11.6 the MSP structure is induced to assume another unordered state by deprotonation of appropriate residues. An interesting observation was that a second peak envelope emerged with 20-50% acetonitrile in the medium at pH 11.6.
Collapse
Affiliation(s)
- Li Zhang
- Shanghai Mass Spectrometry Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
30
|
Feyziyev Y, Rotterdam BJ, Bernát G, Styring S. Electron transfer from cytochrome b559 and tyrosineD to the S2 and S3 states of the water oxidizing complex in photosystem II. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00322-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Abstract
The light-induced oxidation of water by Photosystem II (PS II) of higher plants, algae, and cyanobacteria, is the main source of atmospheric oxygen. The discovery of the flash-induced period four oscillations in the oxygen evolution made by Pierre Joliot in 1969 has a lasting impact on current photosynthesis research. Bessel Kok explained such oscillations by introducing the cycle of flash-induced transitions of states (S-states) of an oxygen-evolving complex governed by the values of miss and double hit. Although this Kok model has been successfully used over 30 years for interpretation of experimental data in photosynthesis, until now there has been no simple analytical solution for it. Such an analytical solution for individual S-states and for oxygen evolution is presented here. When only the S(1) state is present before flash series, and when both the miss and double hit are zero, the oxygen evolved by the PSII after the n(th) flash, Y(n), is given by the following equation: 4Y(n)=1 + (-1)(n-1)-2 cos((n-1)pi/2). It is found here that binary oscillations of the secondary acceptor semiquinone at the acceptor side of the reaction center of PS II and release of reducing equivalents from reaction center to b(6)f complex can also be determined in the framework of the Kok model. The simple solutions found here for individual S-states, semiquinone, and oxygen evolution provide a basis for quantitative description of the charge accumulation processes at the donor and acceptor sides of PSII. It also provides a rare example of a significant problem in biology, which can be solved analytically.
Collapse
Affiliation(s)
- Vladimir P Shinkarev
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
32
|
Messinger J. Towards understanding the chemistry of photosynthetic oxygen evolution: dynamic structural changes, redox states and substrate water binding of the Mn cluster in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:481-8. [PMID: 11004466 DOI: 10.1016/s0005-2728(00)00187-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This mini-review summarizes my postdoctoral research in the labs of T. Wydrzynski/C.B. Osmond, J.H.A. Nugent/M.C.W. Evans and V.K. Yachandra/K. Sauer/M.P. Klein. The results are reported in the context of selected data from the literature. Special emphasis is given to the mode of substrate water binding, Mn oxidation states and the structures of the Mn cluster in the four (meta)stable redox states of the oxygen evolving complex. The paper concludes with a working model for the mechanism of photosynthetic water oxidation that combines mu-oxo bridge oxidation in the S(3) state (V.K. Yachandra, K. Sauer, M.P. Klein, Chem. Rev. 96 (1996) 2927-2950) with O-O bond formation between two terminal Mn-hydroxo ligands during the S(3)-->(S(4))-->S(0) transition.
Collapse
Affiliation(s)
- J Messinger
- Max-Volmer-Institut der TU-Berlin, Strasse des 17. Juni 135, D-10623, Berlin, Germany.
| |
Collapse
|
33
|
Prasil O, Kolber Z, Berry JA, Falkowski PG. Cyclic electron flow around Photosystem II in vivo. PHOTOSYNTHESIS RESEARCH 1996; 48:395-410. [PMID: 24271480 DOI: 10.1007/bf00029472] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/1996] [Accepted: 03/25/1996] [Indexed: 06/02/2023]
Abstract
The oxygen flash yield (YO2) and photochemical yield of PS II (ΦPS II) were simultaneously detected in intact Chlorella cells on a bare platinum oxygen rate electrode. The two yields were measured as a function of background irradiance in the steady-state and following a transition from light to darkness. During steady-state illumination at moderate irradiance levels, YO2 and ΦPS II followed each other, suggesting a close coupling between the oxidation of water and QA reduction (Falkowski et al. (1988) Biochim. Biophys. Acta 933: 432-443). Following a light-to-dark transition, however, the relationship between QA reduction and the fraction of PS II reaction centers capable of evolving O2 became temporarily uncoupled. ΦPS II recovered to the preillumination levels within 5-10 s, while the YO2 required up to 60 s to recover under aerobic conditions. The recovery of YO2 was independent of the redox state of QA, but was accompanied by a 30% increase in the functional absorption cross-section of PS II (σPS II). The hysteresis between YO2 and the reduction of QA during the light-to-dark transition was dependent upon the reduction level of the plastoquinone pool and does not appear to be due to a direct radiative charge back-reaction, but rather is a consequence of a transient cyclic electron flow around PS II. The cycle is engaged in vivo only when the plastoquinone pool is reduced. Hence, the plastoquinone pool can act as a clutch that disconnects the oxygen evolution from photochemical charge separation in PS II.
