1
|
Khilari R, Chauhan S, Tripathi M, Pande R, Alqahtani MS, Syed R, Shahid M, Das D, Sarkar A. Nucleic acid binding affinity and antioxidant activity of N-m-Tolyl-4-Chlorophenoxyacetohydroxamicacid. Sci Rep 2024; 14:22465. [PMID: 39341868 PMCID: PMC11439026 DOI: 10.1038/s41598-024-72477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Hydroxamic acids represent a group of weak organic acids, both naturally occurring and synthetically derived, characterized by the general formula RC(= O)N(R'OH). In this study, we investigated the binding behavior of N-m-tolyl-4-chlorophenoxyaceto hydroxamic acid with calf thymus DNA (ct-DNA) and torula yeast RNA (t-RNA) through a combination of techniques including UV-visible spectroscopy, fluorescence emission analysis, viscometry, and computational simulations using AutoDock4 software. Our findings reveal that the mode of binding between the compound and the nucleic acids is consistent with intercalation. Competitive binding experiments demonstrated that the complex competes effectively with ethidium bromide (EB) for binding to ct-DNA/t-RNA, displacing EB from its binding sites. Additionally, the introduction of the compound into the DNA-EB system resulted in a quenching of fluorescence emission peaks. Analysis of absorption spectra indicated a red shift and hypochromic shift when the compound interacted with DNA, further supporting the intercalative binding mode. The calculated binding constant (Kb) value for the compound is 6.62 × 104 M-1 and 5.40 × 103 M-1 indicating a strong interaction with ct-DNA and t-RNA respectively. We determined the Stern-Volmer constants for ct-DNA and t-RNA as 9.96 × 104 M-1 and 8.13 × 105 M-1, respectively. The binding free energy values for ct-DNA/t-RNA were calculated to be - 3.741 × 107 and - 5.425 × 108 kcal/mol, respectively. Viscometric studies corroborated the UV results, showing a continuous increase in relative viscosity of ct-DNA/t-RNA solutions with the addition of the optimal hydroxamic acid concentration. Furthermore, we assessed the antioxidant activity of the compound using DPPH-radical scavenging and β-carotene linoleic acid assays. Gel electrophoresis results demonstrated the compound's remarkable efficacy in preventing DNA damage. Collectively, all experimental evidence supports the conclusion that N-m-tolyl-4-chlorophenoxyaceto hydroxamic acid binds to ct-DNA/t-RNA through an intercalative mechanism, which is consistent with our molecular docking simulations.
Collapse
Affiliation(s)
- Rubi Khilari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, Raipur, India
| | - Sohilkhan Chauhan
- Department of Chemistry, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, 384315, Gujarat, India
| | - Mamta Tripathi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, Raipur, India.
| | - Rama Pande
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, Raipur, India
| | - Mohammed S Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| | - Devashish Das
- Department of Chemical Engineering, Konkuk University, Seoul, South Korea
| | - Avijit Sarkar
- Department of Chemistry, Bhairab Ganguly College, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Das A, Chatterjee S, Suresh Kumar G. Targeting human telomeric G-quadruplex DNA with antitumour natural alkaloid aristololactam-β-D-glucoside and its comparison with daunomycin. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 11/05/2022]
Affiliation(s)
| | - Sabyasachi Chatterjee
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| |
Collapse
|
3
|
Sharma S, Yadav M, Gupta SP, Pandav K, Kumar S. Spectroscopic and structural studies on the interaction of an anticancer β-carboline alkaloid, harmine with GC and AT specific DNA oligonucleotides. Chem Biol Interact 2016; 260:256-262. [PMID: 27590873 DOI: 10.1016/j.cbi.2016.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
Harmine, a tricyclic β-carboline alkaloid possesses anticancer properties. Thus, its binding studies with DNA are considerably important because mechanism of action of anticancer drug involves DNA binding. On the other hand, the DNA binding study is also useful in drug designing and synthesis of new compounds with enhanced biological properties. Hence, the binding of harmine with sequence specific DNA oligonucleotides has been studied using various biophysical techniques i.e. absorption, fluorescence and molecular docking techniques. UV absorption study, Fluorescence quenching and Iodide quenching experiments revealed intercalation type of binding of harmine with short sequence specific DNA oligonucleotides. Fluorescence and absorption studies also concluded binding constants of harmine with GC rich DNA sequence in the order of 105 M-1 while with AT rich sequences it was in the order of 103 M-1 which clearly indicated that harmine showed greater intercalation with GC rich sequences as compared to AT rich sequences. From thermodynamic studies, it was concluded that harmine-DNA complex formation was spontaneous, exothermic and energetically favorable process. Molecular docking studies confirmed that harmine intercalates between the base pairs of DNA structure but energetically prefers intercalation between GC base pairs. Molecular docking studies and the calculated thermodynamic parameters, i.e. Gibbs free energy (ΔG), Enthalpy change (ΔH) and Entropy change (ΔS) indicated that H-bonds, van der Waals interactions and hydrophobic interactions play a major role in the binding of harmine to DNA oligomers.
