1
|
Motorin Y, Helm M. General Principles and Limitations for Detection of RNA Modifications by Sequencing. Acc Chem Res 2024; 57:275-288. [PMID: 38065564 PMCID: PMC10851944 DOI: 10.1021/acs.accounts.3c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 02/07/2024]
Abstract
Among the many analytical methods applied to RNA modifications, a particularly pronounced surge has occurred in the past decade in the field of modification mapping. The occurrence of modifications such as m6A in mRNA, albeit known since the 1980s, became amenable to transcriptome-wide analyses through the advent of next-generation sequencing techniques in a rather sudden manner. The term "mapping" here refers to detection of RNA modifications in a sequence context, which has a dramatic impact on the interpretation of biological functions. As a consequence, an impressive number of mapping techniques were published, most in the perspective of what now has become known as "epitranscriptomics". While more and more different modifications were reported to occur in mRNA, conflicting reports and controversial results pointed to a number of technical and theoretical problems rooted in analytics, statistics, and reagents. Rather than finding the proverbial needle in a haystack, the tasks were to determine how many needles of what color in what size of a haystack one was looking at.As the authors of this Account, we think it important to outline the limitations of different mapping methods since many life scientists freshly entering the field confuse the accuracy and precision of modification mapping with that of normal sequencing, which already features numerous caveats by itself. Indeed, we propose here to qualify a specific mapping method by the size of the transcriptome that can be meaningfully analyzed with it.We here focus on high throughput sequencing by Illumina technology, referred to as RNA-Seq. We noted with interest the development of methods for modification detection by other high throughput sequencing platforms that act directly on RNA, e.g., PacBio SMRT and nanopore sequencing, but those are not considered here.In contrast to approaches relying on direct RNA sequencing, current Illumina RNA-Seq protocols require prior conversion of RNA into DNA. This conversion relies on reverse transcription (RT) to create cDNA; thereafter, the cDNA undergoes a sequencing-by-synthesis type of analysis. Thus, a particular behavior of RNA modified nucleotides during the RT-step is a prerequisite for their detection (and quantification) by deep sequencing, and RT properties have great influence on the detection efficiency and reliability. Moreover, the RT-step requires annealing of a synthetic primer, a prerequisite with a crucial impact on library preparation. Thus, all RNA-Seq protocols must feature steps for the introduction of primers, primer landing sites, or adapters on both the RNA 3'- and 5'-ends.
Collapse
Affiliation(s)
- Yuri Motorin
- Université
de Lorraine, UMR7365 IMoPA CNRS-UL
and UAR2008/US40 IBSLor CNRS-Inserm, Biopole UL, Nancy F54000, France
| | - Mark Helm
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
2
|
Abstract
Cellular RNAs in all three kingdoms of life are modified with diverse chemical modifications. These chemical modifications expand the topological repertoire of RNAs, and fine-tune their functions. Ribosomal RNA in yeast contains more than 100 chemically modified residues in the functionally crucial and evolutionary conserved regions. The chemical modifications in the rRNA are of three types-methylation of the ribose sugars at the C2-positionAbstract (Nm), isomerization of uridines to pseudouridines (Ψ), and base modifications such as (methylation (mN), acetylation (acN), and aminocarboxypropylation (acpN)). The modifications profile of the yeast rRNA has been recently completed, providing an excellent platform to analyze the function of these modifications in RNA metabolism and in cellular physiology. Remarkably, majority of the rRNA modifications and the enzymatic machineries discovered in yeast are highly conserved in eukaryotes including humans. Mutations in factors involved in rRNA modification are linked to several rare severe human diseases (e.g., X-linked Dyskeratosis congenita, the Bowen-Conradi syndrome and the William-Beuren disease). In this chapter, we summarize all rRNA modifications and the corresponding enzymatic machineries of the budding yeast.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ, USA.
| | - Karl-Dieter Entian
- Institute of Molecular Biosciences, J.W. Goethe University, Frankfurt/M., Germany.
| |
Collapse
|
3
|
Tirumalai MR, Rivas M, Tran Q, Fox GE. The Peptidyl Transferase Center: a Window to the Past. Microbiol Mol Biol Rev 2021; 85:e0010421. [PMID: 34756086 PMCID: PMC8579967 DOI: 10.1128/mmbr.00104-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In his 2001 article, "Translation: in retrospect and prospect," the late Carl Woese made a prescient observation that there was a need for the then-current view of translation to be "reformulated to become an all-embracing perspective about which 21st century Biology can develop" (RNA 7:1055-1067, 2001, https://doi.org/10.1017/s1355838201010615). The quest to decipher the origins of life and the road to the genetic code are both inextricably linked with the history of the ribosome. After over 60 years of research, significant progress in our understanding of how ribosomes work has been made. Particularly attractive is a model in which the ribosome may facilitate an ∼180° rotation of the CCA end of the tRNA from the A-site to the P-site while the acceptor stem of the tRNA would then undergo a translation from the A-site to the P-site. However, the central question of how the ribosome originated remains unresolved. Along the path from a primitive RNA world or an RNA-peptide world to a proto-ribosome world, the advent of the peptidyl transferase activity would have been a seminal event. This functionality is now housed within a local region of the large-subunit (LSU) rRNA, namely, the peptidyl transferase center (PTC). The PTC is responsible for peptide bond formation during protein synthesis and is usually considered to be the oldest part of the modern ribosome. What is frequently overlooked is that by examining the origins of the PTC itself, one is likely going back even further in time. In this regard, it has been proposed that the modern PTC originated from the association of two smaller RNAs that were once independent and now comprise a pseudosymmetric region in the modern PTC. Could such an association have survived? Recent studies have shown that the extant PTC is largely depleted of ribosomal protein interactions. It is other elements like metallic ion coordination and nonstandard base/base interactions that would have had to stabilize the association of RNAs. Here, we present a detailed review of the literature focused on the nature of the extant PTC and its proposed ancestor, the proto-ribosome.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Mario Rivas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Helm M, Schmidt-Dengler MC, Weber M, Motorin Y. General Principles for the Detection of Modified Nucleotides in RNA by Specific Reagents. Adv Biol (Weinh) 2021; 5:e2100866. [PMID: 34535986 DOI: 10.1002/adbi.202100866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/09/2021] [Indexed: 12/16/2022]
Abstract
Epitranscriptomics heavily rely on chemical reagents for the detection, quantification, and localization of modified nucleotides in transcriptomes. Recent years have seen a surge in mapping methods that use innovative and rediscovered organic chemistry in high throughput approaches. While this has brought about a leap of progress in this young field, it has also become clear that the different chemistries feature variegated specificity and selectivity. The associated error rates, e.g., in terms of false positives and false negatives, are in large part inherent to the chemistry employed. This means that even assuming technically perfect execution, the interpretation of mapping results issuing from the application of such chemistries are limited by intrinsic features of chemical reactivity. An important but often ignored fact is that the huge stochiometric excess of unmodified over-modified nucleotides is not inert to any of the reagents employed. Consequently, any reaction aimed at chemical discrimination of modified versus unmodified nucleotides has optimal conditions for selectivity that are ultimately anchored in relative reaction rates, whose ratio imposes intrinsic limits to selectivity. Here chemical reactivities of canonical and modified ribonucleosides are revisited as a basis for an understanding of the limits of selectivity achievable with chemical methods.
Collapse
Affiliation(s)
- Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudingerweg 5, D-55128, Mainz, Germany
| | - Martina C Schmidt-Dengler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudingerweg 5, D-55128, Mainz, Germany
| | - Marlies Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudingerweg 5, D-55128, Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core facility, Nancy, F-54000, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, F-54000, France
| |
Collapse
|
5
|
Marchand V, Bourguignon-Igel V, Helm M, Motorin Y. Analysis of pseudouridines and other RNA modifications using HydraPsiSeq protocol. Methods 2021; 203:383-391. [PMID: 34481083 DOI: 10.1016/j.ymeth.2021.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/28/2023] Open
Abstract
Detection of RNA modified nucleotides using deep sequencing can be performed by several approaches, including antibody-driven enrichment and natural or chemically induced RT signatures. However, only very few RNA modified nucleotides generate natural RT signatures and antibody-driven enrichment heavily depends on the quality of antibodies used and may be highly biased. Thus, the use of chemically-induced RT signatures is now considered as the most trusted experimental approach. In addition, the use of chemical reagents allows inclusion of simple "mock-treated" controls, to exclude spontaneous RT arrests, SNPs and other misincorporation-prone sites. Hydrazine is a well-known RNA-specific reagent, already extensively used in the past for RNA sequencing and structural probing. Hydrazine is highly reactive to U and shows low reaction rates with ψ residues, allowing their distinction by deep sequencing-based protocols. However, other modified RNA residues also show particular behavior upon hydrazine treatment. Here we present methodological developments allowing to use HydraPsiSeq for precise quantification of RNA pseudouridylation and also detection and quantification of some other RNA modifications, in addition to ψ residues.
