1
|
Flores-Canales JC, Vargas-Uribe M, Ladokhin AS, Kurnikova M. Membrane Association of the Diphtheria Toxin Translocation Domain Studied by Coarse-Grained Simulations and Experiment. J Membr Biol 2015; 248:529-43. [PMID: 25650178 DOI: 10.1007/s00232-015-9771-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/02/2015] [Indexed: 12/01/2022]
Abstract
Diphtheria toxin translocation (T) domain inserts in lipid bilayers upon acidification of the environment. Computational and experimental studies have suggested that low pH triggers a conformational change of the T-domain in solution preceding membrane binding. The refolded membrane-competent state was modeled to be compact and mostly retain globular structure. In the present work, we investigate how this refolded state interacts with membrane interfaces in the early steps of T-domain's membrane association. Coarse-grained molecular dynamics simulations suggest two distinct membrane-bound conformations of the T-domain in the presence of bilayers composed of a mixture of zwitteronic and anionic phospholipids (POPC:POPG with a 1:3 molar ratio). Both membrane-bound conformations show a common near parallel orientation of hydrophobic helices TH8-TH9 relative to the membrane plane. The most frequently observed membrane-bound conformation is stabilized by electrostatic interactions between the N-terminal segment of the protein and the membrane interface. The second membrane-bound conformation is stabilized by hydrophobic interactions between protein residues and lipid acyl chains, which facilitate deeper protein insertion in the membrane interface. A theoretical estimate of a free energy of binding of a membrane-competent T-domain to the membrane is provided.
Collapse
|
2
|
Human Cytolytic Fusion Proteins: Modified Versions of Human Granzyme B and Angiogenin Have the Potential to Replace Bacterial Toxins in Targeted Therapies against CD64+ Diseases. Antibodies (Basel) 2014. [DOI: 10.3390/antib3010092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
3
|
Antignani A, FitzGerald D. Immunotoxins: the role of the toxin. Toxins (Basel) 2013; 5:1486-502. [PMID: 23965432 PMCID: PMC3760048 DOI: 10.3390/toxins5081486] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023] Open
Abstract
Immunotoxins are antibody-toxin bifunctional molecules that rely on intracellular toxin action to kill target cells. Target specificity is determined via the binding attributes of the chosen antibody. Mostly, but not exclusively, immunotoxins are purpose-built to kill cancer cells as part of novel treatment approaches. Other applications for immunotoxins include immune regulation and the treatment of viral or parasitic diseases. Here we discuss the utility of protein toxins, of both bacterial and plant origin, joined to antibodies for targeting cancer cells. Finally, while clinical goals are focused on the development of novel cancer treatments, much has been learned about toxin action and intracellular pathways. Thus toxins are considered both medicines for treating human disease and probes of cellular function.
Collapse
Affiliation(s)
- Antonella Antignani
- Authors to whom correspondence should be addressed; E-Mail: (A.A.); (D.F.); Tel.: +1-301-496-9457 (D.F.); Fax: +1-301-402-1344 (D.F.)
| | - David FitzGerald
- Authors to whom correspondence should be addressed; E-Mail: (A.A.); (D.F.); Tel.: +1-301-496-9457 (D.F.); Fax: +1-301-402-1344 (D.F.)
| |
Collapse
|
4
|
Mnatsakanyan N, Jansen M. Experimental determination of the vertical alignment between the second and third transmembrane segments of muscle nicotinic acetylcholine receptors. J Neurochem 2013; 125:843-54. [PMID: 23565737 DOI: 10.1111/jnc.12260] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/29/2013] [Accepted: 04/03/2013] [Indexed: 01/11/2023]
Abstract
Nicotinic acetylcholine receptors (nAChR) are members of the Cys-loop ligand-gated ion channel superfamily. Muscle nAChR are heteropentamers that assemble from two α, and one each of β, γ, and δ subunits. Each subunit is composed of three domains, extracellular, transmembrane and intracellular. The transmembrane domain consists of four α-helical segments (M1-M4). Pioneering structural information was obtained using electronmicroscopy of Torpedo nAChR. The recently solved X-ray structure of the first eukaryotic Cys-loop receptor, a truncated (intracellular domain missing) glutamate-gated chloride channel α (GluClα) showed the same overall architecture. However, a significant difference with regard to the vertical alignment between the channel-lining segment M2 and segment M3 was observed. Here, we used functional studies utilizing disulfide trapping experiments in muscle nAChR to determine the spatial orientation between M2 and M3. Our results are in agreement with the vertical alignment as obtained when using the GluClα structure as a template to homology model muscle nAChR, however, they cannot be reconciled with the current Torpedo nAChR model. The vertical M2-M3 alignments as observed in X-ray structures of prokaryotic Gloeobacter violaceus ligand-gated ion channel and GluClα are in agreement. Our results further confirm that this alignment in Cys-loop receptors is conserved between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | |
Collapse
|
5
|
Improving the Therapeutic Potential of Human Granzyme B for Targeted Cancer Therapy. Antibodies (Basel) 2013. [DOI: 10.3390/antib2010019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
6
|
Chassaing A, Pichard S, Araye-Guet A, Barbier J, Forge V, Gillet D. Solution and membrane-bound chaperone activity of the diphtheria toxin translocation domain towards the catalytic domain. FEBS J 2011; 278:4516-25. [PMID: 21332941 DOI: 10.1111/j.1742-4658.2011.08053.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During cell intoxication by diphtheria toxin, endosome acidification triggers the translocation of the catalytic (C) domain into the cytoplasm. This event is mediated by the translocation (T) domain of the toxin. Previous work suggested that the T domain acts as a chaperone for the C domain during membrane penetration of the toxin. Using partitioning experiments with lipid vesicles, fluorescence spectroscopy, and a lipid vesicle leakage assay, we characterized the dominant behavior of the T domain over the C domain during the successive steps by which these domains interact with a membrane upon acidification: partial unfolding in solution and during membrane binding, and then structural rearrangement during penetration into the membrane. To this end, we compared, for each domain, isolated or linked together in a CT protein (the toxin lacking the receptor-binding domain), each of these steps. The behavior of the T domain is marginally modified by the presence or absence of the C domain, whereas that of the C domain is greatly affected by the presence of the T domain . All of the steps leading to membrane penetration of the C domain are triggered at higher pH by the T domain , by 0.5-1.6 pH units. The T domain stabilizes the partially folded states of the C domain corresponding to each step of the process. The results unambiguously demonstrate that the T domain acts as a specialized pH-dependent chaperone for the C domain. Interestingly, this chaperone activity acts on very different states of the protein: in solution, membrane-bound, and membrane-inserted.
Collapse
Affiliation(s)
- Anne Chassaing
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTecS), Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
7
|
Low pH-induced pore formation by the T domain of botulinum toxin type A is dependent upon NaCl concentration. J Membr Biol 2010; 236:191-201. [PMID: 20711775 DOI: 10.1007/s00232-010-9292-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
Botulinum neurotoxins (BoNTs) undergo low pH-triggered membrane insertion, resulting in the translocation of their light (catalytic) chains into the cytoplasm. The T (translocation) domain of the BoNT heavy chain is believed to carry out translocation. Here, the behavior of isolated T domain from BoNT type A has been characterized, both in solution and when associated with model membranes. When BoNT T domain prepared in the detergent dodecylmaltoside was diluted into aqueous solution, it exhibited a low pH-dependent conformational change below pH 6. At low pH the T domain associated with, and formed pores within, model membrane vesicles composed of 30 mol% dioleoylphosphatidylglycerol/70 mol% dioleoylphosphatidylcholine. Although T domain interacted with vesicles at low (50 mM) and high (400 mM) NaCl concentrations, the interaction required much less lipid at low salt. However, even at high lipid concentrations pore formation was much more pronounced at low NaCl concentrations than at high NaCl concentration. Increasing salt concentration after insertion in the presence of 50 mM NaCl did not decrease pore formation. A similar effect of NaCl concentration upon pore formation was observed in vesicles composed solely of dioleoylphosphatidylcholine, showing that the effect of NaCl did not solely involve modulation of electrostatic interactions between protein and anionic lipids. These results indicate that some feature of membrane-bound T domain tertiary structure critical for pore formation is highly dependent upon salt concentration.