Collapse
Affiliation(s)
- Shweta Sharma
- Applied Chemistry Lab, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Monika Yadav
- Applied Chemistry Lab, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Surendra P Gupta
- Applied Chemistry Lab, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Kumud Pandav
- Applied Chemistry Lab, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Surat Kumar
- Applied Chemistry Lab, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India.
| |
Collapse
|
4
|
Das A, Suresh Kumar G. Binding of the alkaloid aristololactam-β-D-glucoside and daunomycin to human hemoglobin: spectroscopy and calorimetry studies. J Biomol Struct Dyn 2015; 34:800-13. [DOI: 10.1080/07391102.2015.1055304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Das A, Kumar GS. Binding studies of aristololactam-β-d-glucoside and daunomycin to human serum albumin. RSC Adv 2014. [DOI: 10.1039/c4ra04327h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The binding of two carbohydrate containing molecules aristololactam-β-d-glucoside and daunomycin with human serum albumin was evaluated by biophysical techniques.
Collapse
Affiliation(s)
- Abhi Das
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| |
Collapse
|
6
|
Madureira J, Ramos CIV, Marques M, Maia C, de Sousa B, Campino L, Santana-Marques MG, Farrell N. Nonclassic Metallointercalators with Dipyridophenazine: DNA Interaction Studies and Leishmanicidal Activity. Inorg Chem 2013; 52:8881-94. [DOI: 10.1021/ic401067d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- João Madureira
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond,
Virginia 23284, United States
- Departamento de Química e Bioquímica, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa,
Portugal
| | - Catarina I. V. Ramos
- Departamento de
Química, Universidade de Aveiro,
Campus de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | - Lenea Campino
- Departamento Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, 8000-117
Faro, Portugal
| | | | - Nicholas Farrell
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond,
Virginia 23284, United States
| |
Collapse
|
7
|
Das A, Kumar GS. Binding of the plant alkaloid aristololactam-β-d-glucoside and antitumor antibiotic daunomycin to single stranded polyribonucleotides. Biochim Biophys Acta Gen Subj 2013; 1830:4708-18. [PMID: 23769768 DOI: 10.1016/j.bbagen.2013.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/24/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Interaction of the plant alkaloid aristololactam-β-d-glucoside and the antitumor drug daunomycin with single stranded RNAs poly(G), poly(I), poly(C) and poly(U) has been investigated. METHODS Biophysical techniques of absorption, fluorescence, competition dialysis, circular dichroism, and microcalorimetry have been used. RESULTS Absorption and fluorescence studies have revealed noncooperative binding of ADG and DAN to the single stranded RNAs. The binding affinity of ADG varied as poly(G) > poly(I) > > poly(C) > poly(U). The affinity of DAN was one order higher than that of ADG and varied as poly(G) > poly(I) > poly(U) > poly(C). This binding preference was further confirmed by competition dialysis assay. The thermodynamics of the binding was characterised to be favourable entropy and enthalpic terms but their contributions were different for different systems. The major non-polyelectrolytic contribution to the binding revealed from salt dependent data appears to be arising mostly from stacking of DAN and ADG molecules with the bases leading to partial intercalation to single stranded RNA structures. Small negative heat capacity values have been observed in all the four cases. CONCLUSIONS This study presents the comparative structural and thermodynamic profiles of the binding of aristololactam-β-d-glucoside and daunomycin to single stranded polyribonucleotides. GENERAL SIGNIFICANCE These results suggest strong, specific but differential binding of these drug molecules to the single stranded RNAs and highlight the role of their structural differences in the interaction profile.
Collapse
Affiliation(s)
- Abhi Das
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
8
|
Das A, Suresh Kumar G. Probing the binding of two sugar bearing anticancer agents aristololactam-β-(D)-glucoside and daunomycin to double stranded RNA polynucleotides: a combined spectroscopic and calorimetric study. MOLECULAR BIOSYSTEMS 2012; 8:1958-69. [PMID: 22596256 DOI: 10.1039/c2mb25080b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The plant alkaloid aristololactam-β-d-glucoside and the anticancer chemotherapy drug daunomycin are two sugar bearing DNA binding antibiotics. The binding of these molecules to three double stranded ribonucleic acids, poly(A)·poly(U), poly(I)·poly(C) and poly(C)·poly(G), was studied using various biophysical techniques. Absorbance and fluorescence studies revealed that these molecules bound non-cooperatively to these ds RNAs with the binding affinities of the order 10(6) for daunomycin and 10(5) M(-1) for aristololactam-β-d-glucoside. Fluorescence quenching and viscosity studies gave evidence for intercalative binding. The binding enhanced the melting temperature of poly(A)·poly(U) and poly(I)·poly(C) and the binding affinity values evaluated from the melting data were in agreement with that obtained from other techniques. Circular dichroism results suggested minor conformational perturbations of the RNA structures. The binding was characterized by negative enthalpy and positive entropy changes and the affinity constants derived from calorimetry were in agreement with that obtained from spectroscopic data. Daunomycin bound all the three RNAs stronger than aristololactam-β-d-glucoside and the binding affinity varied as poly(A)·poly(U) > poly(I)·poly(C) > poly(C)·poly(G). The temperature dependence of the enthalpy changes yielded negative values of heat capacity changes for the complexation suggesting substantial hydrophobic contribution to the binding process. Furthermore, an enthalpy-entropy compensation behavior was also seen in all systems. These results provide new insights into binding of these small molecule drugs to double stranded RNA sequences.