Collapse
Affiliation(s)
- Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core facility, F-54000 Nancy, France
| | - Valérie Bourguignon-Igel
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core facility, F-54000 Nancy, France; Université de Lorraine, CNRS, UMR7365 IMoPA, F-54000 Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudingerweg 5, D-55128 Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core facility, F-54000 Nancy, France; Université de Lorraine, CNRS, UMR7365 IMoPA, F-54000 Nancy, France.
| |
Collapse
|
6
|
Czekay DP, Kothe U. H/ACA Small Ribonucleoproteins: Structural and Functional Comparison Between Archaea and Eukaryotes. Front Microbiol 2021; 12:654370. [PMID: 33776984 PMCID: PMC7991803 DOI: 10.3389/fmicb.2021.654370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
During ribosome synthesis, ribosomal RNA is modified through the formation of many pseudouridines and methylations which contribute to ribosome function across all domains of life. In archaea and eukaryotes, pseudouridylation of rRNA is catalyzed by H/ACA small ribonucleoproteins (sRNPs) utilizing different H/ACA guide RNAs to identify target uridines for modification. H/ACA sRNPs are conserved in archaea and eukaryotes, as they share a common general architecture and function, but there are also several notable differences between archaeal and eukaryotic H/ACA sRNPs. Due to the higher protein stability in archaea, we have more information on the structure of archaeal H/ACA sRNPs compared to eukaryotic counterparts. However, based on the long history of yeast genetic and other cellular studies, the biological role of H/ACA sRNPs during ribosome biogenesis is better understood in eukaryotes than archaea. Therefore, this review provides an overview of the current knowledge on H/ACA sRNPs from archaea, in particular their structure and function, and relates it to our understanding of the roles of eukaryotic H/ACA sRNP during eukaryotic ribosome synthesis and beyond. Based on this comparison of our current insights into archaeal and eukaryotic H/ACA sRNPs, we discuss what role archaeal H/ACA sRNPs may play in the formation of ribosomes.
Collapse
Affiliation(s)
- Dominic P Czekay
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
7
|
Marchand V, Pichot F, Neybecker P, Ayadi L, Bourguignon-Igel V, Wacheul L, Lafontaine DLJ, Pinzano A, Helm M, Motorin Y. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res 2020; 48:e110. [PMID: 32976574 PMCID: PMC7641733 DOI: 10.1093/nar/gkaa769] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022] Open
Abstract
Developing methods for accurate detection of RNA modifications remains a major challenge in epitranscriptomics. Next-generation sequencing-based mapping approaches have recently emerged but, often, they are not quantitative and lack specificity. Pseudouridine (ψ), produced by uridine isomerization, is one of the most abundant RNA modification. ψ mapping classically involves derivatization with soluble carbodiimide (CMCT), which is prone to variation making this approach only semi-quantitative. Here, we developed 'HydraPsiSeq', a novel quantitative ψ mapping technique relying on specific protection from hydrazine/aniline cleavage. HydraPsiSeq is quantitative because the obtained signal directly reflects pseudouridine level. Furthermore, normalization to natural unmodified RNA and/or to synthetic in vitro transcripts allows absolute measurements of modification levels. HydraPsiSeq requires minute amounts of RNA (as low as 10-50 ng), making it compatible with high-throughput profiling of diverse biological and clinical samples. Exploring the potential of HydraPsiSeq, we profiled human rRNAs, revealing strong variations in pseudouridylation levels at ∼20-25 positions out of total 104 sites. We also observed the dynamics of rRNA pseudouridylation throughout chondrogenic differentiation of human bone marrow stem cells. In conclusion, HydraPsiSeq is a robust approach for the systematic mapping and accurate quantification of pseudouridines in RNAs with applications in disease, aging, development, differentiation and/or stress response.
Collapse
Affiliation(s)
- Virginie Marchand
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| | - Florian Pichot
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Paul Neybecker
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| | - Lilia Ayadi
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| | - Valérie Bourguignon-Igel
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| | - Ludivine Wacheul
- RNA Molecular Biology, ULB-Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Fonds de la Recherche Scientifique (F.R.S./FNRS), and Université Libre de Bruxelles (ULB), BioPark campus, B-6041 Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, ULB-Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Fonds de la Recherche Scientifique (F.R.S./FNRS), and Université Libre de Bruxelles (ULB), BioPark campus, B-6041 Gosselies, Belgium
| | - Astrid Pinzano
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| |
Collapse
|
8
|
Pickerill ES, Kurtz RP, Tharp A, Guerrero Sanz P, Begum M, Bernstein DA. Pseudouridine synthase 7 impacts Candida albicans rRNA processing and morphological plasticity. Yeast 2019; 36:669-677. [PMID: 31364194 PMCID: PMC6899575 DOI: 10.1002/yea.3436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/30/2019] [Accepted: 07/20/2019] [Indexed: 12/27/2022] Open
Abstract
RNA can be modified in over 100 distinct ways, and these modifications are critical for function. Pseudouridine synthases catalyse pseudouridylation, one of the most prevalent RNA modifications. Pseudouridine synthase 7 modifies a variety of substrates in Saccharomyces cerevisiae including tRNA, rRNA, snRNA, and mRNA, but the substrates for other budding yeast Pus7 homologues are not known. We used CRISPR‐mediated genome editing to disrupt Candida albicansPUS7 and find absence leads to defects in rRNA processing and a decrease in cell surface hydrophobicity. Furthermore, C. albicans Pus7 absence causes temperature sensitivity, defects in filamentation, altered sensitivity to antifungal drugs, and decreased virulence in a wax moth model. In addition, we find C. albicans Pus7 modifies tRNA residues, but does not modify a number of other S. cerevisiae Pus7 substrates. Our data suggests C. albicans Pus7 is important for fungal vigour and may play distinct biological roles than those ascribed to S. cerevisiae Pus7.
Collapse
Affiliation(s)
- Ethan S Pickerill
- Department of Biology, Ball State University, Muncie, IN, 47306, USA
| | - Rebecca P Kurtz
- Department of Mathematics, Ball State University, Muncie, IN, 47306, USA
| | - Aaron Tharp
- Department of Biology, Ball State University, Muncie, IN, 47306, USA
| | | | - Munni Begum
- Department of Mathematics, Ball State University, Muncie, IN, 47306, USA
| | | |
Collapse
|
9
|
The chemical diversity of RNA modifications. Biochem J 2019; 476:1227-1245. [PMID: 31028151 DOI: 10.1042/bcj20180445] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/16/2022]
Abstract
Nucleic acid modifications in DNA and RNA ubiquitously exist among all the three kingdoms of life. This trait significantly broadens the genome diversity and works as an important means of gene transcription regulation. Although mammalian systems have limited types of DNA modifications, over 150 different RNA modification types have been identified, with a wide variety of chemical diversities. Most modifications occur on transfer RNA and ribosomal RNA, however many of the modifications also occur on other types of RNA species including mammalian mRNA and small nuclear RNA, where they are essential for many biological roles, including developmental processes and stem cell differentiation. These post-transcriptional modifications are enzymatically installed and removed in a site-specific manner by writer and eraser proteins respectively, while reader proteins can interpret modifications and transduce the signal for downstream functions. Dysregulation of mRNA modifications manifests as disease states, including multiple types of human cancer. In this review, we will introduce the chemical features and biological functions of these modifications in the coding and non-coding RNA species.
Collapse
|
10
|
Feng Z, Li Q, Meng R, Yi B, Xu Q. METTL3 regulates alternative splicing of MyD88 upon the lipopolysaccharide-induced inflammatory response in human dental pulp cells. J Cell Mol Med 2018; 22:2558-2568. [PMID: 29502358 PMCID: PMC5908103 DOI: 10.1111/jcmm.13491] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022] Open
Abstract
Dental pulp inflammation is a widespread public health problem caused by oral bacterial infections and can progress to pulp necrosis and periapical diseases. N6‐methyladenosine (m6A) is a prevalent epitranscriptomic modification in mRNA. Previous studies have demonstrated that m6A methylation plays important roles in cell differentiation, embryonic development and stress responses. However, whether m6A modification affects dental pulp inflammation remains unknown. To address this issue, we investigated the expression of m6A and N6‐adenosine methyltransferase (METTL3, METTL14) as well as demethylases (FTO, ALKBH5) and found that the levels of m6A and METTL3 were up‐regulated in human dental pulp cells (HDPCs) stimulated by lipopolysaccharide (LPS). Furthermore, we knocked down METTL3 and demonstrated that METTL3 depletion decreased the expression of inflammatory cytokines and the phosphorylation of IKKα/β, p65 and IκBα in the NF‐κB signalling pathway as well as p38, ERK and JNK in the MAPK signalling pathway in LPS‐induced HDPCs. The RNA sequencing analysis revealed that the vast number of genes affected by METTL3 depletion was associated with the inflammatory response. Previous research has shown that METTL3‐dependent N6‐adenosine methylation plays an important role in mRNA splicing. In this study, we found that METTL3 knockdown facilitated the expression of MyD88S, a splice variant of MyD88 that inhibits inflammatory cytokine production, suggesting that METTL3 might inhibit the LPS‐induced inflammatory response of HDPCs by regulating alternative splicing of MyD88. These data shed light on new findings in epitranscriptomic regulation of the inflammatory response and open new avenues for research into the molecular mechanisms of dental pulp inflammation.
Collapse
Affiliation(s)
- Zhihui Feng
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qimeng Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Runsha Meng
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Baicheng Yi
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qiong Xu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Pseudouridine-Free Escherichia coli Ribosomes. J Bacteriol 2018; 200:JB.00540-17. [PMID: 29180357 DOI: 10.1128/jb.00540-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/21/2017] [Indexed: 01/13/2023] Open
Abstract
Pseudouridine (Ψ) is present at conserved, functionally important regions in the ribosomal RNAs (rRNAs) from all three domains of life. Little, however, is known about the functions of Ψ modifications in bacterial ribosomes. An Escherichia coli strain has been constructed in which all seven rRNA Ψ synthases have been inactivated and whose ribosomes are devoid of all Ψs. Surprisingly, this strain displays only minor defects in ribosome biogenesis and function, and cell growth is only modestly affected. This is in contrast to a strong requirement for Ψ in eukaryotic ribosomes and suggests divergent roles for rRNA Ψ modifications in these two domains.IMPORTANCE Pseudouridine (Ψ) is the most abundant posttranscriptional modification in RNAs. In the ribosome, Ψ modifications are typically located at conserved, critical regions, suggesting they play an important functional role. In eukarya and archaea, rRNAs are modified by a single pseudouridine synthase (PUS) enzyme, targeted to rRNA via a snoRNA-dependent mechanism, while bacteria use multiple stand-alone PUS enzymes. Disruption of Ψ modification of rRNA in eukarya seriously impairs ribosome function and cell growth. We have constructed an E. coli multiple deletion strain lacking all Ψ modifications in rRNA. In contrast to the equivalent eukaryotic mutants, the E. coli strain is only modestly affected in growth, decoding, and ribosome biogenesis, indicating a differential requirement for Ψ modifications in these two domains.
