1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Luo B, Wu S, Zou W, Zhang Z, Zhao M, Shi S, Liu Y, Xi X, Zeng Z, Liang W, Yan Z, Zhang L. Label-free immunoassay for porcine circovirus type 2 based on excessively tilted fiber grating modified with staphylococcal protein A. Biosens Bioelectron 2016; 86:1054-1060. [DOI: 10.1016/j.bios.2016.07.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022]
|
3
|
Mitsui T, Ohshima H. Theory of muscle contraction mechanism with cooperative interaction among crossbridges. Biophysics (Nagoya-shi) 2012; 8:27-39. [PMID: 27857605 PMCID: PMC5070457 DOI: 10.2142/biophysics.8.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/27/2011] [Indexed: 12/01/2022] Open
Abstract
The power stroke model was criticized and a model was proposed for muscle contraction mechanism (Mitsui, 1999). The proposed model was further developed and calculations based on the model well reproduced major experimental data on the steady filament sliding (Mitsui and Ohshima, 2008) and on the transient phenomena (Mitsui, Takai and Ohshima, 2011). In this review more weight is put on explanation of the basic ideas of the model, especially logical necessity of the model, leaving mathematical details to the above-mentioned papers. A thermodynamic relationship that any models based upon the sliding filament theory should fulfill is derived. The model which fulfills the thermodynamic relationship is constructed on the assumption that a myosin head bound to an actin filament forms a complex with three actin molecules. In shortening muscles, the complex moves along the actin filament changing the partner actin molecules with steps of about 5.5 nm. This process is made possible through cooperative interaction among cross-bridges. The ATP hydrolysis energy is liberated by fraction at each step through chemical reactions between myosin and actin molecules. The cooperativity among crossbridges disappears in length-clamped muscles, in agreement with experimental observations that the cross-bridge produces force independently in the isometric tetanus state. The distance of the head movement per ATP hydrolysis cycle is expected to be about 5.5 nm or a few times of it under the condition of the in vitro single head experiments. Calculation results are surveyed illustrating that they are in good agreement with major experimental observations.
Collapse
Affiliation(s)
- Toshio Mitsui
- Nakasuji-yamate, 3-6-24, Takarazuka, Hyogo 665-0875, Japan
| | - Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
4
|
Sambuk EV, Fizikova AY, Savinov VA, Padkina MV. Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Enzyme Res 2011; 2011:356093. [PMID: 21785706 PMCID: PMC3137970 DOI: 10.4061/2011/356093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022] Open
Abstract
Acid phosphatases of budding yeast have been studied for more than forty years. This paper covers biochemical characteristics of acid phosphatases and different aspects in expression regulation of eukaryotic genes, which were researched using acid phosphatases model. A special focus is devoted to cyclin-dependent kinase Pho85p, a negative transcriptional regulator, and its role in maintaining mitochondrial genome stability and to pleiotropic effects of pho85 mutations.
Collapse
Affiliation(s)
- Elena V Sambuk
- Genetics and Breeding Department, Biology and Soil Sciences Faculty, Saint Petersburg State University, Universitetskaya emb. 7-9, Saint Petersburg 199034, Russia
| | | | | | | |
Collapse
|
5
|
Remarks on muscle contraction mechanism II. Isometric tension transient and isotonic velocity transient. Int J Mol Sci 2011; 12:1697-726. [PMID: 21673917 PMCID: PMC3111628 DOI: 10.3390/ijms12031697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 02/20/2011] [Accepted: 02/22/2011] [Indexed: 11/29/2022] Open
Abstract
Mitsui and Ohshima (2008) criticized the power-stroke model for muscle contraction and proposed a new model. In the new model, about 41% of the myosin heads are bound to actin filaments, and each bound head forms a complex MA3 with three actin molecules A1, A2 and A3 forming the crossbridge. The complex translates along the actin filament cooperating with each other. The new model well explained the experimental data on the steady filament sliding. As an extension of the study, the isometric tension transient and isotonic velocity transient are investigated. Statistical ensemble of crossbridges is introduced, and variation of the binding probability of myosin head to A1 is considered. When the binding probability to A1 is zero, the Hill-type force-velocity relation is resulted in. When the binding probability to A1 becomes finite, the deviation from the Hill-type force-velocity relation takes place, as observed by Edman (1988). The characteristics of the isometric tension transient observed by Ford, Huxley and Simmons (1977) and of the isotonic velocity transient observed by Civan and Podolsky (1966) are theoretically reproduced. Ratios of the extensibility are estimated as 0.22 for the crossbridge, 0.26 for the myosin filament and 0.52 for the actin filament, in consistency with the values determined by X-ray diffraction by Wakabayashi et al. (1994).