Collapse
Affiliation(s)
- Abhi Das
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | | |
Collapse
|
9
|
Das A, Bhadra K, Suresh Kumar G. Targeting RNA by small molecules: comparative structural and thermodynamic aspects of aristololactam-β-D-glucoside and daunomycin binding to tRNA(phe). PLoS One 2011; 6:e23186. [PMID: 21858023 PMCID: PMC3156712 DOI: 10.1371/journal.pone.0023186] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Interaction of aristololactam-β-D-glucoside and daunomycin with tRNA(phe) was investigated using various biophysical techniques. METHODOLOGY/PRINCIPAL FINDINGS Absorption and fluorescence studies revealed that both the compounds bind tRNA(phe) non-cooperatively. The binding of daunomycin was about one order of magnitude higher than that of aristololactam-β-D-glucoside. Stronger binding of the former was also inferred from fluorescence quenching data, quantum efficiency values and circular dichroic results. Results from isothermal titration calorimetry experiments suggested that the binding of both compounds was predominantly entropy driven with a smaller but favorable enthalpy term that increased with temperature. A large favorable electrostatic contribution to the binding of daunomycin to tRNA(phe) was revealed from salt dependence data and the dissection of the free energy values. The electrostatic component to the free energy change for aristololactam-β-D-glucoside-tRNA(phe) interaction was smaller than that of daunomycin. This was also inferred from the slope of log K versus [Na(+)] plots. Both compounds enhanced the thermal stability of tRNA(phe). The small heat capacity changes of -47 and -99 cal/mol K, respectively, observed for aristololactam-β-D-glucoside and daunomycin, and the observed enthalpy-entropy compensation phenomenon confirmed the involvement of multiple weak noncovalent interactions. Molecular aspects of the interaction have been revealed. CONCLUSIONS/SIGNIFICANCE This study presents the structural and energetic aspects of the binding of aristololactam-β-D-glucoside and daunomycin to tRNA(phe).
Collapse
MESH Headings
- Algorithms
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Aristolochic Acids/chemistry
- Aristolochic Acids/metabolism
- Aristolochic Acids/pharmacology
- Binding Sites
- Binding, Competitive
- Calorimetry
- Circular Dichroism
- Daunorubicin/chemistry
- Daunorubicin/metabolism
- Daunorubicin/pharmacology
- Entropy
- Glucosides/chemistry
- Glucosides/metabolism
- Glucosides/pharmacology
- Kinetics
- Molecular Structure
- Nucleic Acid Conformation/drug effects
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Spectrometry, Fluorescence
- Thermodynamics
Collapse
Affiliation(s)
- Abhi Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Kakali Bhadra
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| |
Collapse
|
10
|
Giri P, Kumar GS. Spectroscopic and calorimetric studies on the binding of the phototoxic and cytotoxic plant alkaloid sanguinarine with double helical poly(A). J Photochem Photobiol A Chem 2008. [DOI: 10.1016/j.jphotochem.2007.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Giri P, Kumar GS. Specific binding and self-structure induction to poly(A) by the cytotoxic plant alkaloid sanguinarine. Biochim Biophys Acta Gen Subj 2007; 1770:1419-26. [PMID: 17600625 DOI: 10.1016/j.bbagen.2007.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 05/17/2007] [Accepted: 05/21/2007] [Indexed: 11/24/2022]
Abstract
The cytotoxic plant alkaloid sanguinarine was found to bind preferentially and strongly to single stranded poly(A) with an association constant (K(a)) in the range 3.6-4.6 x 10(6) M(-1) in comparison to several nucleic acids. The binding induced unique self-structure formation in poly(A) that showed cooperative melting transition in circular dichroism, absorbance, and differential scanning calorimetry studies. The alkaloid binding was characterized to be intercalation as revealed from fluorescence quenching experiments and was predominantly enthalpy driven as revealed from isothermal titration calorimetry. Sanguinarine is the first and only natural product so far known to induce a self-structure formation in poly(A).
Collapse
Affiliation(s)
- Prabal Giri
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700032, India
| | | |
Collapse
|
12
|
Islam MM, Sinha R, Kumar GS. RNA binding small molecules: Studies on t-RNA binding by cytotoxic plant alkaloids berberine, palmatine and the comparison to ethidium. Biophys Chem 2007; 125:508-20. [PMID: 17156912 DOI: 10.1016/j.bpc.2006.11.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/30/2022]
Abstract
The interaction of two natural protoberberine plant alkaloids berberine and palmatine with t-RNA(phe) was studied using various biophysical techniques and the data was compared with the binding of the classical DNA intercalator, ethidium. The results of optical thermal melting, differential scanning calorimetry and circular dichroism characterized the native cloverleaf structure of t-RNA under the conditions of the study. The strong binding of the alkaloids and ethidium to t-RNA was revealed from the absorption and fluorescence studies. The salt dependence of the binding constants enabled the dissection of the binding free energy to electrostatic and non-electrostatic contributions. This analysis revealed a surprisingly large favourable component of the non-electrostatic contribution to the binding of these charged alkaloids and ethidium to t-RNA. Isothermal titration calorimetric studies revealed that the binding of both the alkaloids is driven by a moderately favourable enthalpy decrease and a moderately favourable entropy increase while that of ethidium is driven by a large favourable enthalpy decrease. Taken together, the results suggest that the binding of these alkaloid molecules on the t-RNA structure appears to be mostly by partial intercalation while ethidium intercalates to the t-RNA. These results reveal the molecular aspects on the interaction of these alkaloids to t-RNA.