Collapse
|
12
|
Sloan KE, Warda AS, Sharma S, Entian KD, Lafontaine DLJ, Bohnsack MT. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol 2016; 14:1138-1152. [PMID: 27911188 PMCID: PMC5699541 DOI: 10.1080/15476286.2016.1259781] [Citation(s) in RCA: 431] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
rRNAs are extensively modified during their transcription and subsequent maturation in the nucleolus, nucleus and cytoplasm. RNA modifications, which are installed either by snoRNA-guided or by stand-alone enzymes, generally stabilize the structure of the ribosome. However, they also cluster at functionally important sites of the ribosome, such as the peptidyltransferase center and the decoding site, where they facilitate efficient and accurate protein synthesis. The recent identification of sites of substoichiometric 2'-O-methylation and pseudouridylation has overturned the notion that all rRNA modifications are constitutively present on ribosomes, highlighting nucleotide modifications as an important source of ribosomal heterogeneity. While the mechanisms regulating partial modification and the functions of specialized ribosomes are largely unknown, changes in the rRNA modification pattern have been observed in response to environmental changes, during development, and in disease. This suggests that rRNA modifications may contribute to the translational control of gene expression.
Collapse
Affiliation(s)
- Katherine E Sloan
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Ahmed S Warda
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Sunny Sharma
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Karl-Dieter Entian
- c Institute for Molecular Biosciences, Goethe University , Frankfurt am Main , Germany
| | - Denis L J Lafontaine
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Markus T Bohnsack
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany.,d Göttingen Centre for Molecular Biosciences, Georg-August-University , Göttingen , Germany
| |
Collapse
|
13
|
Zaringhalam M, Papavasiliou FN. Pseudouridylation meets next-generation sequencing. Methods 2016; 107:63-72. [DOI: 10.1016/j.ymeth.2016.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 11/15/2022] Open
|
14
|
Taoka M, Nobe Y, Yamaki Y, Yamauchi Y, Ishikawa H, Takahashi N, Nakayama H, Isobe T. The complete chemical structure of Saccharomyces cerevisiae rRNA: partial pseudouridylation of U2345 in 25S rRNA by snoRNA snR9. Nucleic Acids Res 2016; 44:8951-8961. [PMID: 27325748 PMCID: PMC5062969 DOI: 10.1093/nar/gkw564] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/10/2016] [Indexed: 12/19/2022] Open
Abstract
We present the complete chemical structures of the rRNAs from the eukaryotic model organism, Saccharomyces cerevisiae. The final structures, as determined with mass spectrometry-based methodology that includes a stable isotope-labelled, non-modified reference RNA, contain 112 sites with 12 different post-transcriptional modifications, including a previously unidentified pseudouridine at position 2345 in 25S rRNA. Quantitative mass spectrometry-based stoichiometric analysis of the different modifications at each site indicated that 94 sites were almost fully modified, whereas the remaining 18 sites were modified to a lesser extent. Superimposed three-dimensional modification maps for S. cerevisiae and Schizosaccharomyces pombe rRNAs confirmed that most of the modified nucleotides are located in functionally important interior regions of the ribosomes. We identified snR9 as the snoRNA responsible for pseudouridylation of U2345 and showed that this pseudouridylation occurs co-transcriptionally and competitively with 2′-O-methylation of U2345. This study ends the uncertainty concerning whether all modified nucleotides in S. cerevisiae rRNAs have been identified and provides a resource for future structural, functional and biogenesis studies of the eukaryotic ribosome.
Collapse
Affiliation(s)
- Masato Taoka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yuka Yamaki
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hideaki Ishikawa
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Nobuhiro Takahashi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hiroshi Nakayama
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
15
|
Abstract
The modified nucleosides of RNA are chemically altered versions of the standard A, G, U, and C nucleosides. This review reviews the nature and location of the modified nucleosides of Escherichia coli rRNA, the enzymes that form them, and their known and/or putative functional role. There are seven Ψ (pseudouridines) synthases to make the 11 pseudouridines in rRNA. There is disparity in numbers because RluC and RluD each make 3 pseudouridines. Crystal structures have shown that the Ψ synthase domain is a conserved fold found only in all five families of Ψ synthases. The conversion of uridine to Ψ has no precedent in known metabolic reactions. Other enzymes are known to cleave the glycosyl bond but none carry out rotation of the base and rejoining to the ribose while still enzyme bound. Ten methyltransferases (MTs) are needed to make all the methylated nucleosides in 16S RNA, and 14 are needed for 23S RNA. Biochemical studies indicate that the modes of substrate recognition are idiosyncratic for each Ψ synthase since no common mode of recognition has been detected in studies of the seven synthases. Eight of the 24 expected MTs have been identified, and six crystal structures have been determined. Seven of the MTs and five of the structures are class I MTs with the appropriate protein fold plus unique appendages for the Ψ synthases. The remaining MT, RlmB, has the class IV trefoil knot fold.
Collapse
|
16
|
Abstract
Cellular RNAs can be chemically modified over a hundred different ways. These modifications were once thought to be static, discrete, and utilized to fine-tune RNA structure and function. However, recent studies have revealed that some modifications, like mRNA methylation, can be reversed, and these reversible modifications may play active roles in regulating diverse biological processes. In this perspective, we summarize examples of dynamic RNA modifications that affect biological functions. We further propose that reversible modifications might occur on tRNA, rRNA, and other noncoding RNAs to regulate gene expression analogous to the reversible mRNA methylation.
Collapse
|
17
|
Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, León-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, Fink G, Regev A. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 2014; 159:148-162. [PMID: 25219674 DOI: 10.1016/j.cell.2014.08.028] [Citation(s) in RCA: 709] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 01/14/2023]
Abstract
Pseudouridine is the most abundant RNA modification, yet except for a few well-studied cases, little is known about the modified positions and their function(s). Here, we develop Ψ-seq for transcriptome-wide quantitative mapping of pseudouridine. We validate Ψ-seq with spike-ins and de novo identification of previously reported positions and discover hundreds of unique sites in human and yeast mRNAs and snoRNAs. Perturbing pseudouridine synthases (PUS) uncovers which pseudouridine synthase modifies each site and their target sequence features. mRNA pseudouridinylation depends on both site-specific and snoRNA-guided pseudouridine synthases. Upon heat shock in yeast, Pus7p-mediated pseudouridylation is induced at >200 sites, and PUS7 deletion decreases the levels of otherwise pseudouridylated mRNA, suggesting a role in enhancing transcript stability. rRNA pseudouridine stoichiometries are conserved but reduced in cells from dyskeratosis congenita patients, where the PUS DKC1 is mutated. Our work identifies an enhanced, transcriptome-wide scope for pseudouridine and methods to dissect its underlying mechanisms and function.
Collapse
Affiliation(s)
| | | | | | - Marko Jovanovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rebecca H Herbst
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02114, USA
| | - Brian X León-Ricardo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00931, Puerto Rico
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rahul Satija
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02114, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Gerald Fink
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA.
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA.
| |
Collapse
|
18
|
Burger K, Eick D. Functional ribosome biogenesis is a prerequisite for p53 destabilization: impact of chemotherapy on nucleolar functions and RNA metabolism. Biol Chem 2014; 394:1133-43. [PMID: 23640940 DOI: 10.1515/hsz-2013-0153] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/26/2013] [Indexed: 12/21/2022]
Abstract
The production and processing of ribosomal RNA is a complex and well-coordinated nucleolar process for ribosome biogenesis. Progress in understanding nucleolar structure and function has lead to the unexpected discovery of the nucleolus as a highly sensitive sensor of cellular stress and an important regulator of the tumor suppressor p53. Inhibition of ribosomal RNA metabolism has been shown to activate a signaling pathway for p53 induction. This review elucidates the potential of classical and recently developed chemotherapeutic drugs to stabilize p53 by inhibiting nucleolar functions.