Collapse
|
6
|
Mitsui T, Ohshima H. Remarks on muscle contraction mechanism. Int J Mol Sci 2008; 9:872-904. [PMID: 19325791 PMCID: PMC2635709 DOI: 10.3390/ijms9050872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 05/19/2008] [Accepted: 05/19/2008] [Indexed: 11/17/2022] Open
Abstract
Muscle contraction mechanism is discussed by reforming the model described in an article by Mitsui (Adv. Biophys. 1999, 36, 107-158). A simple thermodynamic relationship is presented, which indicates that there is an inconsistency in the power stroke model or the swinging lever model. To avoid this difficulty, a new model is proposed. It is assumed that a myosin head forms a polaron-like complex with about three actin molecules when it attaches to an actin filament and the complex translates along the actin filament producing force. Various experimental data on the muscle contraction are well explained based upon the model.
Collapse
Affiliation(s)
| | - Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; E-Mail:
| |
Collapse
|
7
|
Ionic interaction of myosin loop 2 with residues located beyond the N-terminal part of actin probed by chemical cross-linking. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:285-91. [PMID: 18054341 DOI: 10.1016/j.bbapap.2007.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 10/31/2007] [Accepted: 11/05/2007] [Indexed: 11/20/2022]
Abstract
To probe ionic contacts of skeletal muscle myosin with negatively charged residues located beyond the N-terminal part of actin, myosin subfragment 1 (S1) and actin split by ECP32 protease (ECP-actin) were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). We have found that unmodified S1 can be cross-linked not only to the N-terminal part, but also to the C-terminal 36 kDa fragment of ECP-actin. Subsequent experiments performed on S1 cleaved by elastase or trypsin indicate that the cross-linking site in S1 is located within loop 2. This site is composed of Lys-636 and Lys-637 and can interact with negatively charged residues of the 36 kDa actin fragment, most probably with Glu-99 and Glu-100. Cross-links are formed both in the absence and presence of MgATP.P(i) analog, although the addition of nucleotide decreases the efficiency of the cross-linking reaction.
Collapse
|
8
|
Martin BM, Karczewska E, Pliszka B. Effect of nucleotide on interaction of the 567-578 segment of myosin heavy chain with actin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1764:217-22. [PMID: 16278104 DOI: 10.1016/j.bbapap.2005.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/07/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
To probe the effect of nucleotide on the formation of ionic contacts between actin and the 567-578 residue loop of the heavy chain of rabbit skeletal muscle myosin subfragment 1 (S1), the complexes between F-actin and proteolytic derivatives of S1 were submitted to chemical cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. We have shown that in the absence of nucleotide both 45 kDa and 5 kDa tryptic derivatives of the central 50 kDa heavy chain fragment of S1 can be cross-linked to actin, whereas in the presence of MgADP.AlF4, only the 5 kDa fragment is involved in cross-linking reaction. By the identification of the N-terminal sequence of the 5-kDa fragment, we have found that trypsin splits the 50 kDa heavy chain fragment between Lys-572 and Gly-573, the residues located within the 567-578 loop. Using S1 preparations cleaved with elastase, we could show that the residue of 567-578 loop that can be cross-linked to actin in the presence of MgADP.AlF4 is Lys-574. The observed nucleotide-dependent changes of the actin-subfragment 1 interface indicate that the 567-578 residue loop of skeletal muscle myosin participates in the communication between the nucleotide and actin binding sites.