Collapse
Affiliation(s)
- Md Maidul Islam
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | |
Collapse
|
13
|
Wink M. Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2007; 64:1-47. [PMID: 18085328 DOI: 10.1016/s1099-4831(07)64001-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Protoberberine Alkaloids: Physicochemical and Nucleic Acid Binding Properties. TOPICS IN HETEROCYCLIC CHEMISTRY 2007. [DOI: 10.1007/7081_2007_071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Maiti M, Kumar GS. Molecular aspects on the interaction of protoberberine, benzophenanthridine, and aristolochia group of alkaloids with nucleic acid structures and biological perspectives. Med Res Rev 2007; 27:649-95. [PMID: 16894530 DOI: 10.1002/med.20087] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alkaloids occupy an important position in chemistry and pharmacology. Among the various alkaloids, berberine and coralyne of the protoberberine group, sanguinarine of the benzophenanthridine group, and aristololactam-beta-d-glucoside of the aristolochia group have potential to form molecular complexes with nucleic acid structures and have attracted recent attention for their prospective clinical and pharmacological utility. This review highlights (i) the physicochemical properties of these alkaloids under various environmental conditions, (ii) the structure and functional aspects of various forms of deoxyribonucleic acid (DNA) (B-form, Z-form, H(L)-form, protonated form, and triple helical form) and ribonucleic acid (RNA) (A-form, protonated form, and triple helical form), and (iii) the interaction of these alkaloids with various polymorphic DNA and RNA structures reported by several research groups employing various analytical techniques like absorbance, fluorescence, circular dichroism, and NMR spectroscopy; electrospray ionization mass spectrometry, thermal melting, viscosity, and DNase footprinting as well as molecular modeling and thermodynamic studies to provide detailed binding mechanism at the molecular level for structure-activity relationship. Nucleic acids binding properties of these alkaloids are interpreted in relation to their biological activity.
Collapse
Affiliation(s)
- Motilal Maiti
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700 032, India.
| | | |
Collapse
|
16
|
Giri P, Hossain M, Kumar GS. Molecular aspects on the specific interaction of cytotoxic plant alkaloid palmatine to poly(A). Int J Biol Macromol 2006; 39:210-21. [PMID: 16678250 DOI: 10.1016/j.ijbiomac.2006.03.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 03/27/2006] [Accepted: 03/27/2006] [Indexed: 11/26/2022]
Abstract
The interaction of the protoberberine alkaloid palmatine with single and double stranded structures of poly(A) was studied by various biophysical techniques. Comparative binding studies were also performed with double stranded DNA, t-RNA, poly(C).poly(G), poly(U) and poly(C). The results of competition dialysis, fluorescence, and absorption spectral studies converge to reveal the molecular aspects of the strong and specific binding of palmatine to single stranded poly(A). The binding affinity of palmatine to natural DNA, t-RNA and double stranded poly(A) was weaker while no binding was apparent with single stranded poly(U), poly(C) and double stranded poly(C).poly(G). The strong affinity of the alkaloid to single stranded poly(A) in comparison to the double stranded structure was also revealed from circular dichroic and viscometric studies. The effect of [Na+] ion concentration on the binding process revealed the significant role of electrostatic forces in the complexation. The presence of bound alkaloid also remarkably affected denaturation-renaturation of stacked helical poly(A). The energetics of the strong binding to poly(A) was studied from thermodynamic estimation from van Hoff' analysis of the temperature dependent binding constants and ultra sensitive isothermal titration calorimertry, both suggesting the binding to be exothermic and enthalpy driven. This study provides detailed insight into the binding specificity of the natural alkaloid to single stranded poly(A) over several other single and double stranded nucleic acid structures suggesting its potential as a lead compound for RNA based drug targeting.
Collapse
Affiliation(s)
- Prabal Giri
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata, India
| | | | | |
Collapse
|
17
|
Sinha R, Islam MM, Bhadra K, Kumar GS, Banerjee A, Maiti M. The binding of DNA intercalating and non-intercalating compounds to A-form and protonated form of poly(rC).poly(rG): spectroscopic and viscometric study. Bioorg Med Chem 2005; 14:800-14. [PMID: 16202606 DOI: 10.1016/j.bmc.2005.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/31/2005] [Accepted: 09/01/2005] [Indexed: 11/20/2022]
Abstract
Polymorphic RNA conformations may serve as potential targets for structure specific antiviral agents. As an initial step in the development of such drugs, the interaction of a wide variety of compounds which are characterized to bind to DNA through classical or partial intercalation or by mechanism of groove binding, with the A-form and the protonated form of poly(rC).poly(rG), been evaluated by multifaceted spectroscopic and viscometric techniques. Results of this study suggest that (i) ethidium intercalates to the A-form of RNA, but does not intercalate to the protonated form, (ii) methylene blue intercalates to the protonated form of the RNA but does not intercalate to the A-form, (iii) actinomycin D does not bind to either conformations of the RNA, and (iv) berberine binds to the protonated form by partial intercalation process, while its binding to the A-form is very weak. The DNA groove binder distamycin A has much higher affinity to the protonated form of the RNA compared to the A-form and binds to both structures by non-intercalative mechanism. We conclude that the binding affinity characteristics of these DNA binding molecules to the RNA conformations are vastly different and may serve as data for the development of RNA based antiviral drugs.