Collapse
Affiliation(s)
- Kaspar Burger
- Department of Molecular Epigenetics, Helmholtz Zentrum München and Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | | |
Collapse
|
19
|
Sharma S, Yang J, Düttmann S, Watzinger P, Kötter P, Entian KD. Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res 2013; 42:3246-60. [PMID: 24335083 PMCID: PMC3950682 DOI: 10.1093/nar/gkt1281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RNA contains various chemical modifications that expand its otherwise limited repertoire to mediate complex processes like translation and gene regulation. 25S rRNA of the large subunit of ribosome contains eight base methylations. Except for the methylation of uridine residues, methyltransferases for all other known base methylations have been recently identified. Here we report the identification of BMT5 (YIL096C) and BMT6 (YLR063W), two previously uncharacterized genes, to be responsible for m3U2634 and m3U2843 methylation of the 25S rRNA, respectively. These genes were identified by RP-HPLC screening of all deletion mutants of putative RNA methyltransferases and were confirmed by gene complementation and phenotypic characterization. Both proteins belong to Rossmann-fold–like methyltransferases and the point mutations in the S-adenosyl-l-methionine binding pocket abolish the methylation reaction. Bmt5 localizes in the nucleolus, whereas Bmt6 is localized predominantly in the cytoplasm. Furthermore, we showed that 25S rRNA of yeast does not contain any m5U residues as previously predicted. With Bmt5 and Bmt6, all base methyltransferases of the 25S rRNA have been identified. This will facilitate the analyses of the significance of these modifications in ribosome function and cellular physiology.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Molecular Genetics and Cellular Microbiology, Institute of Molecular Biosciences, Goethe University, Frankfurt, Max-von-Laue Strasse 9, Frankfurt/M 60438, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Hudson GA, Bloomingdale RJ, Znosko BM. Thermodynamic contribution and nearest-neighbor parameters of pseudouridine-adenosine base pairs in oligoribonucleotides. RNA (NEW YORK, N.Y.) 2013; 19:1474-82. [PMID: 24062573 PMCID: PMC3851715 DOI: 10.1261/rna.039610.113] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/22/2013] [Indexed: 05/24/2023]
Abstract
Pseudouridine (Ψ) is the most common noncanonical nucleotide present in naturally occurring RNA and serves a variety of roles in the cell, typically appearing where structural stability is crucial to function. Ψ residues are isomerized from native uridine residues by a class of highly conserved enzymes known as pseudouridine synthases. In order to quantify the thermodynamic impact of pseudouridylation on U-A base pairs, 24 oligoribonucleotides, 16 internal and eight terminal Ψ-A oligoribonucleotides, were thermodynamically characterized via optical melting experiments. The thermodynamic parameters derived from two-state fits were used to generate linearly independent parameters for use in secondary structure prediction algorithms using the nearest-neighbor model. On average, internally pseudouridylated duplexes were 1.7 kcal/mol more stable than their U-A counterparts, and terminally pseudouridylated duplexes were 1.0 kcal/mol more stable than their U-A equivalents. Due to the fact that Ψ-A pairs maintain the same Watson-Crick hydrogen bonding capabilities as the parent U-A pair in A-form RNA, the difference in stability due to pseudouridylation was attributed to two possible sources: the novel hydrogen bonding capabilities of the newly relocated imino group as well as the novel stacking interactions afforded by the electronic configuration of the Ψ residue. The newly derived nearest-neighbor parameters for Ψ-A base pairs may be used in conjunction with other nearest-neighbor parameters for accurately predicting the most likely secondary structure of A-form RNA containing Ψ-A base pairs.
Collapse
|
21
|
Burger K, Mühl B, Rohrmoser M, Coordes B, Heidemann M, Kellner M, Gruber-Eber A, Heissmeyer V, Strässer K, Eick D. Cyclin-dependent kinase 9 links RNA polymerase II transcription to processing of ribosomal RNA. J Biol Chem 2013; 288:21173-21183. [PMID: 23744076 DOI: 10.1074/jbc.m113.483719] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosome biogenesis is a process required for cellular growth and proliferation. Processing of ribosomal RNA (rRNA) is highly sensitive to flavopiridol, a specific inhibitor of cyclin-dependent kinase 9 (Cdk9). Cdk9 has been characterized as the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Here we studied the connection between RNAPII transcription and rRNA processing. We show that inhibition of RNAPII activity by α-amanitin specifically blocks processing of rRNA. The block is characterized by accumulation of 3' extended unprocessed 47 S rRNAs and the entire inhibition of other 47 S rRNA-specific processing steps. The transcription rate of rRNA is moderately reduced after inhibition of Cdk9, suggesting that defective 3' processing of rRNA negatively feeds back on RNAPI transcription. Knockdown of Cdk9 caused a strong reduction of the levels of RNAPII-transcribed U8 small nucleolar RNA, which is essential for 3' rRNA processing in mammalian cells. Our data demonstrate a pivotal role of Cdk9 activity for coupling of RNAPII transcription with small nucleolar RNA production and rRNA processing.
Collapse
Affiliation(s)
- Kaspar Burger
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Bastian Mühl
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Michaela Rohrmoser
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Britta Coordes
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany, and
| | - Martin Heidemann
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Markus Kellner
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Anita Gruber-Eber
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Vigo Heissmeyer
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Katja Strässer
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany, and
| | - Dirk Eick
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany,.
| |
Collapse
|
22
|
Sharma S, Watzinger P, Kötter P, Entian KD. Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res 2013; 41:5428-43. [PMID: 23558746 PMCID: PMC3664796 DOI: 10.1093/nar/gkt195] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 25S rRNA of yeast contains several base modifications in the functionally important regions. The enzymes responsible for most of these base modifications remained unknown. Recently, we identified Rrp8 as a methyltransferase involved in m1A645 modification of 25S rRNA. Here, we discovered a previously uncharacterized gene YBR141C to be responsible for second m1A2142 modification of helix 65 of 25S rRNA. The gene was identified by reversed phase–HPLC screening of all deletion mutants of putative RNA methyltransferase and was confirmed by gene complementation and phenotypic characterization. Because of the function of its encoded protein, YBR141C was named BMT2 (base methyltransferase of 25S RNA). Helix 65 belongs to domain IV, which accounts for most of the intersubunit surface of the large subunit. The 3D structure prediction of Bmt2 supported it to be an Ado Met methyltransferase belonging to Rossmann fold superfamily. In addition, we demonstrated that the substitution of G180R in the S-adenosyl-l-methionine–binding motif drastically reduces the catalytic function of the protein in vivo. Furthermore, we analysed the significance of m1A2142 modification in ribosome synthesis and translation. Intriguingly, the loss of m1A2142 modification confers anisomycin and peroxide sensitivity to the cells. Our results underline the importance of RNA modifications in cellular physiology.
Collapse
Affiliation(s)
- Sunny Sharma
- Institute of Molecular Biosciences, Goethe University Frankfurt 60438, Max-von-Laue Street 9, 60438 Frankfurt/M, Germany
| | | | | | | |
Collapse
|
23
|
Durairaj A, Limbach PA. Mass spectrometry of the fifth nucleoside: a review of the identification of pseudouridine in nucleic acids. Anal Chim Acta 2008; 623:117-25. [PMID: 18620915 PMCID: PMC2597214 DOI: 10.1016/j.aca.2008.06.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
Pseudouridine, the so-called fifth nucleoside due to its ubiquitous presence in ribonucleic acids (RNAs), remains among the most challenging modified nucleosides to characterize. As an isomer of the major nucleoside uridine, pseudouridine cannot be detected by standard reverse-transcriptase-based DNA sequencing or RNase mapping approaches. Thus, over the past 15 years, investigators have focused on the unique structural properties of pseudouridine to develop selective derivatization or fragmentation strategies for its determination. While the N-cyclohexyl-N'-beta-(4-methylmorpholinium)ethylcarbodiimide p-tosylate (CMCT)-reverse transcriptase assay remains both a popular and powerful approach to screen for pseudouridine in larger RNAs, mass-spectrometry-based approaches are poised to play an increasingly important role in either confirming the findings of the CMCT-reverse transcriptase assay or in characterizing pseudouridine sequence placement and abundance in smaller RNAs. This review includes a brief discussion of pseudouridine including a summary of its biosynthesis and known importance within various RNAs. The review then focuses on chemical derivatization approaches that can be used to selectively modify pseudouridine to improve its detection, and the development of mass-spectrometry-based assays for the identification and sequencing of pseudouridine in various RNAs.
Collapse
Affiliation(s)
- Anita Durairaj
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221-0172, United States
| | | |
Collapse
|
24
|
Decatur WA, Schnare MN. Different mechanisms for pseudouridine formation in yeast 5S and 5.8S rRNAs. Mol Cell Biol 2008; 28:3089-100. [PMID: 18332121 PMCID: PMC2423156 DOI: 10.1128/mcb.01574-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/23/2007] [Accepted: 02/26/2008] [Indexed: 12/29/2022] Open
Abstract
The selection of sites for pseudouridylation in eukaryotic cytoplasmic rRNA occurs by the base pairing of the rRNA with specific guide sequences within the RNA components of box H/ACA small nucleolar ribonucleoproteins (snoRNPs). Forty-four of the 46 pseudouridines (Psis) in the cytoplasmic rRNA of Saccharomyces cerevisiae have been assigned to guide snoRNAs. Here, we examine the mechanism of Psi formation in 5S and 5.8S rRNA in which the unassigned Psis occur. We show that while the formation of the Psi in 5.8S rRNA is associated with snoRNP activity, the pseudouridylation of 5S rRNA is not. The position of the Psi in 5.8S rRNA is guided by snoRNA snR43 by using conserved sequence elements that also function to guide pseudouridylation elsewhere in the large-subunit rRNA; an internal stem-loop that is not part of typical yeast snoRNAs also is conserved in snR43. The multisubstrate synthase Pus7 catalyzes the formation of the Psi in 5S rRNA at a site that conforms to the 7-nucleotide consensus sequence present in other substrates of Pus7. The different mechanisms involved in 5S and 5.8S rRNA pseudouridylation, as well as the multiple specificities of the individual trans factors concerned, suggest possible roles in linking ribosome production to other processes, such as splicing and tRNA synthesis.