Collapse
Affiliation(s)
- Brian M Martin
- NIMH, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
9
|
Van Dijk J, Knight AE, Molloy JE, Chaussepied P. Characterization of three regulatory states of the striated muscle thin filament. J Mol Biol 2002; 323:475-89. [PMID: 12381303 DOI: 10.1016/s0022-2836(02)00697-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The troponin-tropomyosin-linked regulation of striated muscle contraction occurs through allosteric control by both Ca(2+) and myosin. The thin filament fluctuates between two extreme states: the inactive "off" state and the active "on" state. Intermediate states have been proposed from structural studies and transient kinetic measurements. However, in contrast to the well-characterised, on and off states, the mechanochemical properties of the intermediate states are much less well understood because of the instability of those states. In the present study, we have characterized a myosin-induced intermediate that is stabilized by cross-linking myosin motor domains (S1) to actin filaments (with a maximum of one S1 molecule for 50 actin monomers). A single S1 molecule is known to interact with two adjacent actin monomers. A detailed analysis revealed that thin filaments containing S1 molecules cross-linked to just one actin monomer (actin(1)-S1 complexes) are regulated with a 79% inhibition of the ATPase in the absence of Ca(2+). In contrast, filaments containing S1 molecules cross-linked at two positions, to two adjacent actin monomers (actin(2)-S1 complexes) totally lose their regulation in a highly cooperative manner. This loss of regulation was due both to an enhancement of the ATPase activity without calcium and an inhibition of the ATPase with calcium. Filaments containing actin(2)-S1 complexes, with significant ATPase activity in the absence of calcium (about 50%), did not move on a myosin-coated surface unless calcium was present. This partial uncoupling between the ATPase activity and in vitro motility in the absence of calcium demonstrates that the mechanical steps require actin-myosin contacts, which take place only in the on state and not in the off or intermediate states. These data provide new insights concerning the difference in cooperativity of Ca(2+) regulation that exists between the biochemical and mechanical cycles of the actin-myosin motor.
Collapse
|
10
|
Westra HG, Berden JA, Pasman WJ, Pool I, van Doorn JE. A model for regulation of the Mg(2+)-stimulated acto-myosin-ATPase activity: inhibition of the formation of actin-myosin complex and the Mg( 2+)-stimulated acto-myosin-ATPase activity by IMP and AMP. Arch Physiol Biochem 2001; 109:316-22. [PMID: 11935366 DOI: 10.1076/apab.109.4.316.4239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previously, we showed that the decrease in force output during continuous isometric contractions in rat skeletal muscle was related to an increase in the concentration of IMP. In this paper we report on additional experiments in which the effect of IMP on the Mg(2+)-stimulated acto-myosin-ATPase activity of isolated actin and myosin is measured at 35 degrees C. The results show that 1) the binding of actin to myosin is co-operative (Hill coefficient = 3.82); 2) in the presence of IMP or AMP the Mg(2+)-stimulated acto-myosin-ATPase activity is inhibited up to 60% at 10 mM; 3) in the presence of IMP or AMP not only the Mg(2+)-stimulated acto-myosin-ATPase activity decreases, but also K(50). From these results we conclude that IMP and AMP may be considered as uncompetitive inhibitors. Our results suggest that IMP and AMP can prevent an 'energy crisis' during exhaustive exercise of short duration by down-regulating the contractile machinery.
Collapse
Affiliation(s)
- H G Westra
- Faculty of Human Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
11
|
Abstract
The molecular mechanism of the powerstroke in muscle is examined by resonance energy transfer techniques. Recent models suggesting a pre-cocking of the myosin head involving an enormous rotation between the lever arm and the catalytic domain were tested by measuring separation distances among myosin subfragment-2, the nucleotide site, and the regulatory light chain in the presence of nucleotide transition state analogs. Only small changes (<0.5 nm) were detected that are consistent with internal conformational changes of the myosin molecule, but not with extreme differences in the average lever arm position suggested by some atomic models. These results were confirmed by stopped-flow resonance energy transfer measurements during single ATP turnovers on myosin. To examine the participation of actin in the powerstroke process, resonance energy transfer between the regulatory light chain on myosin subfragment-1 and the C-terminus of actin was measured in the presence of nucleotide transition state analogs. The efficiency of energy transfer was much greater in the presence of ADP-AlF(4), ADP-BeF(x), and ADP-vanadate than in the presence of ADP or no nucleotide. These data detect profound differences in the conformations of the weakly and strongly attached cross-bridges that appear to result from a conformational selection that occurs during the weak binding of the myosin head to actin.