Collapse
Affiliation(s)
- Rangana Sinha
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | | | | | | | | | |
Collapse
|
18
|
Bhadra K, Kumar GS, Das S, Islam MM, Maiti M. Protonated structures of naturally occurring deoxyribonucleic acids and their interaction with berberine. Bioorg Med Chem 2005; 13:4851-63. [PMID: 15946849 DOI: 10.1016/j.bmc.2005.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/06/2005] [Accepted: 05/06/2005] [Indexed: 01/29/2023]
Abstract
Protonation-induced conformational changes in natural DNAs of diverse base composition under the influence of low pH, low temperature, and low ionic strength have been studied using various spectroscopic techniques. At pH3.40, 10mM [Na+], and at 5 degrees C, all natural DNAs irrespective of base composition adopted an unusual and stable conformation remarkably different from the canonical B-form conformation. This protonated conformation has been characterized to have unique absorption and circular dichroic spectral characteristics and exhibited cooperative thermal melting profiles with decreased thermal melting temperatures compared to their respective B-form counterparts. The nature of this protonated structure was further investigated by monitoring the interaction of the plant alkaloid, berberine that was previously shown from our laboratory to differentially bind to B-form and H(L)-form of poly[d(G-C)] [Bioorg. Med. Chem.2003, 11, 4861]. Binding of berberine to protonated conformation of natural DNAs resulted in intrinsic circular dichroic changes as well as generation of induced circular dichroic bands for the bound berberine molecule with opposite signs and magnitude compared with B-form structures. Nevertheless, the binding of the alkaloid to both the B and protonated forms was non-linear and non-cooperative as revealed from Scatchard plots derived from spectrophotometric titration data. Steady state fluorescence studies on the other hand showed remarkable increase of the rather weak intrinsic fluorescence of berberine on binding to the protonated structure compared to the B-form structure. Taken together, these results suggest that berberine can detect the formation of significant population of H(L)-form structures under the influence of protonation irrespective of heterogeneous base compositions in natural DNAs.
Collapse
Affiliation(s)
- Kakali Bhadra
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | | | | | | | |
Collapse
|
19
|
Yadav RC, Kumar GS, Bhadra K, Giri P, Sinha R, Pal S, Maiti M. Berberine, a strong polyriboadenylic acid binding plant alkaloid: spectroscopic, viscometric, and thermodynamic study. Bioorg Med Chem 2005; 13:165-74. [PMID: 15582461 DOI: 10.1016/j.bmc.2004.09.045] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 09/24/2004] [Accepted: 09/25/2004] [Indexed: 11/29/2022]
Abstract
The interaction of berberine with single stranded poly(rA) structure was investigated using a combination of spectrophotometric, spectrofluorimetric, circular dichroic, viscometric, and thermodynamic studies. The interaction process was characterized by typical hypochromic and bathochromic effects in the absorption spectrum of berberine, enhancement of fluorescence intensity of berberine, increase of viscosity, and perturbation of circular dichroic spectrum of single stranded poly(rA). Scatchard plot obtained from spectrophotometric analysis showed that berberine bound strongly to single stranded poly(rA) in a non-cooperative manner. In contrast, berberine does not show any significant effect (i) in its absorbance and fluorescence spectra on binding to double stranded poly(rA), (ii) alter the circular dichroic spectrum of double stranded poly(rA), or (iii) increase of viscosity of double stranded poly(rA) indicating that it does not bind at all to double stranded poly(rA) structure. Thermodynamic parameters indicated that the binding of the alkaloid to single stranded poly(rA) is an endothermic process and entropy driven. All these findings, taken together clearly support that berberine binds strongly to single stranded poly(rA) structure by a mechanism of partial intercalation leading to its use in gene regulation in eukaryotic cells.
Collapse
Affiliation(s)
- Ram Chandra Yadav
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700 032, India
| | | | | | | | | | | | | |
Collapse
|
20
|
Kumar GS, Das S, Bhadra K, Maiti M. Protonated forms of poly[d(G-C)] and poly(dG).poly(dC) and their interaction with berberine. Bioorg Med Chem 2004; 11:4861-70. [PMID: 14604647 DOI: 10.1016/j.bmc.2003.09.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The pH -induced structural changes on the conformation of homo- and hetero-polymers of guanosine-citydine (G.C) sequences were investigated using spectrophotometric and circular dichroic techniques. At pH 3.40, 10 mM [Na(+)] and 10 degrees C both polynucleotides adopted a unique and stable structural conformation different from their respective B-form structures. The protonated hetero-polymer is established as left-handed structure with Hoogsteen base pairing (H(L)-form) while the homo-polymer favored Watson-Crick base pairing with different stacking arrangements from that of B-form structure as evident from thermal melting and circular dichroic studies. The interaction of berberine, a naturally occurring protoberberine group of plant alkaloid, with the protonated structures was studied using various biophysical techniques. Binding of berberine to the H(L)-form structure resulted in intrinsic circular dichroic changes and generation of extrinsic circular dichroic bands with opposite sign and magnitude compared to its B-form structure while with the homo-polymer of G.C no such reversal of extrinsic circular dichroic bands was seen indicating different stacking arrangement of berberine at the interaction site. Scatchard analysis of the binding data, however, indicated non-cooperative binding to both the protonated forms similar to that of their respective B-form structure. Fluorescence spectral studies, on the other hand, showed remarkable increase in the intrinsic fluorescence of the alkaloid in presence of the protonated forms compared to their respective B-form structure. These results suggest that berberine could be used as a probe to detect the alteration of structural handedness due to protonation and may potentiate its use in regulatory roles for biological functions.