Collapse
|
8
|
Man P, Montagner C, Vitrac H, Kavan D, Pichard S, Gillet D, Forest E, Forge V. Accessibility changes within diphtheria toxin T domain when in the functional molten globule state, as determined using hydrogen/deuterium exchange measurements. FEBS J 2009; 277:653-62. [PMID: 20050921 DOI: 10.1111/j.1742-4658.2009.07511.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The translocation domain (T domain) of diphtheria toxin adopts a partially folded state, the so-called molten globule state, to become functional at acidic pH. We compared, using hydrogen/deuterium exchange experiments associated with MS, the structures of the T domain in its soluble folded state at neutral pH and in its functional molten globule state at acidic pH. In the native state, the alpha-helices TH5 and TH8 are identified as the core of the domain. Based on the high-resolution structure of the T domain, we propose that TH8 is highly protected because it is buried within the native structure. According to the same structure, TH5 is partly accessible at the surface of the T domain. We propose that its high protection is caused by the formation of dimers. Within the molten globule state, high protection is still observed within the helical hairpin TH8-TH9, which is responsible for the insertion of the T domain into the membrane. In the absence of the lipid bilayer, this hydrophobic part of the domain self-assembles, leading to the formation of oligomers. Overall, hydrogen/deuterium-exchange measurements allow the analysis of interaction contacts within small oligomers made of partially folded proteins. Such information, together with crystal structure data, are particularly valuable for using to analyze the self-assembly of proteins.
Collapse
Affiliation(s)
- Petr Man
- Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale (CEA, CNRS, UJF, UMR 5075), Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang J, London E. The membrane topography of the diphtheria toxin T domain linked to the a chain reveals a transient transmembrane hairpin and potential translocation mechanisms. Biochemistry 2009; 48:10446-56. [PMID: 19780588 DOI: 10.1021/bi9014665] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The diphtheria toxin T domain helps translocate the A chain of the toxin across membranes. To gain insight into translocation, the membrane topography of key residues in T domain attached to the A chain (AT protein) was compared to that in the isolated T domain using fluorescence techniques. This study demonstrates that residues in T domain hydrophobic helices (TH5-TH9) tended to be less exposed to aqueous solution in the AT protein than in the isolated T domain. Under conditions in which the loop connecting TH5 to TH6/7 is located stably on the cis (insertion) side of the membrane in the isolated T domain, it moves between the cis and trans sides of the membrane in the AT protein. This is indicative of the formation of a dynamic, transient transmembrane hairpin topography by TH5-TH7 in the AT protein. Since TH8 and TH9 also form a transmembrane hairpin, this means that TH5-TH9 may form a cluster of transmembrane helices. These helices have a nonpolar surface likely to face the lipid bilayer in a helix cluster and a surface rich in uncharged hydrophilic residues which in a helix cluster would likely be facing inward (and perhaps be pore-lining). This uncharged hydrophilic surface could play a crucial role in translocation, interacting transiently with the translocating A chain. A similar motif can be found in, and may be important for, other protein translocation systems.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
10
|
Kreitman RJ. Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies. BioDrugs 2009; 23:1-13. [PMID: 19344187 DOI: 10.2165/00063030-200923010-00001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Immunotoxins are molecules that contain a protein toxin and a ligand that is either an antibody or a growth factor. The ligand binds to a target cell antigen, and the target cell internalizes the immunotoxin, allowing the toxin to migrate to the cytoplasm where it can kill the cell. In the case of recombinant immunotoxins, the ligand and toxin are encoded in DNA that is then expressed in bacteria, and the purified immunotoxin contains the ligand and toxin fused together. Among the most active recombinant immunotoxins clinically tested are those that are targeted to hematologic malignancies. One agent, containing human interleukin-2 and truncated diphtheria toxin (denileukin diftitox), has been approved for use in cutaneous T-cell lymphoma, and has shown activity in other hematologic malignancies, including leukemias and lymphomas. Diphtheria toxin has also been targeted by other ligands, including granulocyte-macrophage colony-stimulating factor and interleukin-3, to target myelogenous leukemia cells. Single-chain antibodies containing variable heavy and light antibody domains have been fused to truncated Pseudomonas exotoxin to target lymphomas and lymphocytic leukemias. Recombinant immunotoxins anti-Tac(Fv)-PE38 (LMB-2), targeting CD25, and RFB4(dsFv)-PE38 (BL22, CAT-3888), targeting CD22, have each been tested in patients. Major responses have been observed after failure of standard chemotherapy. The most successful application of recombinant immunotoxins today is in hairy cell leukemia, where BL22 has induced complete remissions in most patients who were previously treated with optimal chemotherapy.
Collapse
Affiliation(s)
- Robert J Kreitman
- Clinical Immunotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Abstract
Recombinant immunotoxins are proteins composed of fragments of monoclonal antibodies fused to truncated protein toxins. No agents of this class are approved yet for medical use, although a related molecule, denileukin diftitox, composed of interleukin-2 fused to truncated diphtheria toxin, is approved for relapsed/refractory cutaneous T-cell lymphoma. Recombinant immunotoxins which have been tested in patients with chemotherapy-pretreated hematologic malignancies include LMB-2 (anti-CD25), BL22 (CAT-3888, anti-CD22) and HA22 (CAT-8015, anti-CD22), each containing an Fv fragment fused to truncated Pseudomonas exotoxin. Major responses were observed with LMB-2 in adult T-cell leukemia, chronic lymphocytic leukemia (CLL), cutaneous T-cell lymphoma, Hodgkin's disease, and hairy cell leukemia (HCL). BL22 resulted in a high complete remission rate in patients with HCL, particularly those without excessive tumor burden. HA22, an improved version of BL22 with higher affinity to CD22, is now undergoing phase I testing in HCL, CLL, non-Hodgkin's lymphoma, and pediatric acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Robert J Kreitman
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37/5124b, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Lai B, Zhao G, London E. Behavior of the deeply inserted helices in diphtheria toxin T domain: helices 5, 8, and 9 interact strongly and promote pore formation, while helices 6/7 limit pore formation. Biochemistry 2008; 47:4565-74. [PMID: 18355037 DOI: 10.1021/bi7025134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diphtheria toxin T domain aids the membrane translocation of diphtheria toxin A chain. When the isolated T domain is deeply membrane-inserted, helices TH 8-9 form a transmembrane hairpin, while helices TH 5-7 form a deeply inserted nontransmembrane structure. Blocking deep insertion of TH 8-9 blocks deep insertion of TH 5-7 ( Zhao, G., and London, E. ( 2005) Biochemistry 44, 4488- 4498 ). We now examine the effects of blocking the deep insertion of TH 5 and TH 6/7. An A282R/V283R dual substitution in TH 5 prevented its deep insertion, significantly decreased the deep insertion of TH 9, and to a lesser degree that of TH 6/7. Blocking deep insertion of TH 6/7 with a L307R mutation had no effect on the deep insertion of TH 5, similar to its previously characterized lack of effect on the deep insertion of TH 8-9. An I364K mutation in TH 9 blocked TH 8-9 deep insertion and greatly reduced pore formation by the T domain, consistent with the role of TH 8-9 in pore formation. The A282R/V283R mutations also reduced the extent of pore formation, but to a lesser degree, suggesting either that TH 5 is part of the pore or that interactions with TH 5 affect the ability of TH 8-9 to form pores. The L307R mutation enhanced the extent of pore formation, suggesting that deeply inserted TH 6/7 may act as a "cork" that partly blocks the pore. Combined, these results indicate that TH 5, 8, and 9 combine to form a deeply inserted scaffold of more strongly associated helices.