Collapse
Affiliation(s)
- J Xu
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5220 USA
| | | |
Collapse
|
12
|
Van Dijk J, Céline F, Barman T, Chaussepied P. Interaction of myosin with F-actin: time-dependent changes at the interface are not slow. Biophys J 2000; 78:3093-102. [PMID: 10827986 PMCID: PMC1300891 DOI: 10.1016/s0006-3495(00)76846-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The kinetics of formation of the actin-myosin complex have been reinvestigated on the minute and second time scales in sedimentation and chemical cross-linking experiments. With the sedimentation method, we found that the binding of the skeletal muscle myosin motor domain (S1) to actin filament always saturates at one S1 bound to one actin monomer (or two S1 per actin dimer), whether S1 was added slowly (17 min between additions) or rapidly (10 s between additions) to an excess of F-actin. The carbodiimide (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, EDC)-induced cross-linking of the actin-S1 complex was performed on the subsecond time scale by a new approach that combines a two-step cross-linking protocol with the rapid flow-quench technique. The results showed that the time courses of S1 cross-linking to either of the two actin monomers are identical: they are not dependent on the actin/S1 ratio in the 0.3-20-s time range. The overall data rule out a mechanism by which myosin rolls from one to the other actin monomer on the second or minute time scales. Rather, they suggest that more subtle changes occur at the actomyosin interface during the ATP cycle.
Collapse
Affiliation(s)
- J Van Dijk
- CRBM du Centre National de la Recherche Scientifique, IFR 24, Montpellier, France
| | | | | | | |
Collapse
|
13
|
Andreev OA, Borejdo J. Binding of myosin cross-bridges to thin filaments of rabbit skeletal muscle. Biochem Biophys Res Commun 1999; 258:628-31. [PMID: 10329435 DOI: 10.1006/bbrc.1999.0319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cross-linking of myosin subfragment 1 (S1) with a molar excess of actin in vitro reveals the presence of an actin-S1-actin complex. It is absolutely essential that actin be present in molar excess over S1 so that the decoration of F-actin with S1 be incomplete. However, the excess of actin may not be available in the overlap zone of sarcomeres of skeletal muscle. We therefore found it necessary to test for the presence of the actin-S1-actin complex in vivo. Myofibrils from rabbit skeletal muscle were reacted with zero-length cross-linker, the products were resolved by polyacrylamide gel electrophoresis and analyzed by Western blots using antibodies against actin and against heavy and light chains of myosin. The cross-linking produced the evidence of formation of actin-S1-actin complex.
Collapse
Affiliation(s)
- O A Andreev
- Department of Molecular Biology and Immunology, University of North Texas, 3500 Camp Bowie Boulevard, Fort Worth, Texas, 76107, USA
| | | |
Collapse
|
14
|
Van Dijk J, Furch M, Derancourt J, Batra R, Knetsch ML, Manstein DJ, Chaussepied P. Differences in the ionic interaction of actin with the motor domains of nonmuscle and muscle myosin II. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:672-83. [PMID: 10102995 DOI: 10.1046/j.1432-1327.1999.00172.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Changes in the actin-myosin interface are thought to play an important role in microfilament-linked cellular movements. In this study, we compared the actin binding properties of the motor domain of Dictyostelium discoideum (M765) and rabbit skeletal muscle myosin subfragment-1 (S1). The Dictyostelium motor domain resembles S1(A2) (S1 carrying the A2 light chain) in its interaction with G-actin. Similar to S1(A2), none of the Dictyostelium motor domain constructs induced G-actin polymerization. The affinity of monomeric actin (G-actin) was 20-fold lower for M765 than for S1(A2) but increasing the number of positive charges in the loop 2 region of the D. discoideum motor domain (residues 613-623) resulted in equivalent affinities of G-actin for M765 and for S1. Proteolytic cleavage and cross-linking approaches were used to show that M765, like S1, interacts via the loop 2 region with filamentous actin (F-actin). For both types of myosin, F-actin prevents trypsin cleavage in the loop 2 region and F-actin segment 1-28 can be cross-linked to loop 2 residues by a carbodiimide-induced reaction. In contrast with the S1, loop residues 559-565 of D. discoideum myosin was not cross-linked to F-actin, probably due to the lower number of positive charges. These results confirm the importance of the loop 2 region of myosin for the interaction with both G-actin and F-actin, regardless of the source of myosin. The differences observed in the way in which M765 and S1 interact with actin may be linked to more general differences in the structure of the actomyosin interface of muscle and nonmuscle myosins.