Collapse
Affiliation(s)
- Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, 700 032, Kolkata, India
| | | | | | | |
Collapse
|
21
|
Ray A, Kumar GS, Maiti M. Molecular aspects on the interaction of aristololactam-beta-D-glucoside with H(L)-form deoxyribonucleic acid structures. J Biomol Struct Dyn 2003; 21:141-51. [PMID: 12854966 DOI: 10.1080/07391102.2003.10506912] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Synthetic alternating GC-rich DNA polymers can adopt Hoogsteen base-paired structures (H(L)-form) under the influence of low pH and temperature. The interaction of aristololactam-beta-D-glucoside (ADG), a natural glucoside derivative of aristolochia group of alkaloids, with protonation-induced structures (H(L)-form) of poly(dG-dC).poly(dG-dC) and poly(dG-m(5)dC).poly(dG-m(5)dC) has been studied using different biophysical techniques. The binding of ADG to protonated DNA is characterized by typical hypochromism and bathochromism of the absorption spectrum of the alkaloid, quenching of steady state fluorescence intensity, decrease in quantum yield, increase in fluorescence polarization anisotropy values, increase in thermal transition temperature of polynucleotides following alkaloid binding and perturbation of circular dichroic spectrum of polynucleotides as a result of its interaction with the alkaloid. Scatchard analysis of the data indicates that ADG binds to protonated structures in a nonlinear noncooperative manner. The binding parameters determined from spectrophotometric titration data employing excluded site model indicate that protonated poly(dG-m(5)dC).poly(dG-m(5)dC) is more favorable for ADG binding than the corresponding nonmethylated analog. The binding of ADG to protonated structures renders a higher degree of stabilization against thermal denaturation compared to respective B-form-ADG interactions and induces a conformational switch to a bound altered form which is different from its interaction with B- and Z-form DNA structures. Thermodynamic parameters (Delta G degrees, Delta H degrees and Delta S degrees ) obtained by van't Hoff analysis of the data indicate that the binding of alkaloid to protonated structures is an exothermic process and the binding free energy arises primarily from a negative enthalpy change. Moreover, the binding leads to an increase in the contour length of protonated DNAs. These results suggest that ADG possibly binds to protonated DNAs by the mechanism of intercalation.
Collapse
Affiliation(s)
- Arghya Ray
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Calcutta 700 032, India.
| | | | | |
Collapse
|
22
|
Das S, Kumar GS, Ray A, Maiti M. Spectroscopic and thermodynamic studies on the binding of sanguinarine and berberine to triple and double helical DNA and RNA structures. J Biomol Struct Dyn 2003; 20:703-14. [PMID: 12643773 DOI: 10.1080/07391102.2003.10506887] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A comparative study on the interaction of sanguinarine and berberine with DNA and RNA triplexes and their parent duplexes was performed, by using a combination of spectrophotometric, UV thermal melting, circular dichroic and thermodynamic techniques. Formation of the DNA and RNA triplexes was confirmed from UV-melting and circular dichroic measurements. The interaction process was characterized by increase of thermal melting temperature, perturbation in circular dichroic spectrum and the typical hypochromic and bathochromic effects in the absorption spectrum. Scatchard analysis indicated that both the alkaloids bound to the triplex and duplex structures in a non-cooperative manner and the binding was stronger to triplexes than to parent duplexes. Thermal melting studies further indicated that sanguinarine stabilized the Hoogsteen base paired third strand of both DNA and RNA triplexes more tightly compared to their Watson-Crick strands, while berberine stabilized the third strand only without affecting the Watson-Crick strand. However, sanguinarine stabilized the parent duplexes while no stabilization was observed with berberine under identical conditions. Circular dichroic studies were also consistent with the observation that perturbations of DNA and RNA triplexes were more compared to their parent duplexes in presence of the alkaloids. Thermodynamic data revealed that binding of sanguinarine and berberine to triplexes (T.AxT and U.AxU) and duplexes (A.T and A.U) showed negative enthalpy changes and positive entropy changes but that of sanguinarine to C.GxC(+) triplex and G.C duplex exhibited negative enthalpy and negative entropy changes. Taken together, these results suggest that both sanguinarine and berberine can bind and stabilize the DNA and RNA triplexes more strongly than their respective parent duplexes.