Collapse
Affiliation(s)
- Bing Lai
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | | | |
Collapse
|
13
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
14
|
Vernier G, Chenal A, Vitrac H, Barumandzadhe R, Montagner C, Forge V. Interactions of apomyoglobin with membranes: mechanisms and effects on heme uptake. Protein Sci 2007; 16:391-400. [PMID: 17242377 PMCID: PMC2203327 DOI: 10.1110/ps.062531207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The last step of the folding reaction of myoglobin is the incorporation of a prosthetic group. In cells, myoglobin is soluble, while heme resides in the mitochondrial membrane. We report here an exhaustive study of the interactions of apomyoglobin with lipid vesicles. We show that apomyoglobin interacts with large unilamellar vesicles under acidic conditions, and that this requires the presence of negatively charged phospholipids. The pH dependence of apomyoglobin interactions with membranes is a two-step process, and involves a partially folded state stabilized at acidic pH. An evident role for the interaction of apomyoglobin with lipid bilayers would be to facilitate the uptake of heme from the outer mitochondrial membrane. However, heme binding to apomyoglobin is observed at neutral pH when the protein remains in solution, and slows down as the pH becomes more favorable to membrane interactions. The effective incorporation of soluble heme into apomyoglobin at neutral pH suggests that the interaction of apomyoglobin with membranes is not necessary for the heme uptake from the lipid bilayer. In vivo, however, the ability of apomyoglobin to interact with membrane may facilitate its localization in the vicinity of the mitochondrial membranes, and so may increase the yield of heme uptake. Moreover, the behavior of apomyoglobin in the presence of membranes shows striking similarities with that of other proteins with a globin fold. This suggests that the globin fold is well adapted for soluble proteins whose functions require interactions with membranes.
Collapse
Affiliation(s)
- Grégory Vernier
- Laboratoire de Biophysique Moléculaire et Cellulaire, Unité Mixte de Recherche 5090, Département Réponse et Dynamique Cellulaires, CEA-Grenoble, 38054 Grenoble cedex 9, France
| | | | | | | | | | | |
Collapse
|
15
|
Thuduppathy GR, Terrones O, Craig JW, Basañez G, Hill RB. The N-terminal domain of Bcl-xL reversibly binds membranes in a pH-dependent manner. Biochemistry 2007; 45:14533-42. [PMID: 17128992 PMCID: PMC1764622 DOI: 10.1021/bi0616652] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bcl-xL regulates apoptosis by maintaining the integrity of the mitochondrial outer membrane by adopting both soluble and membrane-associated forms. The membrane-associated conformation does not require a conserved, C-terminal transmembrane domain and appears to be inserted into the bilayer of synthetic membranes as assessed by membrane permeabilization and critical surface pressure measurements. Membrane association is reversible and is regulated by the cooperative binding of approximately two protons to the protein. Two acidic residues, Glu153 and Asp156, that lie in a conserved hairpin of Bcl-xLDeltaTM appear to be important in this process on the basis of a 16% increase in the level of membrane association of the double mutant E153Q/D156N. Contrary to that for the wild type, membrane permeabilization for the mutant is not correlated with membrane association. Monolayer surface pressure measurements suggest that this effect is primarily due to less membrane penetration. These results suggest that E153 and D156 are important for the Bcl-xLDeltaTM conformational change and that membrane binding can be distinct from membrane permeabilization. Taken together, these studies support a model in which Bcl-xL activity is controlled by reversible insertion of its N-terminal domain into the mitochondrial outer membrane. Future studies with Bcl-xL mutants such as E153Q/D156N should allow determination of the relative contributions of membrane binding, insertion, and permeabilization to the regulation of apoptosis.
Collapse
Affiliation(s)
| | | | | | | | - R. Blake Hill
- * To whom correspondence should be addressed: Department of Biology, Mudd Hall, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218. Phone: (410) 516-6783. Fax: (702) 441-2490. E-mail:
| |
Collapse
|
16
|
Wang J, Rosconi MP, London E. Topography of the hydrophilic helices of membrane-inserted diphtheria toxin T domain: TH1-TH3 as a hydrophilic tether. Biochemistry 2006; 45:8124-34. [PMID: 16800637 PMCID: PMC2519890 DOI: 10.1021/bi060587f] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
After low pH-triggered membrane insertion, the T domain of diphtheria toxin helps translocate the catalytic domain of the toxin across membranes. In this study, the hydrophilic N-terminal helices of the T domain (TH1-TH3) were studied. The conformation triggered by exposure to low pH and changes in topography upon membrane insertion were studied. These experiments involved bimane or BODIPY labeling of single Cys introduced at various positions, followed by the measurement of bimane emission wavelength, bimane exposure to fluorescence quenchers, and antibody binding to BODIPY groups. Upon exposure of the T domain in solution to low pH, it was found that the hydrophobic face of TH1, which is buried in the native state at neutral pH, became exposed to solution. When the T domain was added externally to lipid vesicles at low pH, the hydrophobic face of TH1 became buried within the lipid bilayer. Helices TH2 and TH3 also inserted into the bilayer after exposure to low pH. However, in contrast to helices TH5-TH9, overall TH1-TH3 insertion was shallow and there was no significant change in TH1-TH3 insertion depth when the T domain switched from the shallowly inserting (P) to deeply inserting (TM) conformation. Binding of streptavidin to biotinylated Cys residues was used to investigate whether solution-exposed residues of membrane-inserted T domain were exposed on the external or internal surface of the bilayer. These experiments showed that when the T domain is externally added to vesicles, the entire TH1-TH3 segment remains on the cis (outer) side of the bilayer. The results of this study suggest that membrane-inserted TH1-TH3 form autonomous segments that neither deeply penetrate the bilayer nor interact tightly with the translocation-promoting structure formed by the hydrophobic TH5-TH9 subdomain. Instead, TH1-TH3 may aid translocation by acting as an A-chain-attached flexible tether.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biochemistry and Cell Biology, State University of New York (SUNY)-Stony Brook, Stony Brook, New York 11794-5215, USA
| | | | | |
Collapse
|
17
|
Parker MW, Feil SC. Pore-forming protein toxins: from structure to function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:91-142. [PMID: 15561302 DOI: 10.1016/j.pbiomolbio.2004.01.009] [Citation(s) in RCA: 342] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pore-forming protein toxins (PFTs) are one of Nature's most potent biological weapons. An essential feature of their toxicity is the remarkable property that PFTs can exist either in a stable water-soluble state or as an integral membrane pore. In order to convert from the water-soluble to the membrane state, the toxin must undergo large conformational changes. There are now more than a dozen PFTs for which crystal structures have been determined and the nature of the conformational changes they must undergo is beginning to be understood. Although they differ markedly in their primary, secondary, tertiary and quaternary structures, nearly all can be classified into one of two families based on the types of pores they are thought to form: alpha-PFTs or beta-PFTs. Recent work suggests a number of common features in the mechanism of membrane insertion may exist for each class.
Collapse
Affiliation(s)
- Michael W Parker
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia.
| | | |
Collapse
|
18
|
Chenal A, Savarin P, Nizard P, Guillain F, Gillet D, Forge V. Membrane protein insertion regulated by bringing electrostatic and hydrophobic interactions into play. A case study with the translocation domain of diphtheria toxin. J Biol Chem 2002; 277:43425-32. [PMID: 12193591 DOI: 10.1074/jbc.m204148200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The study of the membrane insertion of the translocation domain of diphtheria toxin deepens our insight into the interactions between proteins and membranes. During cell intoxication, this domain undergoes a change from a soluble and folded state at alkaline pH to a functional membrane-inserted state at acid pH. We found that hydrophobic and electrostatic interactions occur in a sequential manner between the domain and the membrane during the insertion. The first step involves hydrophobic interactions by the C-terminal region. This is because of the pH-induced formation of a molten globule specialized for binding to the membrane. Accumulation of this molten globule follows a precise molecular mechanism adapted to the toxin function. The second step, as the pH decreases, leads to the functional inserted state. It arises from the changes in the balance of electrostatic attractions and repulsions between the N-terminal part and the membrane. Our study shows how the structural changes and the interaction with membranes of the translocation domain are finely tuned by pH changes to take advantage of the cellular uptake system.