Collapse
MESH Headings
- Ascomycota/genetics
- Ascomycota/metabolism
- Base Sequence
- DNA Primers/genetics
- Gene Deletion
- Genes, Fungal
- Genetic Complementation Test
- Hydro-Lyases/genetics
- Hydro-Lyases/metabolism
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Pseudouridine/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Wayne A Decatur
- Department of Biochemistry and Molecular Biology, 903 Lederle Graduate Research Tower, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
25
|
Durairaj A, Limbach PA. Improving CMC-derivatization of pseudouridine in RNA for mass spectrometric detection. Anal Chim Acta 2008; 612:173-81. [PMID: 18358863 PMCID: PMC2424252 DOI: 10.1016/j.aca.2008.02.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
A protocol that utilizes matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and N-cyclohexyl-N'-beta-(4-methylmorpholinium)ethylcarbodiimide (CMC) derivatization to detect the post-transcriptionally modified nucleoside, pseudouridine, in RNA has been optimized for RNase digests. Because pseudouridine is mass-silent (i.e., the mass of pseudouridine is the same as the mass of uridine), after CMC-derivatization and alkaline treatment, all pseudouridine residues exhibit a mass shift of 252 Da that allows its presence to be easily detected by mass spectrometry. This protocol is illustrated by the direct MALDI-MS identification of pseudouridines within Escherichia coli tRNA(TyrII) starting from microgram amounts of sample. During this optimization study, it was discovered that the post-transcriptionally modified nucleoside 2-methylthio-N(6)-isopentenyladenosine, which is present in bacterial tRNAs, also retains a CMC unit after derivatization and incubation with base. Thus, care must be exercised when applying this MALDI-based CMC-derivatization approach for pseudouridine detection to samples containing transfer RNAs to minimize the misidentification of pseudouridine.
Collapse
Affiliation(s)
- Anita Durairaj
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221-0172
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221-0172
| |
Collapse
|
26
|
Wu H, Feigon J. H/ACA small nucleolar RNA pseudouridylation pockets bind substrate RNA to form three-way junctions that position the target U for modification. Proc Natl Acad Sci U S A 2007; 104:6655-60. [PMID: 17412831 PMCID: PMC1871841 DOI: 10.1073/pnas.0701534104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the biogenesis of eukaryotic ribosomal RNA (rRNA) and spliceosomal small nuclear RNA (snRNA), uridines at specific sites are converted to pseudouridines by H/ACA ribonucleoprotein particles (RNPs). Each H/ACA RNP contains a substrate-specific H/ACA RNA and four common proteins, the pseudouridine synthase Cbf5, Nop10, Gar1, and Nhp2. The H/ACA RNA contains at least one pseudouridylation (psi) pocket, which is complementary to the sequences flanking the target uridine. In this article, we show structural evidence that the psi pocket can form the predicted base pairs with substrate RNA in the absence of protein components. We report the solution structure of the complex between an RNA hairpin derived from the 3' psi pocket of human U65 H/ACA small nucleolar RNA (snoRNA) and the substrate rRNA. The snoRNA-rRNA substrate complex has a unique structure with two offset parallel pairs of stacked helices and two unusual intermolecular three-way junctions, which together organize the substrate for docking into the active site of Cbf5. The substrate RNA interacts on one face of the snoRNA in the complex, forming a structure that easily could be accommodated in the H/ACA RNP, and explains how successive substrate RNAs could be loaded onto and unloaded from the H/ACA RNA in the RNP.
Collapse
Affiliation(s)
- Haihong Wu
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Juli Feigon
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Sunita S, Zhenxing H, Swaathi J, Cygler M, Matte A, Sivaraman J. Domain Organization and Crystal Structure of the Catalytic Domain of E.coli RluF, a Pseudouridine Synthase that Acts on 23S rRNA. J Mol Biol 2006; 359:998-1009. [PMID: 16712869 DOI: 10.1016/j.jmb.2006.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 03/27/2006] [Accepted: 04/05/2006] [Indexed: 11/21/2022]
Abstract
Pseudouridine synthases catalyze the isomerization of uridine to pseudouridine (Psi) in rRNA and tRNA. The pseudouridine synthase RluF from Escherichia coli (E.C. 4.2.1.70) modifies U2604 in 23S rRNA, and belongs to a large family of pseudouridine synthases present in all kingdoms of life. Here we report the domain architecture and crystal structure of the catalytic domain of E.coli RluF at 2.6A resolution. Limited proteolysis, mass spectrometry and N-terminal sequencing indicate that RluF has a distinct domain architecture, with the catalytic domain flanked at the N and C termini by additional domains connected to it by flexible linkers. The structure of the catalytic domain of RluF is similar to those of RsuA and TruB. RluF is a member of the RsuA sequence family of Psi-synthases, along with RluB and RluE. Structural comparison of RluF with its closest structural homologues, RsuA and TruB, suggests possible functional roles for the N-terminal and C-terminal domains of RluF.
Collapse
Affiliation(s)
- S Sunita
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, Singapore 117543
| | | | | | | | | | | |
Collapse
|
28
|
Khanna M, Wu H, Johansson C, Caizergues-Ferrer M, Feigon J. Structural study of the H/ACA snoRNP components Nop10p and the 3' hairpin of U65 snoRNA. RNA (NEW YORK, N.Y.) 2006; 12:40-52. [PMID: 16373493 PMCID: PMC1370884 DOI: 10.1261/rna.2221606] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The H/ACA small nucleolar ribonucleoprotein (snoRNP) complexes guide the modification of uridine to pseudouridine at conserved sites in rRNA. The H/ACA snoRNPs each comprise a target-site-specific snoRNA and four core proteins, Nop10p, Nhp2p, Gar1p, and the pseudouridine synthase, Cbf5p, in yeast. The secondary structure of the H/ACA snoRNAs includes two hairpins that each contain a large internal loop (the pseudouridylation pocket), one or both of which are partially complementary to the target RNA(s). We have determined the solution structure of an RNA hairpin derived from the human U65 box H/ACA snoRNA including the pseudouridylation pocket and adjacent stems, providing the first three-dimensional structural information on these H/ACA snoRNAs. We have also determined the structure of Nop10p and investigated its interaction with RNA using NMR spectroscopy. Nop10p contains a structurally well-defined N-terminal region composed of a beta-hairpin, and the rest of the protein lacks a globular structure. Chemical shift mapping of the interaction of RNA constructs of U65 box H/ACA 3' hairpin with Nop10p shows that the beta-hairpin binds weakly but specifically to RNA. The unstructured region of Nop10p likely interacts with Cbf5p.
Collapse
Affiliation(s)
- May Khanna
- Department of Chemistry and Biochemistry, 607 Charles Young Drive East, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | |
Collapse
|
29
|
Torchet C, Badis G, Devaux F, Costanzo G, Werner M, Jacquier A. The complete set of H/ACA snoRNAs that guide rRNA pseudouridylations in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2005; 11:928-38. [PMID: 15923376 PMCID: PMC1370777 DOI: 10.1261/rna.2100905] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Conversion of uridines into pseudouridines (Psis) is the most frequent base modification in ribosomal RNAs (rRNAs). In eukaryotes, the pseudouridylation sites are specified by base-pairing with specific target sequences within H/ACA small nucleolar RNAs (snoRNAs). The yeast rRNAs harbor 44 Psis, but, when this work began, 15 Psis had completely unknown guide snoRNAs. This suggested that many snoRNAs remained to be discovered. To address this problem and further complete the snoRNA assignment to Psi sites, we identified the complete set of RNAs associated with the H/ACA snoRNP specific proteins Gar1p and Nhp2p by coupling TAP-tag purifications with genomic DNA microarrays experiments. Surprisingly, while we identified all the previously known H/ACA snoRNAs, we selected only three new snoRNAs. This suggested that most of the missing Psi guides were present in previously known snoRNAs but had been overlooked. We confirmed this hypothesis by systematically investigating the role of previously known, as well as of the newly identified snoRNAs, in specifying rRNA Psi sites and found all but one missing guide RNAs. During the completion of this work, another study, based on bioinformatic predictions, also reported the identification of most missing guide RNAs. Altogether, all Psi guides are now identified and we can tell that, in budding yeast, the 44 Psis are guided by 28 snoRNAs. Finally, aside from snR30, an atypical small RNA of heterogeneous length and at least one mRNA, all Gar1p and Nhp2p associated RNAs characterized by our work turned out to be snoRNAs involved in rRNA Psi specification.
Collapse
MESH Headings
- Base Sequence
- Genome, Fungal
- Molecular Sequence Data
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleic Acid Conformation
- Oligonucleotide Array Sequence Analysis
- Pseudouridine/biosynthesis
- RNA, Fungal/analysis
- RNA, Fungal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/analysis
- RNA, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Claire Torchet
- Unité de Génétique des Interactions Macromoléculaires, Institut Pasteur (CNRS-URA 2171), Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Meier UT. The many facets of H/ACA ribonucleoproteins. Chromosoma 2005; 114:1-14. [PMID: 15770508 PMCID: PMC4313906 DOI: 10.1007/s00412-005-0333-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 10/25/2022]
Abstract
The H/ACA ribonucleoproteins (RNPs) are known as one of the two major classes of small nucleolar RNPs. They predominantly guide the site-directed pseudouridylation of target RNAs, such as ribosomal and spliceosomal small nuclear RNAs. In addition, they process ribosomal RNA and stabilize vertebrate telomerase RNA. Taken together, the function of H/ACA RNPs is essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. Every cell contains 100-200 different species of H/ACA RNPs, each consisting of the same four core proteins and one function-specifying H/ACA RNA. Most of these RNPs reside in nucleoli and Cajal bodies and mediate the isomerization of specific uridines to pseudouridines. Catalysis of the reaction is mediated by the putative pseudouridylase NAP57 (dyskerin, Cbf5p). Unexpectedly, mutations in this housekeeping enzyme are the major determinants of the inherited bone marrow failure syndrome dyskeratosis congenita. This review details the many diverse functions of H/ACA RNPs, some yet to be uncovered, with an emphasis on the role of the RNP proteins. The multiple functions of H/ACA RNPs appear to be reflected in the complex phenotype of dyskeratosis congenita.