Collapse
Affiliation(s)
- Suman Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | |
Collapse
|
23
|
Maiti M, Das S, Sen A, Das A, Kumar GS, Nandi R. Influence of DNA structures on the conversion of sanguinarine alkanolamine form to iminium form. J Biomol Struct Dyn 2002; 20:455-64. [PMID: 12437384 DOI: 10.1080/07391102.2002.10506864] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Sanguinarine exhibits pH dependent structural equilibrium between iminium form (structure I) and alkanolamine form (structure II) with a pKa of 7.4 as revealed from spectrophotometric titration. The titration data show that the compound exists almost exclusively as structure I and structure II in the pH range 1 to 6 and 8.5 to 11, respectively. The interaction of structure I and structure II to several B-form natural and synthetic double and single stranded DNAs has been studied by spectrophotometric, spectrofluorimetric and circular dichroic measurements in buffers of pH 5.2 and pH 10.4 where the physicochemical properties of DNA remain in B-form structure. The results show that structure I bind strongly to all B-form DNA structures showing typical hypochromism and bathochromism of the alkaloid's absorption maximum, quenching of steady-state fluorescence intensity and perturbations in circular dichroic spectrum. The structure II does not bind to DNA, but in presence of large amount of DNA significant population of structure I is generated, which binds to DNA and forms a structure I-DNA intercalated complex. The nature and magnitude of the spectral pattern are very much dependent on the structure as well as base composition of each DNA. The generation of the structure I from structure II is significantly affected by increasing ionic strength of the medium. The conversion of structure II to structure I in presence of high concentration of DNA in solution is explained through formation of a binding equilibrium process between structure II and structure I-DNA intercalated complex.
Collapse
Affiliation(s)
- Motilal Maiti
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India.
| | | | | | | | | | | |
Collapse
|
24
|
Das S, Kumar GS, Maiti M. Conversions of the left-handed form and the protonated form of DNA back to the bound right-handed form by sanguinarine and ethidium: A comparative study. Biophys Chem 1999; 76:199-218. [PMID: 17027465 DOI: 10.1016/s0301-4622(98)00238-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1998] [Revised: 12/01/1998] [Accepted: 12/15/1998] [Indexed: 11/19/2022]
Abstract
The interaction of sanguinarine and ethidium with right-handed (B-form), left-handed (Z-form) and left-handed protonated (designated as H(L)-form) structures of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) was investigated by measuring the circular dichroism and UV absorption spectral analysis. Both sanguinarine and ethidium bind strongly to the B-form DNA and convert the Z-form and the H(L)-form back to the bound right-handed form. Circular dichroic data also show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation either in Z-form or in H(L)-form. Both the rate and extent of B-form to Z-form transition were decreased by sanguinarine and ethidium under ionic conditions that otherwise favour the left-handed conformation of the polynucleotides. The rate of decrease is faster in the case of ethidium as compared to that of sanguinarine. Scatchard analysis of the spectrophotometric data shows that sanguinarine binds strongly to both the polynucleotides in a non-cooperative manner under B-form conditions, in sharp contrast to the highly-cooperative binding under Z-form and H(L)-form conditions. Correlation of binding isotherms with circular dichroism data indicates that the cooperative binding of sanguinarine under the Z-form and the H(L)-form conditions is associated with a sequential conversion of the polymer from a left-handed to a bound right-handed conformation. Determination of bound alkaloid concentration by spectroscopic titration technique and the measurement of circular dichroic spectra have enabled us to calculate the number of base pairs of Z-form and H(L)-form that adopt a right-handed conformation for each bound alkaloid. Analysis reveals that 2-3 base pairs (bp) of Z-form of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) switch to the right-handed form for each bound sanguinarine, while approximately same number of base pairs switch to the bound right-handed form in complexes with H(L)-form of these polynucleotides. Comparative binding analysis shows that ethidium also converts approximately 2 bp of Z-form or H(L)-form to bound right-handed form under same experimental conditions. Since sanguinarine binds preferentially to alternating GC sequences, which are capable of undergoing the B to Z or B to H(L) transition, these effects may be an important part in understanding its extensive biological activities.
Collapse
Affiliation(s)
- S Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Jadavpur, Calcutta 700 032, India
| | | | | |
Collapse
|
25
|
Ray A, Maiti M, Nandy A. SCATPLOT: a computer program for determination of binding parameters of non-linear non-cooperative ligand-substrate interactions. Comput Biol Med 1996; 26:497-503. [PMID: 8997543 DOI: 10.1016/s0010-4825(96)00034-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The importance of computer-assisted analysis of a non-linear binding phenomenon through Scatchard equation has been widely acknowledged. While several user-friendly softwares [LIGAND, SCTFIT, ALLFIT] are available for determining the binding parameters of nonlinear Scatchard phenomenon, there is no easily available software covering the class of phenomena described by the McGhee and von Hippel formalism [J. Mol. Biol. 86, 469-489 (1974)]. We report here user-friendly software, SCATPLOT, developed in Turbo BASIC, for the numerical estimation of binding parameters of a non-cooperative ligand-substrate interaction doing best fit to the experimental data on the basis of McGhee and von Hippel equation for a nonlinear Scatchard plot. A new parameter has also been incorporated to guide the process of least square analysis and subsequent determination of binding parameters.