Collapse
Affiliation(s)
- Alexandre Chenal
- Département d'Ingénierie et d'Etudes des Protéines, CEA-Saclay, 91191 Gif sur Yvette cedex, France
| | | | | | | | | | | |
Collapse
|
19
|
Li XX, Colombini M. Catalyzed insertion of proteins into phospholipid membranes: specificity of the process. Biophys J 2002; 83:2550-9. [PMID: 12414689 PMCID: PMC1302341 DOI: 10.1016/s0006-3495(02)75266-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The process of insertion of intrinsic proteins into phospholipid membranes conjures up the thought of enormous energy barriers but is a routine occurrence in cells. Proteinaceous complexes responsible for protein targeting/translocation/insertion into membranes have been studied intensively. However, the mitochondrial voltage-dependent anion channel (VDAC), can insert into phospholipid membranes by an auto-catalytic process called "auto-directed insertion." This process results in an oriented insertion of VDAC channels and an increase in insertion rate per unit area of 10 orders of magnitude. Here we report that VDAC catalyzes the insertion of PorA/C1 and KcsA by increasing their calculated insertion rate per unit area by 9 orders of magnitude with no detectable effect on the insertion of alpha-hemolysin. This was measured as a reduction in the delay before the first insertion of these proteins. Gramicidin and PorA/C1 accelerate the calculated insertion rate per unit area of VDAC by 8 and 9 orders of magnitude, respectively. Only PorA/C1 increases the overall rate of VDAC insertion (50-fold) over the self-catalyzed rate. Our results indicate that catalyzed insertion of proteins into phospholipid membranes does not arise simply from disturbance of the phospholipid membrane because it shows strong specificity.
Collapse
Affiliation(s)
- Xiao Xian Li
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
20
|
Chenal A, Nizard P, Gillet D. STRUCTURE AND FUNCTION OF DIPHTHERIA TOXIN: FROM PATHOLOGY TO ENGINEERING. ACTA ACUST UNITED AC 2002. [DOI: 10.1081/txr-120014408] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Del Angel VD, Dupuis F, Mornon JP, Callebaut I. Viral fusion peptides and identification of membrane-interacting segments. Biochem Biophys Res Commun 2002; 293:1153-60. [PMID: 12054496 DOI: 10.1016/s0006-291x(02)00353-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Viral envelope glycoproteins promote infection by mediating fusion between viral and cellular membranes. Fusion occurs after dramatic conformational changes within fusion proteins, leading to the exposure of a short stretch of mostly apolar residues, termed the fusion peptide, which is presumed to insert into the membrane and initiate the fusion process. The typical global composition of fusion peptides, rich in hydrophobic but also in small amino acids such as alanine and glycine, was used here as bait to detect other peptidic segments that can insert into membranes. We so evidenced a similar composition in several cytotoxic peptides, which promote pore formation such as peptides involved in amyloidoses and hydrophobic alpha-hairpins of pore-forming toxins. It is suggested that the structural plasticity observed for several membrane active peptides can be conferred by this particular global amino acid composition, which could be thus used to predict such functional behavior from genome data.
Collapse
Affiliation(s)
- Victoria Dominguez Del Angel
- Systèmes moléculaires & Biologie structurale, LMCP, CNRS UMR 7590, Universités Paris 6 et Paris 7, case 115, 4 place Jussieu, Paris Cedex 05 FR-75252, France
| | | | | | | |
Collapse
|
22
|
Rosconi MP, London E. Topography of helices 5-7 in membrane-inserted diphtheria toxin T domain: identification and insertion boundaries of two hydrophobic sequences that do not form a stable transmembrane hairpin. J Biol Chem 2002; 277:16517-27. [PMID: 11859081 DOI: 10.1074/jbc.m200442200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The T domain of diphtheria toxin undergoes a low pH-induced conformational change that allows it to penetrate cell membranes. T domain hydrophobic helices 8 and 9 can adopt two conformations, one close to the membrane surface (P state) and a second in which they apparently form a transmembrane hairpin (TM state). We have now studied T domain helices 5-7, a second cluster of hydrophobic helices, using Cys-scanning mutagenesis. After fluorescently labeling a series of Cys residues, penetration into a non-polar environment, accessibility to externally added antibodies, and relative depth in the bilayer were monitored. It was found that helices 5-7 insert shallowly in the P state and deeply in the TM state. Thus, the conformational changes in helices 5-7 are both similar and somehow linked to those in helices 8 and 9. The boundaries of deeply inserting sequences were also identified. One deeply inserted segment was found to span residues 270 to 290, which overlaps helix 5, and a second spanned residues 300 to 320, which includes most of helix 6 and all of helix 7. This indicates that helices 6 and 7 form a continuous hydrophobic segment despite their separation by a Pro-containing kink. Additionally, it is found that in the TM state some residues in the hydrophilic loop between helices 5 and 6 become more highly exposed than they are in the P state. Their exposure to external solution in the TM state indicates that helices 5-7 do not form a stable transmembrane hairpin. However, helix 5 and/or helices 6 plus 7 could form transmembrane structures that are in equilibrium with non-transmembrane states, or be kinetically prevented from forming a transmembrane structure. How helices 5-7 might influence the mechanism by which the T domain aids translocation of the diphtheria toxin A chain across membranes is discussed.
Collapse
Affiliation(s)
- Michael P Rosconi
- Department of Biochemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
23
|
Chenal A, Nizard P, Forge V, Pugnière M, Roy MO, Mani JC, Guillain F, Gillet D. Does fusion of domains from unrelated proteins affect their folding pathways and the structural changes involved in their function? A case study with the diphtheria toxin T domain. Protein Eng Des Sel 2002; 15:383-91. [PMID: 12034858 DOI: 10.1093/protein/15.5.383] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated whether the structural and functional behaviors of two unrelated protein domains were modified when fused. The IgG-binding protein ZZ derived from staphylococcal protein A was fused to the N- and/or C-terminus of the diphtheria toxin transmembrane domain (T). T undergoes a conformational change from a soluble native state at neutral pH to a molten globule-like state at acidic pH, leading to its interaction with membranes. We found that this molten globule state was not connected to the GdnHCl-induced unfolding pathway of T. The pH-induced transition of T, and also the unfolding of T and ZZ at neutral and acidic pH, were unchanged whether the domains were isolated or fused. The position of ZZ, however, influenced the solubility of T near its pK(i). SPR measurements revealed that T has a high affinity for membranes, isolated or within the fusion proteins (K(D)< 10(-11) M). This work shows that in the case of T and ZZ, the fusion of protein domains with different stabilities does not alter the structural changes involved in folding and function. This supports the use of T as a soluble membrane anchor.
Collapse
Affiliation(s)
- Alexandre Chenal
- Département d'Ingénierie et d'Etudes des Protéines, CEA-Saclay, 91191 Gif sur Yvette cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Voltage-gated ion channels have at least two classes of moving parts, voltage sensors that respond to changes in the transmembrane potential and gates that create or deny permeant ions access to the conduction pathway. To explore the coupling between voltage sensors and gates, we have systematically immobilized each using a bifunctional photoactivatable cross-linker, benzophenone-4-carboxamidocysteine methanethiosulfonate, that can be tethered to cysteines introduced into the channel protein by mutagenesis. To validate the method, we first tested it on the inactivation gate of the sodium channel. The benzophenone-labeled inactivation gate of the sodium channel can be trapped selectively either in an open or closed state by ultraviolet irradiation at either a hyperpolarized or depolarized voltage, respectively. To verify that ultraviolet light can immobilize S4 segments, we examined its relative effects on ionic and gating currents in Shaker potassium channels, labeled at residue 359 at the extracellular end of the S4 segment. As predicted by the tetrameric stoichiometry of these potassium channels, ultraviolet irradiation reduces ionic current by approximately the fourth power of the gating current reduction, suggesting little cooperativity between the movements of individual S4 segments. Photocross-linking occurs preferably at hyperpolarized voltages after labeling residue 359, suggesting that depolarization moves the benzophenone adduct out of a restricted environment. Immobilization of the S4 segment of the second domain of sodium channels prevents channels from opening. By contrast, photocross-linking the S4 segment of the fourth domain of the sodium channel has effects on both activation and inactivation. Our results indicate that specific voltage sensors of the sodium channel play unique roles in gating, and suggest that movement of one voltage sensor, the S4 segment of domain 4, is at least a two-step process, each step coupled to a different gate.