Collapse
Affiliation(s)
- J Van Dijk
- UPR 1086 du CNRS, 34293 Montpellier, Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Motor proteins perform a wide variety of functions in all eukaryotic cells. Recent advances in the structural and mutagenic analysis of the myosin motor has led to insights into how these motors transduce chemical energy into mechanical work. This review focuses on the analysis of the effects of myosin mutations from a variety of organisms on the in vivo and in vitro properties of this ubiquitous motor and illustrates the positions of these mutations on the high-resolution three-dimensional structure of the myosin motor domain.
Collapse
Affiliation(s)
- K M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
16
|
Rohrbach MR, Braun V, Köster W. Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB. J Bacteriol 1995; 177:7186-93. [PMID: 8522527 PMCID: PMC177599 DOI: 10.1128/jb.177.24.7186-7193.1995] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
FhuD is the periplasmic binding protein of the ferric hydroxamate transport system of Escherichia coli. FhuD was isolated and purified as a His-tag-labeled derivative on a Ni-chelate resin. The dissociation constants for ferric hydroxamates were estimated from the concentration-dependent decrease in the intrinsic fluorescence intensity of His-tag-FhuD and were found to be 0.4 microM for ferric aerobactin, 1.0 microM for ferrichrome, 0.3 microM for ferric coprogen, and 5.4 microM for the antibiotic albomycin. Ferrichrome A, ferrioxamine B, and ferrioxamine E, which are poorly taken up via the Fhu system, displayed dissociation constants of 79, 36, and 42 microM, respectively. These are the first estimated dissociation constants reported for a binding protein of a microbial iron transport system. Mutants impaired in the interaction of ferric hydroxamates with FhuD were isolated. One mutated FhuD, with a W-to-L mutation at position 68 [FhuD(W68L)], differed from wild-type FhuD in transport activity in that ferric coprogen supported promotion of growth of the mutant on iron-limited medium, while ferrichrome was nearly inactive. The dissociation constants of ferric hydroxamates were higher for FhuD(W68L) than for wild-type FhuD and lower for ferric coprogen (2.2 microM) than for ferrichrome (156 microM). Another mutated FhuD, FhuD(A150S, P175L), showed a weak response to ferrichrome and albomycin and exhibited dissociation constants two- to threefold higher than that of wild-type FhuD. Interaction of FhuD with the cytoplasmic membrane transport protein FhuB was studied by determining protection of FhuB degradation by trypsin and proteinase K and by cross-linking experiments. His-tag-FhuD and His-tag-FhuD loaded with aerobactin specifically prevented degradation of FhuB and were cross-linked to FhuB. FhuD loaded with substrate and also FhuD free of substrate were able to interact with FhuB.