Collapse
Affiliation(s)
- A Ray
- Indian Institute of Chemical Biology, Calcutta, India
| | | | | |
Collapse
|
26
|
Sen A, Ray A, Maiti M. Thermodynamics of the interactions of sanguinarine with DNA: influence of ionic strength and base composition. Biophys Chem 1996; 59:155-70. [PMID: 8867335 DOI: 10.1016/0301-4622(95)00137-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using a combination of spectrophotometric and spectrofluorimetric techniques, we report the first thermodynamic characterization of sanguinarine binding to a series of natural and synthetic host DNA duplexes over a wide range of temperature and sodium concentration. The binding isotherms fit reasonably well to the neighbour exclusion model. The salt and temperature dependence of the binding constants is used to estimate the thermodynamic parameters involved in the interaction of the alkaloid with DNA. The resulting binding data are found to be sensitive to the ionic strength of the medium, base composition and sequence of base pairs. When the sodium ion concentration is increased from 0.005 M to 0.5 M, the binding free energy changes vary in a range from -8.47 to -7.1 kcal mol-1, which corresponds to a binding constant range from 1.85 x 10(6) to 1.8 x 10(5) M-1 at 20 degrees C. More distinct is the spread in the binding enthalpy changes which range from -6.35 to -2.62 kcal mol-1 corresponding to binding entropy changes from +7.22 to +15.3 cal K-1 mol-1 at 20 degrees C. On the other hand when the GC content of the host DNA duplexes is increased, the binding free energy varies in a range from -7.28 to -8.58 kcal mol-1 with the binding enthalpy changes ranging from -0.46 to -14.31 kcal mol-1, while corresponding binding entropy changes range from +23.3 to -19.56 cal K-1 mol-1 at 20 degrees C. Sanguinarine binding to natural DNAs and homo- and heteropolymers of AT is characterized by negative enthalpy changes and positive entropy changes, while binding to homo- and heteropolymers of GC is reflected by both negative enthalpy changes and entropy changes. Possible molecular contributions towards sign and magnitude of the thermodynamic parameters and their dependence on ionic strength, base composition and sequences, are discussed.
Collapse
Affiliation(s)
- A Sen
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Calcutta, India
| | | | | |
Collapse
|
27
|
Sen A, Maiti M. Interaction of sanguinarine iminium and alkanolamine form with calf thymus DNA. Biochem Pharmacol 1994; 48:2097-102. [PMID: 7802700 DOI: 10.1016/0006-2952(94)90510-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The interaction of sanguinarine iminium form (structure I) and sanguinarine alkanolamine form (structure II) with calf thymus DNA has been studied in buffer of pH 5.2 and pH 10.5, respectively, where the physicochemical properties of DNA remain unchanged. The binding of sanguinarine iminium form to DNA is characterized by hypochromism and bathochromism in the absorption band, quenching of fluorescence intensity, increase in fluorescence polarization anisotropy, increase in positive and negative ellipticity of DNA, sign and magnitude of the thermodynamic parameters and increase in contour length of sonicated rodlike duplex DNA indicating that it binds to DNA by a mechanism of intercalation. In contrast, sanguinarine alkanolamine form does not show (i) any significant change in fluorescence polarization anisotropy, (ii) alteration of B form structure of DNA and (iii) increase in contour length of DNA indicating that it does not bind to DNA. But at a very high concentration of DNA, the alkanolamine form is influenced to form an iminium-DNA complex.
Collapse
Affiliation(s)
- A Sen
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology
| | | |
Collapse
|
28
|
Abstract
The interaction of berberine [7,8,13,13a-tetrahydro-9-10-dimethoxy-2,3-(methylene dioxy)-berberinium] with calf thymus DNA has been studied by spectrophotometry in buffers of various salt concentrations and temperatures. Binding parameters obtained are best fit by the neighbour exclusion model. The salt and temperature dependence of the binding constants are used to estimate thermodynamic parameters involved in the complex formation of berberine with DNA. The binding process is exothermic over the entire range and the values of enthalpy and entropy change are strongly dependent on the salt concentration. The negative enthalpy and positive entropy changes compensate one another to produce a relatively small Gibbs' free energy change. Possible molecular contribution to the enthalpy and entropy changes is discussed.
Collapse
Affiliation(s)
- G S Kumar
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Calcutta
| | | | | | | |
Collapse
|
29
|
Debnath D, Kumar GS, Maiti M. Circular dichroism studies of the structure of DNA complex with berberine. J Biomol Struct Dyn 1991; 9:61-79. [PMID: 1781948 DOI: 10.1080/07391102.1991.10507893] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The binding of the benzodioxolo-benzoquinolizine alkaloid, berberine chloride to natural and synthetic DNAs has been studied by intrinsic and extrinsic circular dichroic measurements. Binding of berberine causes changes in the circular dichroism spectrum of DNA as shown by the increase of molar ellipticity of the 270nm band, but with very little change of the 240nm band. The molar ellipticity at the saturation depends strongly on the base composition of DNA and also on salt concentration, but always larger for the AT rich DNA than the GC rich DNA. The features in the circular dichroic spectral changes of berberine-synthetic DNA complexes were similar to that of native DNA, but depends on the sequence of base pairs. On binding to DNA and polynucleotides, the alkaloid becomes optically active. The extrinsic circular dichroism developed in the visible absorption region (300-500nm) for the berberine-DNA complexes shows two broad spectral bands in the regions 425-440nm and 340-360nm with the maximum varying depending on base composition and sequence of DNA. While the 425nm band shows less variation on the binding ratio, the 360nm band is remarkably dependent on the DNA/alkaloid ratio. The generation of the alkaloid associated extrinsic circular dichroic bands is not dependent on the base composition or sequence of base pairs, but the nature and magnitude of the bands are very much dependent on these two factors and also on the salt concentration. The interpretation of the results with respect to the modes of the alkaloid binding to DNA are presented.
Collapse
Affiliation(s)
- D Debnath
- Indian Institute of Chemical Biology, Calcutta
| | | | | |
Collapse
|