Collapse
Affiliation(s)
- R Horn
- Department of Physiology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
25
|
D'Silva PR, Lala AK. Organization of diphtheria toxin in membranes. A hydrophobic photolabeling study. J Biol Chem 2000; 275:11771-7. [PMID: 10766800 DOI: 10.1074/jbc.275.16.11771] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diphtheria toxin (DT) is a disulfide linked AB-toxin consisting of a catalytic domain (C), a membrane-inserting domain (T), and a receptor-binding domain (R). It gains entry into cells by receptor-mediated endocytosis. The low pH ( approximately 5.5) inside the endosomes induces a conformational change in the toxin leading to insertion of the toxin in the membrane and subsequent translocation of the C domain into the cell, where it inactivates protein synthesis ultimately leading to cell death. We have used a highly reactive hydrophobic photoactivable reagent, DAF, to identify the segments of DT that interact with the membrane at pH 5.2. This reagent readily partitions into membranes and, on photolysis, indiscriminately inserts into lipids and membrane-inserted domains of proteins. Subsequent chemical and/or enzymatic fragmentation followed by peptide sequencing allows for identification of the modified residues. Using this approach it was observed that T domain helices, TH1, TH8, and TH9 insert into the membrane. Furthermore, the disulfide link was found on the trans side leaving part of the C domain on the trans side. This domain then comes out to the cis side via a highly hydrophobic patch corresponding to residues 134-141, originally corresponding to a beta-strand in the solution structure of DT. It appears that the three helices of the T domain could participate in the formation of a channel from a DT-oligomer, thus providing the transport route to the C domain after the disulfide reductase separates the two chains.
Collapse
Affiliation(s)
- P R D'Silva
- Biomembrane Laboratory, Department of Chemistry and Biotechnology Center, Indian Institute of Technology Bombay, Powai, Bombay 400 076, India
| | | |
Collapse
|
26
|
Argent RH, Parrott AM, Day PJ, Roberts LM, Stockley PG, Lord JM, Radford SE. Ribosome-mediated folding of partially unfolded ricin A-chain. J Biol Chem 2000; 275:9263-9. [PMID: 10734065 DOI: 10.1074/jbc.275.13.9263] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After endocytic uptake by mammalian cells, the cytotoxic protein ricin is transported to the endoplasmic reticulum, whereupon the A-chain must cross the lumenal membrane to reach its ribosomal substrates. It is assumed that membrane traversal is preceded by unfolding of ricin A-chain, followed by refolding in the cytosol to generate the native, biologically active toxin. Here we describe biochemical and biophysical analyses of the unfolding of ricin A-chain and its refolding in vitro. We show that native ricin A-chain is surprisingly unstable at pH 7.0, unfolding non-cooperatively above 37 degrees C to generate a partially unfolded state. This species has conformational properties typical of a molten globule, and cannot be refolded to the native state by manipulation of the buffer conditions or by the addition of a stem-loop dodecaribonucleotide or deproteinized Escherichia coli ribosomal RNA, both of which are substrates for ricin A-chain. By contrast, in the presence of salt-washed ribosomes, partially unfolded ricin A-chain regains full catalytic activity. The data suggest that the conformational stability of ricin A-chain is ideally poised for translocation from the endoplasmic reticulum. Within the cytosol, ricin A-chain molecules may then refold in the presence of ribosomes, resulting in ribosome depurination and cell death.
Collapse
Affiliation(s)
- R H Argent
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Immunotoxins are composed of a protein toxin connected to a binding ligand such as an antibody or growth factor. These molecules bind to surface antigens (which internalize) and kill cells by catalytic inhibition of protein synthesis within the cell cytosol. Immunotoxins have recently been tested clinically in hematologic malignancies and solid tumors and have demonstrated potent clinical efficacy in patients with malignant diseases that are refractory to surgery, radiation therapy and chemotherapy - the traditional modalities of cancer treatment. This therapy is thus evolving into a separate modality of cancer treatment, capable of rationally targeting cells on the basis of surface markers. Efforts are underway to obviate impediments to clinical efficacy, including immunogenicity and toxicity to normal tissues. Immunotoxins are now being developed to new antigens for the treatment of cancer.
Collapse
Affiliation(s)
- R J Kreitman
- Laboratory of Molecular Biology, Division of Cancer Biology, National Cancer Institute, National Institutes of Health, 37/4B27, 9000 Rockville Pike, 4255 Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Abstract
Certain bacteria secrete protein toxins that catalytically modify and disrupt essential processes in mammalian cells, often leading to cell death. As the substrates modified by these toxins are located in the mammalian cell cytosol, a catalytically active toxin polypeptide must reach this compartment in order to act. The toxins bind to receptors on the surface of susceptible cells and enter them by endocytic uptake. Endocytosed toxins initially accumulate in endosomes, where some of these proteins take advantage of the acidic environment within these organelles to form, or contribute to the formation of, protein-conducting channels through which the catalytic polypeptide is able to translocate into the cytosol. Other toxins are unable to respond to low pH in this way and must undergo intracellular vesicular transport to reach a compartment where pre-existing protein-conducting channels occur and can be exploited for membrane translocation--the endoplasmic reticulum. In this way, cell entry by this second group of toxins demonstrates that the secretory pathway of mammalian cells is completely reversible.
Collapse
Affiliation(s)
- J M Lord
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | | | |
Collapse
|
29
|
Zhan H. A method for quick measurement of protein binding to unilamellar vesicles. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1999; 41:13-9. [PMID: 10512035 DOI: 10.1016/s0165-022x(99)00030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general method for measuring interaction of liposome-protein (or potentially small molecules) was developed. This method utilizes biotinylated liposomes to incubate with interactants. Streptavidin-coated paramagnetic resins were then added and the liposomes (along with bound materials) can be quickly separated under a magnetic field or by low speed centrifugation. Subsequently, concentration of unbound materials (in the supernatants) can be directly determined. The described method is particularly useful for proteins or compounds that are not very soluble under certain assay conditions.
Collapse
Affiliation(s)
- H Zhan
- Axys Pharmaceuticals, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
30
|
Zhan H, Liu B, Reid SW, Aoki KH, Li C, Syed RS, Karkaria C, Koe G, Sitney K, Hayenga K, Mistry F, Savel L, Dreyer M, Katz BA, Schreurs J, Matthews DJ, Cheetham JC, Egrie J, Giebel LB, Stroud RM. Engineering a soluble extracellular erythropoietin receptor (EPObp) in Pichia pastoris to eliminate microheterogeneity, and its complex with erythropoietin. PROTEIN ENGINEERING 1999; 12:505-13. [PMID: 10388848 DOI: 10.1093/protein/12.6.505] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The extracellular ligand-binding domain (EPObp) of the human EPO receptor (EPOR) was expressed both in CHO (Chinese Hamster Ovary) cells and in Pichia pastoris. The CHO and yeast expressed receptors showed identical affinity for EPO binding. Expression levels in P. pastoris were significantly higher, favoring its use as an expression and scale-up production system. Incubation of EPO with a fourfold molar excess of receptor at high protein concentrations yielded stable EPO-EPObp complexes. Quantification of EPO and EPObp in the complex yielded a molar ratio of one EPO molecule to two receptor molecules. Residues that are responsible for EPOR glycosylation and isomerization in Pichia were identified and eliminated by site-specific mutagenesis. A thiol modification was identified and a method was developed to remove the modified species from EPObp. EPObp was complexed with erythropoietin (EPO) and purified. The complex crystallized in two crystal forms that diffracted to 2.8 and 1.9 A respectively. (Form 1 and form 2 crystals were independently obtained at AxyS Pharmaceuticals, Inc. and Amgen, Inc. respectively.) Both contained one complex per asymmetric unit with a stoichiometry of two EPObps to one EPO.
Collapse
Affiliation(s)
- H Zhan
- Axys Pharmaceuticals, Inc., 180 Kimball Way, San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jackson GS, Hosszu LL, Power A, Hill AF, Kenney J, Saibil H, Craven CJ, Waltho JP, Clarke AR, Collinge J. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 1999; 283:1935-7. [PMID: 10082469 DOI: 10.1126/science.283.5409.1935] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Prion propagation involves the conversion of cellular prion protein (PrPC) into a disease-specific isomer, PrPSc, shifting from a predominantly alpha-helical to beta-sheet structure. Here, conditions were established in which recombinant human PrP could switch between the native alpha conformation, characteristic of PrPC, and a compact, highly soluble, monomeric form rich in beta structure. The soluble beta form (beta-PrP) exhibited partial resistance to proteinase K digestion, characteristic of PrPSc, and was a direct precursor of fibrillar structures closely similar to those isolated from diseased brains. The conversion of PrPC to beta-PrP in suitable cellular compartments, and its subsequent stabilization by intermolecular association, provide a molecular mechanism for prion propagation.