Collapse
Affiliation(s)
- U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
31
|
Lapeyre B. Conserved ribosomal RNA modification and their putative roles in ribosome biogenesis and translation. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/b105433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
32
|
Lapeyre B, Purushothaman SK. Spb1p-Directed Formation of Gm2922 in the Ribosome Catalytic Center Occurs at a Late Processing Stage. Mol Cell 2004; 16:663-9. [PMID: 15546625 DOI: 10.1016/j.molcel.2004.10.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 08/20/2004] [Accepted: 08/26/2004] [Indexed: 10/25/2022]
Abstract
rRNA molecules undergo extensive posttranscriptional modification, predominantly 2'-O-ribose methylation and pseudouridine formation, both of which are guided by the numerous small nucleolar RNAs in eukaryotes. Here, we describe an exception to this rule. The essential yeast nucleolar protein Spb1p is a site-specific rRNA methyltransferase modifying the universally conserved G2922 that is located within the A loop of the catalytic center of the ribosome. The equivalent position in bacteria is the docking site for aminoacyl-tRNA, and it is critical for translation. In sharp contrast to other 2'-O-methylriboses that are formed on the primary transcript, Gm2922 appears at a late processing stage, during the maturation of the 27S pre-rRNA. Thus, eukaryotes have maintained a site-specific enzyme to catalyze the methylation of a nucleotide that plays a crucial role in ribosome biogenesis and translation.
Collapse
Affiliation(s)
- Bruno Lapeyre
- Centre de Recherche de Biochimie Macromoléculaire, 1919 Route de Mende, 34293 Montpellier, France.
| | | |
Collapse
|
33
|
Russell AG, Schnare MN, Gray MW. Pseudouridine-guide RNAs and other Cbf5p-associated RNAs in Euglena gracilis. RNA (NEW YORK, N.Y.) 2004; 10:1034-46. [PMID: 15208440 PMCID: PMC1370595 DOI: 10.1261/rna.7300804] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In eukaryotes, box H/ACA small nucleolar RNAs (snoRNAs) guide sites of pseudouridine (Psi) formation in rRNA. These snoRNAs reside in RNP complexes containing the putative Psi synthase, Cbf5p. In this study we have identified Cbf5p-associated RNAs in Euglena gracilis, an early diverging eukaryote, by immunoprecipitating Cbf5p-containing complexes from cellular extracts. We characterized one box H/ACA-like RNA which, however, does not appear to guide Psi formation in rRNA. We also identified four single Psi-guide box AGA RNAs. We determined target sites for these putative Psi-guide RNAs and confirmed that the predicted Psi modifications do, in fact, occur at these positions in Euglena rRNA. The Cbf5p-associated snoRNAs appear to be encoded by multicopy genes, some of which are clustered in the genome together with methylation-guide snoRNA genes. These modification-guide snoRNAs and snoRNA genes are the first ones to be reported in euglenid protists, the evolutionary sister group to the kinetoplastid protozoa. Unexpectedly, we also found and have partially characterized a selenocysteine tRNA homolog in the anti-Cbf5p-immunoprecipitated sample.
Collapse
Affiliation(s)
- Anthony G Russell
- Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Room 8F-2, Dal-housie University, 5850 College Street, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | |
Collapse
|
34
|
Chaudhuri BN, Chan S, Perry LJ, Yeates TO. Crystal structure of the apo forms of psi 55 tRNA pseudouridine synthase from Mycobacterium tuberculosis: a hinge at the base of the catalytic cleft. J Biol Chem 2004; 279:24585-91. [PMID: 15028724 DOI: 10.1074/jbc.m401045200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structure of the RNA-modifying enzyme, psi55 tRNA pseudouridine synthase from Mycobacterium tuberculosis, is reported. The 1.9-A resolution crystal structure reveals the enzyme, free of substrate, in two distinct conformations. The structure depicts an interesting mode of protein flexibility involving a hinged bending in the central beta-sheet of the catalytic module. Key parts of the active site cleft are also found to be disordered in the substrate-free form of the enzyme. The hinge bending appears to act as a clamp to position the substrate. Our structural data furthers the previously proposed mechanism of tRNA recognition. The present crystal structure emphasizes the significant role that protein dynamics must play in tRNA recognition, base flipping, and modification.
Collapse
Affiliation(s)
- Barnali N Chaudhuri
- UCLA-Department of Energy Institute for Genomics and Proteomics, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
35
|
Phannachet K, Huang RH. Conformational change of pseudouridine 55 synthase upon its association with RNA substrate. Nucleic Acids Res 2004; 32:1422-9. [PMID: 14990747 PMCID: PMC390278 DOI: 10.1093/nar/gkh287] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pseudouridine 55 synthase (Psi55S) catalyzes isomerization of uridine (U) to pseudouridine (Psi) at position 55 in transfer RNA. The crystal structures of Thermotoga maritima Psi55S, and its complex with RNA, have been determined at 2.9 and 3.0 A resolutions, respectively. Structural comparisons with other families of pseudouridine synthases (PsiS) indicate that Psi55S may acquire its ability to recognize a stem-loop RNA substrate by two insertions of polypeptides into the PsiS core. The structure of apo-Psi55S reveals that these two insertions interact with each other. However, association with RNA substrate induces substantial conformational change in one of the insertions, resulting in disruption of interaction between insertions and association of both insertions with the RNA substrate. Specific interactions between two insertions, as well as between the insertions and the RNA substrate, account for the molecular basis of the conformational change.
Collapse
Affiliation(s)
- Kulwadee Phannachet
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
36
|
Pan H, Agarwalla S, Moustakas DT, Finer-Moore J, Stroud RM. Structure of tRNA pseudouridine synthase TruB and its RNA complex: RNA recognition through a combination of rigid docking and induced fit. Proc Natl Acad Sci U S A 2003; 100:12648-53. [PMID: 14566049 PMCID: PMC240672 DOI: 10.1073/pnas.2135585100] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA pseudouridine synthase, TruB, catalyzes pseudouridine formation at U55 in tRNA. This posttranscriptional modification is almost universally conserved and occurs in the T arm of most tRNAs. We determined the crystal structure of Escherichia coli TruB apo enzyme, as well as the structure of Thermotoga maritima TruB in complex with RNA. Comparison of the RNA-free and -bound forms of TruB reveals that this enzyme undergoes significant conformational changes on binding to its substrate. These conformational changes include the ordering of the "thumb loop," which binds right into the RNA hairpin loop, and a 10 degree hinge movement of the C-terminal domain. Along with the result of docking experiments performed on apo TruB, we conclude that TruB recognizes its RNA substrate through a combination of rigid docking and induced fit, with TruB first rigidly binding to its target and then maximizing the interaction by induced fit.
Collapse
Affiliation(s)
| | | | | | | | - Robert M. Stroud
- To whom correspondence should be addressed at: S412C University of California–Genentech Hall, 600 16th Street, San Francisco, CA 94143-2240. E-mail:
| |
Collapse
|
37
|
McCutcheon JP, Eddy SR. Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics. Nucleic Acids Res 2003; 31:4119-28. [PMID: 12853629 PMCID: PMC165953 DOI: 10.1093/nar/gkg438] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We screened for new structural non-coding RNAs (ncRNAs) in the genome sequence of the yeast Saccharomyces cerevisiae using computational comparative analysis of genome sequences from five related species of Saccharomyces. The screen identified 92 candidate ncRNA genes. Thirteen showed discrete transcripts when assayed by northern blot. Of these, eight appear to be novel ncRNAs ranging in size from 268 to 775 nt, including three new H/ACA box small nucleolar RNAs.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Computational Biology/methods
- Conserved Sequence/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Intergenic/genetics
- Databases, Nucleic Acid
- Genomics/methods
- Molecular Sequence Data
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Saccharomyces/genetics
- Saccharomyces cerevisiae/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Species Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- John P McCutcheon
- Howard Hughes Medical Institute and Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
38
|
Ofengand J, Malhotra A, Remme J, Gutgsell NS, Del Campo M, Jean-Charles S, Peil L, Kaya Y. Pseudouridines and pseudouridine synthases of the ribosome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:147-59. [PMID: 12762017 DOI: 10.1101/sqb.2001.66.147] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes Um2552 in E. coli, makes the 50S subunit less stable at 1 mM Mg++ (Bügl et al. 2000) and inhibits subunit joining (Caldas et al. 2000), but, in this case, it is not yet known whether the effects are due to the lack of 2'-O-methylation or to the absence of the enzyme itself. Is there any role for the psi residues themselves? First, as noted above, the 3 psi made by RluD which cluster in the end-loop of helix 69 are highly conserved, with one being universal (Fig. 2B). In the 70S-tRNA structure (Yusupov et al. 2001), the loop of this helix containing the psi supports the anticodon arm of A-site tRNA near its juncture with the amino acid arm. The middle of helix 69 does the same thing for P-site tRNA. Unfortunately, the resolution is not yet sufficient to provide a more precise alignment of the psi residues with the other structural elements of the tRNA-ribosome complex so that one cannot yet determine what role, if any, is played by the N-1 H that distinguishes psi from U. Second, and more generally, some psi residues in the LSU appear to be near the site of peptide-bond formation or tRNA binding but not actually at it (Fig. 2B) (Nissen et al. 2000; Yusupov et al. 2001). For example, position 2492 is commonly psi and is only six residues away from A2486, the A postulated to catalyze peptide-bond formation. Position 2589 is psi in all the eukaryotes and is next to 2588, which base-pairs with the C75 of A-site tRNA. Residue 2620, which interacts with the A76 of A-site-bound tRNA, is a psi or is next to a psi in eukaryotes and Archaea, and is five residues away from psi 2580 in E. coli. A2637, which is between the two CCA ends of P- and A-site tRNA, is near psi 2639, psi 2640, and psi 2641, found in a number of organisms. Residue 2529, which contacts the backbone of A-site tRNA residues 74-76, is near psi 2527 psi 2528 in H. marismortui. Residues 2505-2507, which contact A-site tRNA residues 50-53, are near psi 2509 in higher eukaryotes, and residues 2517-2519 in contact with A-site tRNA residues 64-65 are within 1-3 nucleotides of psi 2520 in higher eukaryotes and psi 2514 in H. marismortui. A way to rationalize this might be to invoke the concept suggested in the Introduction that psi acts as a molecular glue to hold loose elements in a more rigid configuration. It may well be that this is more important near the site of peptide-bond formation and tRNA binding, accounting for the preponderance of psi in this vicinity. What might be the role of all the other psi in eukaryotes? One can only surmise that cells, having once acquired the ability to make psi with guide RNAs, took advantage of the system to inexpensively place psi wherever an undesirable loose region was found. It might be that in some of these cases, psi performs the role played by proteins in other regions, namely that of holding the rRNA in its proper configuration. Confirmation of this hypothesis will have to await structural determination of eukaryotic ribosomes.