Collapse
Affiliation(s)
- O Prasil
- Oceanographic and Atmospheric Sciences Division, Department of Applied Science, Brookhaven National Laboratory, 11973-5000, Upton, NY, USA
| | | | | | | |
Collapse
|
34
|
Bögershausen O, Junge W. Rapid proton transfer under flashing light at both functional sides of dark-adapted Photosystem II particles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(95)00057-p] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Gleiter HM, Haag E, Shen JR, Eaton-Rye JJ, Seeliger AG, Inoue Y, Vermaas WF, Renger G. Involvement of the CP47 protein in stabilization and photoactivation of a functional water-oxidizing complex in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 1995; 34:6847-56. [PMID: 7756315 DOI: 10.1021/bi00020a031] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oscillation patterns of the oxygen yield per flash induced by a train of single-turnover flashes were measured as a function of dark incubation and different pre-illumination conditions in several autotrophic mutant strains of Synechocystis sp. PCC 6803 carrying short deletions within the large, lumen-exposed hydrophilic region (loop E) of the chlorophyll a-binding photosystem II protein CP47. A physiological and biochemical characterization of these mutant strains has been presented previously [Eaton-Rye, J. J., & Vermaas, W. F. J. (1991) Plant Mol. Biol. 17, 1165-1177; Haag, E., Eaton-Rye, J. J., Renger, G., & Vermaas, W. F. J. (1993) Biochemistry 32, 4444-4454], and some functional properties were described recently [Gleiter, H. M., Haag, E., Shen, J.-R., Eaton-Rye, J. J., Inoue, Y., Vermaas, W. F. J., & Renger, G. (1994) Biochemistry 33, 12063-12071]. The present study shows that in several mutants the water-oxidizing complex (WOC) became inactivated during prolonged dark incubation, whereas the WOC of the wild-type strain remained active. The rate and extent of the inactivation in the mutants depend on the domain of loop E, where 3-8 amino acid residues were deleted. The most pronounced effects are observed in mutants delta(A373-D380) and delta(R384-V392). A competent WOC can be restored from the fully inactivated state by illumination with short saturating flashes. The number of flashes required for this process strongly depends on the site at which a deletion has been introduced into loop E. Again, the most prominent effects were found in mutants delta(A373-D380) and delta(R384-V392). Interestingly, the number of flashes required for activation was reduced by more than an order of magnitude in both mutants by the addition of 10 mM CaCl2 to the cell suspension. On the basis of a model for photoactivation proposed by Tamura and Cheniae (1987) [Biochim. Biophys. Acta 890, 179-194], a scheme is presented for the processes of dark inactivation and photoactivation in these mutants. The results presented here corroborate an important role of the large hydrophilic domain (loop E) of CP47 in a functional and stable WOC.
Collapse
Affiliation(s)
- H M Gleiter
- Max-Volmer-Institute for Physical and Biophysical Chemistry, Technical University Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Messinger J, Badger M, Wydrzynski T. Detection of one slowly exchanging substrate water molecule in the S3 state of photosystem II. Proc Natl Acad Sci U S A 1995; 92:3209-13. [PMID: 11607525 PMCID: PMC42135 DOI: 10.1073/pnas.92.8.3209] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The exchangeability of the substrate water molecules at the catalytic site of water oxidation in photosystem II has been probed by isotope-exchange measurements using mass spectrometric detection of flash-induced oxygen evolution. A stirred sample chamber was constructed to reduce the lag time between injection of H2(18)O and the detecting flash by a factor of more than 1000 compared to the original experiments by R. Radmer and O. Ollinger [(1986) FEBS Lett. 195, 285-289]. Our data show that there is a slow (t1/2 approximately 500 ms, 10 degrees C) and a fast (t1/2 <25 ms, 10 degrees C) exchanging substrate water molecule in the S3 state of photosystem II. The slow exchange is coupled with an activation energy of about 75 kJ/mol and is discussed in terms of a terminal manganese oxo ligand, while the faster exchanging substrate molecule may represent a water molecule not directly bound to the manganese center.
Collapse
Affiliation(s)
- J Messinger
- Research School of Biological Sciences, Australian National University, Canberra, Australia
| | | | | |
Collapse
|