Collapse
Affiliation(s)
- G S Jackson
- Prion Disease Group, Department of Neurogenetics, Imperial College School of Medicine at St. Mary's, London W2 1NY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kachel K, Ren J, Collier RJ, London E. Identifying transmembrane states and defining the membrane insertion boundaries of hydrophobic helices in membrane-inserted diphtheria toxin T domain. J Biol Chem 1998; 273:22950-6. [PMID: 9722516 DOI: 10.1074/jbc.273.36.22950] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane topography of proteins that convert between soluble and membrane-inserted states has proven a challenging problem. In particular, it has been difficult to define both whether a transmembrane orientation is achieved and what are the boundaries of membrane-inserted segments. In this report the fluorescence of bimane-labeled Cys residues and the binding of anti-BODIPY antibodies to BODIPY-labeled Cys residues are combined to define these features for helices TH8 and TH9 of the T domain of diphtheria toxin. Using a series of labeled residues the topography of these helices was examined in both conformations of membrane-inserted T domain identified previously (Wang, Y., Malenbaum, S. E., Kachel, K., Zhan, H., Collier, R. J., and London, E. (1997) J. Biol. Chem. 272, 25091-25098). In the shallowly inserted conformation these helices are found to be aligned close to the cis surface of the bilayer all along their sequences. In contrast, in the more deeply inserted conformation most TH8 and TH9 residues examined located in a non-polar environment, with the boundaries of the membrane-inserted sequences close to residues 324 and 372-374 on the cis (insertion) side of the bilayer. It was also found that residues 348 and 349, which are in the loop connecting TH8 and TH9, reached the opposite trans side of the bilayer, but did not protrude fully into the aqueous environment. These boundaries suggest the membrane-inserted segments of TH8 and TH9 form transmembrane helices about 25 residues in length, and suggest that they are connected by a tight turn. It is concluded that this combination of fluorescent techniques can be combined to obtain transmembrane helix topography.
Collapse
Affiliation(s)
- K Kachel
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
33
|
Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 1998; 62:775-806. [PMID: 9729609 PMCID: PMC98934 DOI: 10.1128/mmbr.62.3.775-806.1998] [Citation(s) in RCA: 1707] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism's pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit.
Collapse
Affiliation(s)
- E Schnepf
- Mycogen Corp., San Diego, California 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Nizard P, Liger D, Gaillard C, Gillet D. Anchoring antibodies to membranes using a diphtheria toxin T domain-ZZ fusion protein as a pH sensitive membrane anchor. FEBS Lett 1998; 433:83-8. [PMID: 9738938 DOI: 10.1016/s0014-5793(98)00890-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have constructed a fusion protein, T-ZZ, in which the IgG-Fc binding protein ZZ was fused to the C-terminus of the diphtheria toxin transmembrane domain (T domain). While soluble at neutral pH, T-ZZ retained the capacity of the T domain to bind to phospholipid membranes at acidic pH. Once anchored to the membrane, the ZZ part of the protein was capable of binding mouse monoclonal or rabbit polyclonal IgG. Our results show that the T-ZZ protein can function as a pH sensitive membrane anchor for the linkage of IgG to the membrane of lipid vesicles, adherent and non-adherent cells.
Collapse
Affiliation(s)
- P Nizard
- Département d'Ingénierie et d'Etudes des Protéines (DIEP), DSV, CEA, CE Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
35
|
Abstract
Immunotoxins constitute a new modality for the treatment of cancer, since they target cells displaying specific surface-receptors or antigens. Immunotoxins contain a ligand such as a growth factor, monoclonal antibody, or fragment of an antibody which is connected to a protein toxin. After the ligand subunit binds to the surface of the target cell, the molecule internalizes and the toxin kills the cell. Bacterial toxins which have been targeted to cancer cells include Pseudomonas exotoxin and diphtheria toxin, which are well suited to forming recombinant single-chain or double-chain fusion toxins. Plant toxins include ricin, abrin, pokeweed antiviral protein, saporin and gelonin, and have generally been connected to ligands by disulfide-bond chemistry. Immunotoxins have been produced to target hematologic malignancies and solid tumors via a wide variety of growth factor receptors and antigens. Challenges facing the clinical application of immunotoxins are discussed.
Collapse
Affiliation(s)
- I Pastan
- Laboratory of Molecular Biology, Division of Cancer Biology, National Cancer Institute, National Institutes of Health, 37/4E16, 37 Convent Drive MSC 4255, Bethesda, MD 20892, USA
| | | |
Collapse
|
36
|
van den Akker F, Feil IK, Roach C, Platas AA, Merritt EA, Hol WG. Crystal structure of heat-labile enterotoxin from Escherichia coli with increased thermostability introduced by an engineered disulfide bond in the A subunit. Protein Sci 1997; 6:2644-9. [PMID: 9416616 PMCID: PMC2143605 DOI: 10.1002/pro.5560061219] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cholera toxin (CT) produced by Vibrio cholerae and heat-labile enterotoxin (LT-I), produced by enterotoxigenic Escherichia coli, are AB5 heterohexamers with an ADP-ribosylating A subunit and a GM1 receptor binding B pentamer. These toxins are among the most potent mucosal adjuvants known and, hence, are of interest both for the development of anti-diarrheal vaccines against cholera or enterotoxigenic Escherichia coli diarrhea and also for vaccines in general. However, the A subunits of CT and LT-I are known to be relatively temperature sensitive. To improve the thermostability of LT-I an additional disulfide bond was introduced in the A1 subunit by means of the double mutation N40C and G166C. The crystal structure of this double mutant of LT-I has been determined to 2.0 A resolution. The protein structure of the N40C/G166C double mutant is very similar to the native structure except for a few local shifts near the new disulfide bond. The introduction of this additional disulfide bond increases the thermal stability of the A subunit of LT-I by 6 degrees C. The enhancement in thermostability could make this disulfide bond variant of LT-I of considerable interest for the design of enterotoxin-based vaccines.
Collapse
Affiliation(s)
- F van den Akker
- Department of Biochemistry, University of Washington, Seattle 98195-7420, USA
| | | | | | | | | | | |
Collapse
|
37
|
Wang Y, Malenbaum SE, Kachel K, Zhan H, Collier RJ, London E. Identification of shallow and deep membrane-penetrating forms of diphtheria toxin T domain that are regulated by protein concentration and bilayer width. J Biol Chem 1997; 272:25091-8. [PMID: 9312118 DOI: 10.1074/jbc.272.40.25091] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The alpha-helix-rich, hydrophobic transmembrane (T) domain of diphtheria toxin is believed to play a central role in membrane insertion by the toxin and in the translocation of its catalytic domain across membranes. In this report, T domain structure was studied using site-directed single-Cys mutants. The residues chosen, 322 (near the amino-terminal end of helix TH8), 333 (within helix TH8), and 356 (within helix TH9) were substituted with Cys and labeled with the fluorescent probe bimane. (Residues 333 and 356 should be located within the bilayer in the transmembrane state, and residue 322 should not penetrate the bilayer.) After insertion of T domain into model membrane vesicles, the location of bimane label relative to the lipid bilayer was characterized by its fluorescence emission and by its quenching with nitroxide-labeled phospholipids. It was found that when the T domain is added to dioleoylphosphatidylcholine-containing vesicles, all three residues reside close to the outer surface. However, at high T domain concentration or in thinner dimyristoleoylphosphatidylcholine-containing vesicles, a large fraction of residues 333 and 356 penetrate deeply into the membrane. In contrast, residue 322 remains exposed to aqueous solution under these conditions. These conclusions were confirmed by a novel antibody binding method. Antibodies that quench the fluorescence of 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-3-indacene++ + (BODIPY) groups were used to evaluate the exposure of BODIPY-labeled 322, 333, and 356. Maximum exposure of residues 333 and 356 to externally added antibody was only observed under conditions in which bimane fluorescence showed that these residues do not penetrate the bilayer. In contrast, residue 322 remained exposed under all conditions. We propose that the deeply penetrating T domain conformation represents a transmembrane or near-transmembrane state. The regulation of the transmembrane/nontransmembrane equilibrium should be a key to understanding diphtheria toxin membrane insertion and translocation. Our results suggest that toxin-toxin interactions may play an important role in regulating this behavior.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kaback HR, Voss J, Wu J. Helix packing in polytopic membrane proteins: the lactose permease of Escherichia coli. Curr Opin Struct Biol 1997; 7:537-42. [PMID: 9266176 DOI: 10.1016/s0959-440x(97)80119-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent advances in protein engineering have facilitated the development of alternative approaches to determine helix packing in polytopic membrane proteins. Using the lac permease as a paradigm, several site-directed biophysical and biochemical techniques are described which should be generally applicable.