Collapse
Affiliation(s)
- J Ofengand
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Newby MI, Greenbaum NL. Investigation of Overhauser effects between pseudouridine and water protons in RNA helices. Proc Natl Acad Sci U S A 2002; 99:12697-702. [PMID: 12242344 PMCID: PMC130523 DOI: 10.1073/pnas.202477199] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2002] [Accepted: 08/08/2002] [Indexed: 12/16/2022] Open
Abstract
The inherent chemical properties of RNA molecules are expanded by posttranscriptional modification of specific nucleotides. Pseudouridine (psi), the most abundant of the modified bases, features an additional imino group, NH1, as compared with uridine. When psi forms a Watson-Crick base pair with adenine in an RNA helix, NH1 is positioned within the major groove. The presence of psi often increases thermal stability of the helix or loop in which it is found [Hall, K. B. & McLaughlin, L. (1992) Nucleic Acids Res. 20, 1883-1889]. X-ray crystal structures of transfer RNAs [e.g., Arnez, J. & Steitz, T. (1994) Biochemistry 33, 7560-7567] have depicted water molecules bridging psiNH1 groups and nearby phosphate oxygen atoms, but direct evidence for this interaction in solution has not been acquired. Toward this end, we have used a rotating-frame Overhauser effect spectroscopy-type NMR pulse sequence with a CLEAN chemical-exchange spectroscopy spin-lock pulse train [Hwang, T.-L., Mori, S., Shaka, A. J. & van Zijl, P. C. M. (1997) J. Am. Chem. Soc. 119, 6203-6204] to test for psiNH1-water cross-relaxation effects within two RNA helices: (i) a complementary duplex, in which psi is not associated with structural change, and (ii) an RNA duplex representing the eukaryotic pre-mRNA branch-site helix from Saccharomyces cerevisiae, in which a conserved psi extrudes the branch-site adenosine from the helix. Our data implicate a water-psiNH1 hydrogen bond both in stabilizing the complementary helix and in favoring formation of the unique structure of the branch-site helix.
Collapse
Affiliation(s)
- Meredith I Newby
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, USA
| | | |
Collapse
|
40
|
Abstract
The development of three-dimensional maps of the modified nucleotides in the ribosomes of Escherichia coli and yeast has revealed that most (approximately 95% in E. coli and 60% in yeast) occur in functionally important regions. These include the peptidyl transferase centre, the A, P and E sites of tRNA- and mRNA binding, the polypeptide exit tunnel, and sites of subunit-subunit interaction. The correlations suggest that many ribosome functions benefit from nucleotide modification.
Collapse
MESH Headings
- Binding Sites
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Humans
- Models, Molecular
- Molecular Structure
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
|
41
|
Abstract
Pseudouridines are found in virtually all ribosomal RNAs but their function is unknown. There are four to eight times more pseudouridines in eukaryotes than in eubacteria. Mapping 19 Haloarcula marismortui pseudouridines on the three-dimensional 50S subunit does not show clustering. In bacteria, specific enzymes choose the site of pseudouridine formation. In eukaryotes, and probably also in archaea, selection and modification is done by a guide RNA-protein complex. No unique specific role for ribosomal pseudouridines has been identified. We propose that pseudouridine's function is as a molecular glue to stabilize required RNA conformations that would otherwise be too flexible.
Collapse
Affiliation(s)
- James Ofengand
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, P.O. Box 016129, Miami, FL 33101, USA.
| |
Collapse
|
42
|
Abstract
Pseudouridine is present in ribosomal RNA, transfer RNA, tmRNA, and small nuclear and nucleolar RNAs. All are structured molecules. Pseudouridine is made by enzyme-catalyzed isomerization of specifically selected U residues after the polynucleotide chain is made. No energy input is required. Pseudouridine formation creates a hydrogen bond donor at the equivalent of uridine C-5. Therefore, a major role of pseudouridine may be to strengthen particular RNA conformations and/or RNA-RNA interactions because of this extra H-bond capability. Understanding the role of pseudouridine critically depends on knowledge of their location and number in RNA. The mapping method described here has greatly simplified this task and made it possible to survey many organisms. Procedures are described for mapping pseudouridines in large RNAs like ribosomal RNA and in small RNAs like tRNA. The method involves carbodiimide adduct formation with U, G, and pseudouridine followed by mild alkali to remove the adduct from U and G but not from the N-3 of pseudouridine. This results in attenuation of primed reverse transcription resulting in a stop band one residue 3' to the pseudouridine on sequencing gels. Use of primers means that purified RNAs are not needed, only knowledge of its primary sequence, but limit the sequence scanned to 30-40 residues from the 3' end. A poly(A) tailing procedure is described that allows extension of the method to within a few nucleotides of the 3' terminus.
Collapse
Affiliation(s)
- J Ofengand
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101, USA.
| | | | | |
Collapse
|
43
|
Ansmant I, Motorin Y, Massenet S, Grosjean H, Branlant C. Identification and characterization of the tRNA:Psi 31-synthase (Pus6p) of Saccharomyces cerevisiae. J Biol Chem 2001; 276:34934-40. [PMID: 11406626 DOI: 10.1074/jbc.m103131200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To characterize the substrate specificity of the putative RNA:pseudouridine (Psi)-synthase encoded by the Saccharomyces cerevisiae open reading frame (ORF) YGR169c, the corresponding gene was deleted in yeast, and the consequences of the deletion on tRNA and small nuclear RNA modification were tested. The resulting DeltaYGR169c strain showed no detectable growth phenotype, and the only difference in Psi formation in stable cellular RNAs was the absence of Psi at position 31 in cytoplasmic and mitochondrial tRNAs. Complementation of the DeltaYGR169c strain by a plasmid bearing the wild-type YGR169c ORF restored Psi(31) formation in tRNA, whereas a point mutation of the enzyme active site (Asp(168)-->Ala) abolished tRNA:Psi(31)-synthase activity. Moreover, recombinant His(6)-tagged Ygr169 protein produced in Escherichia coli was capable of forming Psi(31) in vitro using tRNAs extracted from the DeltaYGR169c yeast cells as substrates. These results demonstrate that the protein encoded by the S. cerevisiae ORF YGR169c is the Psi-synthase responsible for modification of cytoplasmic and mitochondrial tRNAs at position 31. Because this is the sixth RNA:Psi-synthase characterized thus far in yeast, we propose to rename the corresponding gene PUS6 and the expressed protein Pus6p. Finally, the cellular localization of the green fluorescent protein-tagged Pus6p was studied by functional tests and direct fluorescence microscopy.
Collapse
Affiliation(s)
- I Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | |
Collapse
|
44
|
Patteson KG, Rodicio LP, Limbach PA. Identification of the mass-silent post-transcriptionally modified nucleoside pseudouridine in RNA by matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Res 2001; 29:E49-9. [PMID: 11353094 PMCID: PMC55470 DOI: 10.1093/nar/29.10.e49] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2001] [Revised: 02/23/2001] [Accepted: 03/08/2001] [Indexed: 11/13/2022] Open
Abstract
A new method using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the direct analysis of the mass-silent post-transcriptionally modified nucleoside pseudouridine in nucleic acids has been developed. This method utilizes 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide to derivatize pseudouridine residues. After chemical derivatization all pseudouridine residues will contain a 252 Da 'mass tag' that allows the presence of pseudouridine to be identified using mass spectrometry. Pseudouridine residues can be identified in intact nucleic acids by obtaining a mass spectrum of the nucleic acid before and after derivatization. The mass difference (in units of 252 Da) will denote the number of pseudouridine residues present. To determine the sequence location of pseudouridine, a combination of enzymatic hydrolysis and mass spectrometric steps are used. Here, MALDI analysis of RNase T1 digestion products before and after modification are used to narrow the sequence location of pseudouridine to specific T1 fragments in the gene sequence. Further mass spectrometric monitoring of exonuclease digestion products from isolated T1 fragments is then used for exact sequence placement. This approach to pseudouridine identification is demonstrated using Escherichia coli tRNAS: This new method allows for the direct determination of pseudouridine in nucleic acids, can be used to identify modified pseudouridine residues and can be used with general modification mapping approaches to completely characterize the post-transcriptional modifications present in RNAs.