Collapse
|
17
|
Andreev OA, Takashi R, Borejdo J. Fluorescence polarization study of the rigor complexes formed at different degrees of saturation of actin filaments with myosin subfragment-1. J Muscle Res Cell Motil 1995; 16:353-67. [PMID: 7499476 DOI: 10.1007/bf00114501] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A serine residue located in the active site of myosin head (S1) was labelled by 9-anthroylnitrile, an amino group located in the central domain of S1 was labelled by 7-diethylamino-3-(4'-isothio-cyanato-phenyl)-4-methylcoumari n, a cysteine residue located near the C-terminus of S1 was labelled by 5-[2-((iodoacetyl)-amino)ethyl]-amino-naphthalene-1-sulfonic acid (1,5-IAEDANS) and a cysteine residue located near the C-terminus of the alkali light chain 1 was labelled with iodoacetamido-tetramethyl-rhodamine. Polarization of fluorescence of S1 was measured in solution (where it indicated the mobility of actin-bound S1) and in myofibrils (where it indicated orientation of probes) to check whether the anisotropy of S1 labelled at different positions depended on the molar ratio S1:actin. In solution, when increasing amounts of actin were added to a fixed amount of labelled S1 (i.e. when myosin heads were initially in excess over actin), anisotropy saturated at 1 mol of S1 per 1 mol of actin. When increasing amounts of S1 were added to a fixed amount of F-actin (i.e. when actin was initially in excess over S1), the anisotropy saturated at 1 mol of S1 per 2 mols of actin. In myofibrils, orientation of S1 was different when S1 was added at nanomolar concentration (intrinsic actin was in excess over extrinsic S1) then when it was added at micromolar concentration (excess of S1 over actin). The fact that the anisotropy of S1 labelled at different positions depended on the molar ratio excluded the possibility that changes were confined to one part of the cross-bridge and supports our earlier proposal that the two rigor complexes which S1 can form with F-actin differ globally in conformation.
Collapse
Affiliation(s)
- O A Andreev
- Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75226, USA
| | | | | |
Collapse
|
18
|
Mao M, Andreev O, Borejdo J. Rigor cross-bridges bind to two actin monomers inthin filaments of rabbit psoas muscle. J Mol Biol 1995. [DOI: 10.1016/s0022-2836(95)80051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Martyn DA, Chase PB. Faster force transient kinetics at submaximal Ca2+ activation of skinned psoas fibers from rabbit. Biophys J 1995; 68:235-42. [PMID: 7711246 PMCID: PMC1281681 DOI: 10.1016/s0006-3495(95)80179-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The early, rapid phase of tension recovery (phase 2) after a step change in sarcomere length is thought to reflect the force-generating transition of myosin bound to actin. We have measured the relation between the rate of tension redevelopment during phase 2 (r), estimated from the half-time of tension recovery during phase 2 (r = t0.5(-1)), and steady-state force at varying [Ca2+] in single fibers from rabbit psoas. Sarcomere length was monitored continuously by laser diffraction of fiber segments (length approximately 1.6 mm), and sarcomere homogeneity was maintained using periodic length release/restretch cycles at 13-15 degrees C. At lower [Ca2+] and forces, r was elevated relative to that at pCa 4.0 for both releases and stretches (between +/- 8 nm). For releases of -3.4 +/- 0.7 nm.hs-1 at pCa 6.6 (where force was 10-20% of maximum force at pCa 4.0), r was 3.3 +/- 1.0 ms-1 (mean +/- SD; N = 5), whereas the corresponding value of r at pCa 4.0 was 1.0 +/- 0.2 ms-1 for releases of -3.5 +/- 0.5 nm.hs-1 (mean +/- SD; N = 5). For stretches of 1.9 +/- 0.7 nm.hs-1, r was 1.0 +/- 0.3 ms-1 (mean +/- SD; N = 9) at pCa 6.6, whereas r was 0.4 +/- 0.1 ms-1 at pCa 4.0 for stretches of 1.9 +/- 0.5 (mean +/- SD; N = 14). Faster phase 2 transients at submaximal Ca(2+)-activation were not caused by changes in myofilament lattice spacing because 4% Dextran T-500, which minimizes lattice spacing changes, was present in all solutions. The inverse relationship between phase 2 kinetics and force obtained during steady-state activation of skinned fibers appears to be qualitatively similar to observations on intact frog skeletal fibers during the development of tetanic force. The data are consistent with models that incorporate a direct effect of [Ca2+] on phase 2 kinetics of individual cross-bridges or, alternatively, in which phase 2 kinetics depend on cooperative interactions between cross-bridges.
Collapse
Affiliation(s)
- D A Martyn
- Center for Bioengineering, University of Washington, Seattle 98195
| | | |
Collapse
|