Collapse
Affiliation(s)
- H R Kaback
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90024-1662, USA.
| | | | | |
Collapse
|
39
|
Recombinant Toxins Containing Human Granulocyte-Macrophage Colony-Stimulating Factor and Either Pseudomonas Exotoxin or Diphtheria Toxin Kill Gastrointestinal Cancer and Leukemia Cells. Blood 1997. [DOI: 10.1182/blood.v90.1.252] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR) is a potential target for toxin-directed therapy, because it is overexpressed on many leukemias and solid tumors and apparently not on stem cells. To investigate the potential therapeutic use of GM-CSF toxins, we fused human GM-CSF to truncated forms of either Pseudomonas exotoxin (PE) or diphtheria toxin (DT) and tested the cytotoxicity of the resulting GM-CSF–PE38KDEL and DT388–GM-CSF on human gastrointestinal (GI) carcinomas and leukemias. Toward gastric and colon cancer cell lines, GM-CSF–PE38KDEL was much more cytotoxic than DT388–GM-CSF, with IC50s (concentration resulting in 50% inhibition of protein synthesis) of 0.5 to 10 ng/mL compared with 4 to 400 ng/mL, respectively. In contrast, toward leukemia lines and fresh bone marrow cells DT388–GM-CSF was more cytotoxic than GM-CSF–PE38KDEL. The cytotoxicity of both GM-CSF–PE38KDEL and DT388–GM-CSF toward the human cells was specific, because it could be competed by an excess of GM-CSF. Binding studies indicated that human GM-CSF receptors were present on all of the human GI and leukemic cell lines tested, at levels of 540 to 3,700 sites per cell (kd = 0.2 to 2 nmol/L), and the number of sites per cell did not correlate with the cell type. A similar pattern of cytotoxicity was found with recombinant immunotoxins binding to the transferrin receptor, in that anti-TFR(Fv)–PE38KDEL was much more cytotoxic than DT388–anti-TFR(Fv) toward GI cells, but both were similar in their cytotoxic activity toward leukemia cells. The fact that PE is more effective than DT in killing GI but not leukemic tumor cells targeted by GM-CSF indicates a fundamental difference in the way PE or DT gains access to the cytosol in these cells. GM-CSF–PE38KDEL and DT388–GM-CSF deserve further evaluation as possible treatments for selected tumors.
Collapse
|
40
|
Recombinant Toxins Containing Human Granulocyte-Macrophage Colony-Stimulating Factor and Either Pseudomonas Exotoxin or Diphtheria Toxin Kill Gastrointestinal Cancer and Leukemia Cells. Blood 1997. [DOI: 10.1182/blood.v90.1.252.252_252_259] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR) is a potential target for toxin-directed therapy, because it is overexpressed on many leukemias and solid tumors and apparently not on stem cells. To investigate the potential therapeutic use of GM-CSF toxins, we fused human GM-CSF to truncated forms of either Pseudomonas exotoxin (PE) or diphtheria toxin (DT) and tested the cytotoxicity of the resulting GM-CSF–PE38KDEL and DT388–GM-CSF on human gastrointestinal (GI) carcinomas and leukemias. Toward gastric and colon cancer cell lines, GM-CSF–PE38KDEL was much more cytotoxic than DT388–GM-CSF, with IC50s (concentration resulting in 50% inhibition of protein synthesis) of 0.5 to 10 ng/mL compared with 4 to 400 ng/mL, respectively. In contrast, toward leukemia lines and fresh bone marrow cells DT388–GM-CSF was more cytotoxic than GM-CSF–PE38KDEL. The cytotoxicity of both GM-CSF–PE38KDEL and DT388–GM-CSF toward the human cells was specific, because it could be competed by an excess of GM-CSF. Binding studies indicated that human GM-CSF receptors were present on all of the human GI and leukemic cell lines tested, at levels of 540 to 3,700 sites per cell (kd = 0.2 to 2 nmol/L), and the number of sites per cell did not correlate with the cell type. A similar pattern of cytotoxicity was found with recombinant immunotoxins binding to the transferrin receptor, in that anti-TFR(Fv)–PE38KDEL was much more cytotoxic than DT388–anti-TFR(Fv) toward GI cells, but both were similar in their cytotoxic activity toward leukemia cells. The fact that PE is more effective than DT in killing GI but not leukemic tumor cells targeted by GM-CSF indicates a fundamental difference in the way PE or DT gains access to the cytosol in these cells. GM-CSF–PE38KDEL and DT388–GM-CSF deserve further evaluation as possible treatments for selected tumors.
Collapse
|
41
|
Schwartz JL, Juteau M, Grochulski P, Cygler M, Préfontaine G, Brousseau R, Masson L. Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett 1997; 410:397-402. [PMID: 9237670 DOI: 10.1016/s0014-5793(97)00626-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Disulfide bridges were introduced into CrylAa, a Bacillus thuringiensis lepidopteran toxin, to stabilize different protein domains including domain I alpha-helical regions thought to be involved in membrane integration and permeation. Bridged mutants could not form functional ion channels in lipid bilayers in the oxidized state, but upon reduction with beta-mercaptoethanol, regained parental toxin channel activity. Our results show that unfolding of the protein around a hinge region linking domain I and II is a necessary step for pore formation. They also suggest that membrane insertion of the hydrophobic hairpin made of alpha-helices 4 and 5 in domain I plays a critical role in the formation of a functional pore.
Collapse
Affiliation(s)
- J L Schwartz
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec.
| | | | | | | | | | | | | |
Collapse
|
42
|
Lesieur C, Vécsey-Semjén B, Abrami L, Fivaz M, Gisou van der Goot F. Membrane insertion: The strategies of toxins (review). Mol Membr Biol 1997; 14:45-64. [PMID: 9253764 DOI: 10.3109/09687689709068435] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein toxins are soluble molecules secreted by pathogenic bacteria which act at the plasma membrane or in the cytoplasm of target cells. They must therefore interact with a membrane at some point, either to modify its permeability properties or to reach the cytoplasm. As a consequence, toxins have the built-in capacity to adopt two generally incompatible states: water-soluble and transmembrane. Irrespective of their origin or function, the membrane interacting domain of most protein toxins seems to have adopted one out of two structural strategies to be able to undergo this metamorphosis. In the first group of toxins the membrane interacting domain has the structural characteristics of most known membrane proteins, i.e. it contains hydrophobic and amphipathic alpha-helices long enough to span a membrane. To render this 'membrane protein' water-soluble during the initial part of its life the hydrophobic helices are sheltered from the solvent by a barrel of amphipathic helices. In the second group of toxins the opposite strategy is adopted. The toxin is an intrinsically soluble protein and is composed mainly of beta-structure. These toxins manage to become membrane proteins by oligomerizing in order to combine amphipathic beta-sheet to generate sufficient hydrophobicity for membrane insertion to occur. Toxins from this latter group are thought to perforate the lipid bilayer as a beta-barrel such as has been described for bacterial porins, and has recently been shown for staphylococcal alpha-toxin. The two groups of toxins will be described in detail through the presentation of examples. Particular attention will be given to the beta-structure toxins, since four new structures have been solved over the past year: the staphyloccocal alpha-toxin channel, the anthrax protective antigen protoxin, the anthrax protective antigen-soluble heptamer and the CytB protoxin. Structural similarities with mammalian proteins implicated in the immune response and apoptosis will be discussed. Peptide toxins will not be covered in this review.