Collapse
MESH Headings
- Base Sequence
- CME-Carbodiimide/analogs & derivatives
- CME-Carbodiimide/metabolism
- Chromatography, High Pressure Liquid
- Escherichia coli/genetics
- Molecular Weight
- Pseudouridine/analysis
- Pseudouridine/genetics
- Pseudouridine/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/genetics
- RNA, Transfer, Val/metabolism
- Ribonuclease T1/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- K G Patteson
- 232 Choppin Hall, Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
45
|
Sergiev PV, Bogdanov AA, Dahlberg AE, Dontsova O. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA. J Mol Biol 2000; 299:379-89. [PMID: 10860746 DOI: 10.1006/jmbi.2000.3739] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proximity of loop D of 5 S rRNA to two regions of 23 S rRNA, domain II involved in translocation and domain V involved in peptide bond formation, is known from previous cross-linking experiments. Here, we have used site-directed mutagenesis and chemical probing to further define these contacts and possible sites of communication between 5 S and 23 S rRNA. Three different mutants were constructed at position A960, a highly conserved nucleotide in domain II previously crosslinked to 5 S rRNA, and the mutant rRNAs were expressed from plasmids as homogeneous populations of ribosomes in Escherichia coli deficient in all seven chromosomal copies of the rRNA operon. Mutations A960U, A960G and, particularly, A960C caused structural rearrangements in the loop D of 5 S rRNA and in the peptidyltransferase region of domain V, as well as in the 960 loop itself. These observations support the proposal that loop D of 5 S rRNA participates in signal transmission between the ribosome centers responsible for peptide bond formation and translocation.
Collapse
MESH Headings
- Aldehydes/metabolism
- Base Sequence
- Binding Sites
- Butanones
- CME-Carbodiimide/analogs & derivatives
- CME-Carbodiimide/metabolism
- Escherichia coli/genetics
- Escherichia coli/growth & development
- GTP Phosphohydrolases/chemistry
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Genes, Bacterial/genetics
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- Peptidyl Transferases/chemistry
- Peptidyl Transferases/genetics
- Peptidyl Transferases/metabolism
- Phenotype
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Structure-Activity Relationship
- Sulfuric Acid Esters/metabolism
- rRNA Operon/genetics
Collapse
Affiliation(s)
- P V Sergiev
- Department of Chemistry, Moscow State University, Moscow, 119899, Russia.
| | | | | | | |
Collapse
|
46
|
Meroueh M, Grohar PJ, Qiu J, SantaLucia J, Scaringe SA, Chow CS. Unique structural and stabilizing roles for the individual pseudouridine residues in the 1920 region of Escherichia coli 23S rRNA. Nucleic Acids Res 2000; 28:2075-83. [PMID: 10773075 PMCID: PMC105375 DOI: 10.1093/nar/28.10.2075] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The synthesis of a 5'-O-BzH-2'- O -ACE-protected pseudouridine phosphoramidite is reported [BzH, benzhydryloxy-bis(trimethylsilyloxy)silyl; ACE, bis(2-acetoxyethoxy)methyl]. The availability of the phosphoramidite allows for reliable and efficient syntheses of hairpin RNAs containing single or multiple pseudouridine modifications in the stem or loop regions. Five 19-nt hairpin RNAs representing the 1920-loop region (G(1906)-C(1924)) of Escherichia coli 23S rRNA were synthesized with pseudouridine residues located at positions 1911, 1915 and 1917. Thermodynamic parameters, circular dichroism spectra and NMR data are presented for all five RNAs. Overall, three different structural contexts for the pseudouridine residues were examined and compared with the unmodified RNA. Our main findings are that pseudouridine modifications exhibit a range of effects on RNA stability and structure, depending on their locations. More specifically, pseudouridines in the single-stranded loop regions of the model RNAs are slightly destabilizing, whereas a pseudo-uridine at the stem-loop junction is stabilizing. Furthermore, the observed effects on stability are approximately additive when multiple pseudouridine residues are present. The possible relationship of these results to RNA function is discussed.
Collapse
Affiliation(s)
- M Meroueh
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
47
|
Ansmant I, Massenet S, Grosjean H, Motorin Y, Branlant C. Identification of the Saccharomyces cerevisiae RNA:pseudouridine synthase responsible for formation of psi(2819) in 21S mitochondrial ribosomal RNA. Nucleic Acids Res 2000; 28:1941-6. [PMID: 10756195 PMCID: PMC103309 DOI: 10.1093/nar/28.9.1941] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
So far, four RNA:pseudouridine (Psi)-synthases have been identified in yeast Saccharomyces cerevisiae. Together, they act on cytoplasmic and mitochondrial tRNAs, U2 snRNA and rRNAs from cytoplasmic ribosomes. However, RNA:Psi-synthases responsible for several U-->Psi conversions in tRNAs and UsnRNAs remained to be identified. Based on conserved amino-acid motifs in already characterised RNA:Psi-synthases, four additional open reading frames (ORFs) encoding putative RNA:Psi-synthases were identified in S.cerevisiae. Upon disruption of one of them, the YLR165c ORF, we found that the unique Psi residue normally present in the fully matured mitochondrial rRNAs (Psi(2819)in 21S rRNA) was missing, while Psi residues at all the tested pseudo-uridylation sites in cytoplasmic and mitochondrial tRNAs and in nuclear UsnRNAs were retained. The selective U-->Psi conversion at position 2819 in mitochondrial 21S rRNA was restored when the deleted yeast strain was transformed by a plasmid expressing the wild-type YLR165c ORF. Complementation was lost after point mutation (D71-->A) in the postulated active site of the YLR165c-encoded protein, indicating the direct role of the YLR165c protein in Psi(2819)synthesis in mitochondrial 21S rRNA. Hence, for nomenclature homogeneity the YLR165c ORF was renamed PUS5 and the corresponding RNA:Psi-synthase Pus5p. As already noticed for other mitochondrial RNA modification enzymes, no canonical mitochondrial targeting signal was identified in Pus5p. Our results also show that Psi(2819)in mitochondrial 21S rRNA is not essential for cell viability.
Collapse
Affiliation(s)
- I Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | |
Collapse
|
48
|
Abstract
The synthesis of ribosomes is one of the major metabolic pathways in all cells. In addition to around 75 individual ribosomal proteins and 4 ribosomal RNAs, synthesis of a functional eukaryotic ribosome requires a remarkable number of trans-acting factors. Here, we will discuss the recent, and often surprising, advances in our understanding of ribosome synthesis in the yeast Saccharomyces cerevisiae. These will underscore the unexpected complexity of eukaryotic ribosome synthesis.
Collapse
Affiliation(s)
- J Venema
- Department of Biochemistry and Molecular Biology, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|
49
|
Yang Y, Isaac C, Wang C, Dragon F, Pogacic V, Meier UT. Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140. Mol Biol Cell 2000; 11:567-77. [PMID: 10679015 PMCID: PMC14794 DOI: 10.1091/mbc.11.2.567] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Small nucleolar ribonucleoprotein particles (snoRNPs) mainly catalyze the modification of rRNA. The two major classes of snoRNPs, box H/ACA and box C/D, function in the pseudouridylation and 2'-O-methylation, respectively, of specific nucleotides. The emerging view based on studies in yeast is that each class of snoRNPs is composed of a unique set of proteins. Here we present a characterization of mammalian snoRNPs. We show that the previously characterized NAP57 is specific for box H/ACA snoRNPs, whereas the newly identified NAP65, the rat homologue of yeast Nop5/58p, is a component of the box C/D class. Using coimmunoprecipitation experiments, we show that the nucleolar and coiled-body protein Nopp140 interacts with both classes of snoRNPs. This interaction is corroborated in vivo by the exclusive depletion of snoRNP proteins from nucleoli in cells transfected with a dominant negative Nopp140 construct. Interestingly, RNA polymerase I transcription is arrested in nucleoli depleted of snoRNPs, raising the possibility of a feedback mechanism between rRNA modification and transcription. Moreover, the Nopp140-snoRNP interaction appears to be conserved in yeast, because depletion of Srp40p, the yeast Nopp140 homologue, in a conditional lethal strain induces the loss of box H/ACA small nucleolar RNAs. We propose that Nopp140 functions as a chaperone of snoRNPs in yeast and vertebrate cells.
Collapse
Affiliation(s)
- Y Yang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
50
|
Massenet S, Ansmant I, Motorin Y, Branlant C. The first determination of pseudouridine residues in 23S ribosomal RNA from hyperthermophilic Archaea Sulfolobus acidocaldarius. FEBS Lett 1999; 462:94-100. [PMID: 10580099 DOI: 10.1016/s0014-5793(99)01524-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We describe the first identification of pseudouridine (Psi) residues in ribosomal RNA (23S rRNA) of an hyperthermophilic Archaea Sulfolobus acidocaldarius. In contrast to Eucarya rRNA, only six Psi residues were detected, which is rather close to the situation in Bacteria. However, three modified positions (Psi(2479), Psi(2535) and Psi(2550)) are unique for S. acidocaldarius. Two Psi residues at positions 2060 and 2594 are universally conserved, while one other Psi (position 2066) is also common to Eucarya. Taken together the results argue against the conservation of Psi-synthases between Archaea and Bacteria and provide a basis for the search of snoRNA-like guides for Psi formation in Archaea.
Collapse
Affiliation(s)
- S Massenet
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, P.O. Box 239, 54506, Vandoeuvre-les-Nancy, France
| | | | | | | |
Collapse
|