Collapse
Affiliation(s)
- C Lesieur
- Département de Biochimie, Faculté des Sciences, Genève, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Elkins P, Bunker A, Cramer WA, Stauffacher CV. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Structure 1997; 5:443-58. [PMID: 9083117 DOI: 10.1016/s0969-2126(97)00200-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Channel-forming colicins, including colicin E1, are a sub-family of bacteriocins. The toxic action of colicin E1 is derived from its ability to form a voltage-gated channel, which causes depolarization of the cytoplasmic membrane of sensitive Escherichia coli cells. In this process, the toxin-like colicin E1 molecule must undergo a substantial structural transition from a soluble state, in which it binds the target cell, to a membrane-bound state. Details of the structural changes that accompany this conversion may be directly applicable to other channel-forming toxins, as well as to the mechanism by which proteins insert into or cross membranes. RESULTS The structure of the 190-residue channel-forming domain of colicin E1 in its soluble form has been solved at 2.5 A resolution. This structure contains 10alpha helices arranged in three layers (A-C) with a central hydrophobic helical hairpin in layer B, which is proposed to anchor the membrane-bound form in the bilayer. The extended N-terminal helix I provides a connection to the rest of the colicin E1 molecule, and the loop I-II may act as a hinge for re-orientation of the domain for membrane binding. A set of conserved positively charged residues on layer C may provide the docking surface on the molecule for membrane attachment. A large internal cavity between layers B and C may allow these layers to disengage, suggesting a mechanism for unfolding the molecule on the membrane that involves the perturbation of the interhelical hydrophobic interactions in layer C. CONCLUSION On the basis of the structure of the colicin E1 channel-forming domain, its comparison with the structure of the colicin A domain and the known requirement for initial electrostatic and subsequent hydrophobic interactions, molecular details of the docking, unfolding and insertion of the channel-forming domain into the membrane are proposed. The model for docking and initial interaction with the membrane positions the hydrophobic hairpin 'anchor' approximately parallel to the membrane surface. Hydrophobic interactions in the docking layer may then be displaced by interactions with the membrane, spreading the helices on the surface and exposing the hydrophobic hairpin for insertion into the membrane.
Collapse
Affiliation(s)
- P Elkins
- Protein Engineering, Department Genentech, Inc. 460 Pt. San Bruno Blvd, South San Francisco, CA 94080, USA
| | | | | | | |
Collapse
|
44
|
Fisher KJ, Wilson JM. The transmembrane domain of diphtheria toxin improves molecular conjugate gene transfer. Biochem J 1997; 321 ( Pt 1):49-58. [PMID: 9003400 PMCID: PMC1218035 DOI: 10.1042/bj3210049] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vectors based on the formation of a soluble DNA-polycation complex are being developed for the treatment of human diseases. These complexes are rapidly taken up by receptor-mediated endocytosis, but are inefficiently delivered to the nucleus owing to entrapment in membrane-bound vesicles. In this study we introduced the transmembrane domain of diphtheria toxin into a DNA-polycation conjugate complex in an effort to increase gene transfer by membrane perturbation. The transmembrane domain of diphtheria toxin was expressed in Escherichia coli as a maltose-binding protein fusion and chemically coupled to high-molecular-mass poly-L-lysine. Incorporation of this conjugate into a traditional complex formed with a luciferase-containing plasmid with an asialo-orosomucoid-polycation conjugate significantly increased transfection efficiency in vitro in a manner proportional to the amount of diphtheria toxin incorporated. The delivery of luciferase RNA transcript was similarly increased when complexed with similar polycation conjugates. This study uses the structural biology of a bacterial protein to improve polycation-based gene delivery.
Collapse
Affiliation(s)
- K J Fisher
- Institute for Human Gene Therapy, University of Pennsylvania Health System, Philadelphia, USA
| | | |
Collapse
|
45
|
Abstract
We present evidence that the mitochondrial channel, VDAC, when reconstituted into a phospholipid membrane, can catalyze the insertion of other VDAC channels. This property called "auto-directed insertion" was first proposed by Zizi et al. (1995) to explain observations on asymmetric VDAC channels. We found that 2 urea or guanidinium chloride (GdmCl) caused a burst of insertions of VDAC channels when added to the same side as VDAC addition. More strikingly, when added to the opposite side they caused a 10-60-fold sustained yet reversible increase in insertion rate. Protein stabilization by sarcosine eliminated the effect of urea and GdmCl on VDAC insertion. Control experiments showed that water flow, ionic strength, osmotic force, phospholipid type, and membrane potential were not involved. Therefore, although both urea and GdmCl affect the properties of phospholipid membranes, it is more likely that these agents act either by changing the structure of the pre-inserted channels, allowing them to be more effective catalysts for VDAC insertion, or by flowing through the channels and acting on nearby VDAC channels inducing them to insert. Either way, insertion must be occurring next to pre-inserted channels. Urea and GdmCl may mimic chaperones by partially unfolding VDAC and keeping it in an insertion-competent state. "Auto-directed insertion" may ensure both correct targeting and orientation of nascent proteins in vivo.
Collapse
Affiliation(s)
- X Xu
- Laboratory of Cell Biology, Department of Zoology, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
46
|
Kaul P, Silverman J, Shen WH, Blanke SR, Huynh PD, Finkelstein A, Collier RJ. Roles of Glu 349 and Asp 352 in membrane insertion and translocation by diphtheria toxin. Protein Sci 1996; 5:687-92. [PMID: 8845758 PMCID: PMC2143385 DOI: 10.1002/pro.5560050413] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acidic conditions within the endosomal lumen induce the T domain of receptor-bound diphtheria toxin (DT) to insert into the endosomal membrane and mediate translocation of the toxin's catalytic domain to the cytosol. A conformational rearrangement in the toxin occurring near pH5 allows a buried apolar helical hairpin of the native T domain (helices TH8 and TH9) to undergo membrane insertion. If the inserted hairpin spans the bilayer, as hypothesized, then the two acidic residues within the TL5 interhelical loop, Glu 349 and Asp 352, should become exposed at the neutral cytosolic face of the membrane and reionize. To investigate the roles of these residues in toxin action, we characterized mutant toxins in which one or both acidic residues had been replaced with nonionizable ones. Each of two double mutants examined showed a several-fold reduction in cytotoxicity in 24-h Vero cell assays (sixfold for E349A + D352A and fourfold for E349Q + D352N), whereas the individual E349Q and D352N mutations caused smaller reductions in toxicity. The single and double mutations also attenuated the toxin's ability to permeabilize Vero cells to Rb+ at low pH and decreased channel formation by the toxin in artificial planar bilayers. Neither of the double mutations affected the pH-dependence profile of the toxin's conformational rearrangement in solution, as measured by binding of the hydrophobic fluorophore, 2-p-toluidinyl-naphthalene 6-sulfonate. The results demonstrate that, although there is no absolute requirement for an acidic residue within the TL5 loop for toxicity, Glu 349 and Asp 352 do significantly enhance the biological activity of the protein. The data are consistent with a model in which ionization of these residues at the cytosolic face of the endosomal membrane stabilizes the TH8/TH9 hairpin in a transmembrane configuration, thereby facilitating channel formation and translocation of the toxin's catalytic chain.
Collapse
Affiliation(s)
- P Kaul
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Tortorella D, Sesardic D, Dawes CS, London E. Immunochemical analysis of the structure of diphtheria toxin shows all three domains undergo structural changes at low pH. J Biol Chem 1995; 270:27439-45. [PMID: 7499200 DOI: 10.1074/jbc.270.46.27439] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Diphtheria toxin is a bacterial protein that undergoes a physiologically critical conformational change at low pH. This change involves a partial unfolding event forming a molten globule-like structure, which exposes hydrophobic regions and which allows the toxin to insert into, and translocate across, membranes. In this report, antibody binding was used to examine the regions of the toxin that undergo structural changes at low pH. Monoclonal antibodies specific to the catalytic (C), transmembrane (T), and receptor-binding (R) domains of diphtheria toxin were prepared and isolated. In addition, the binding of anti-peptide antibodies raised against peptides in the C and T domains to toxin was examined. Anti-C monoclonals and antipeptide antibodies were found to bind preferentially to low pH-treated toxin relative to native toxin. Anti-T and anti-R monoclonal binding ranged between preference for native toxin and preference for low pH-treated toxin. These results suggest that the C domain becomes more exposed to solution at low pH, and that both the T and R domains of the B chain undergo major conformational changes at low pH. Based on these results, a model in which low pH induces several coordinated changes in intra- and inter-domain interactions is suggested. The participation of the R domain in these changes is of particular significance because it suggests that the R domain plays a more important role in low pH-induced changes than previously realized.
Collapse
Affiliation(s)
- D Tortorella
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794-5215, USA
| | | | | | | |
Collapse
|