1
|
Beasley LH, Cogger N, Compton C. Use of equine chorionic gonadotropin in lactating dairy cattle: a rapid review. N Z Vet J 2023; 71:53-64. [PMID: 36265863 DOI: 10.1080/00480169.2022.2139306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIMS To use an evidence-based approach to evaluate the available research data on the efficacy of equine chorionic gonadotropin (eCG) to improve reproductive performance of dairy cows when added to oestrus synchronisation programmes for the treatment of cows not detected in oestrus. METHODS A rapid literature review was conducted to summarise the existing trial data, primarily the effect of eCG on conception rate (CR) to fixed time artificial insemination (FTAI) from oestrus synchronisation programmes in lactating dairy cows. Relevant papers were identified via databases and auxiliary search strategies, then information was collected using a standardised data collection form. Similar studies were grouped together to create a descriptive summary of CR to FTAI and secondary outcome measures, with the creation of forest plots to visualise results. RESULTS A total of 15 studies were identified for review: nine examined the administration of 400-500 IU eCG as part of an oestrus synchronisation programme based on intra-vaginal progesterone-releasing devices, gonadotropin-releasing hormone and prostaglandin (P4-GPG programme). The variable methodologies in the trials evaluated posed difficulties in grouping studies for further analysis and meant that there was insufficient data for a full meta-analysis. A single study reported a statistically significant increase in CR to FTAI from the addition to eCG to a P4-GPG programme in cows with anovulatory anoestrous. Four studies evaluated the addition of eCG to P4-GPG programmes in cows without visible oestrous signs; risk differences for CR to FTAI were between -1.7% and 28.8%, with three out of four studies reporting a positive effect of eCG on CR to FTAI, but all 95% CI values crossed the line of no effect. Two studies reported on the effect of eCG on 42-day pregnancy rate following a P4-GPG programme; one reported a risk difference of -4.9% (95% CI = -10.6-0.8%), while the other reported a risk difference of 7.9% (95% CI = 0.8-15%). CONCLUSIONS The results of published studies describing the effect of eCG in P4-GPG programmes on CR to FTAI are inconsistent and further well-designed, adequately powered studies with standardised outcome measures are required to investigate its effect.
Collapse
Affiliation(s)
| | - N Cogger
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Cwr Compton
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Byambaragchaa M, Park A, Gil SJ, Lee HW, Ko YJ, Choi SH, Kang MH, Min KS. Luteinizing hormone-like and follicle-stimulating hormone-like activities of equine chorionic gonadotropin β-subunit mutants in cells expressing rat luteinizing hormone/chorionic gonadotropin receptor and rat follicle-stimulating hormone receptor. Anim Cells Syst (Seoul) 2021; 25:171-181. [PMID: 34262660 PMCID: PMC8253215 DOI: 10.1080/19768354.2021.1943708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To identify the specific region of eCG involved in FSH-like activity, the following mutant expression vectors were constructed targeting the amino acid residues 102–104 of the eCG β-subunit: single mutants, eCGβV102G/α, eCGβF103P/α, and eCGβR104K/α; double mutants, eCGβV102G;F103P/α, eCGβV102G;R104K/α, and eCGβF103P;R104K/α; triple mutant, eCGβV102G;F103P;R104K/α. The LH-like and FSH-like activities of eCG mutants were examined in CHO-K1 cells expressing rat LH/CG receptor and rat FSH receptor. The levels of eCGβV102G/α, eCGβR104K/α, and eCGβV102G;R104K/α in the culture supernatant were markedly lower than those of eCGβ/α-wt. The other mutants and rec-eCGβ/α-wt were efficiently secreted into the culture supernatant. The LH-like activities of eCGV104G/α, eCGβV102G;R104K/α, and eCGβF103P;R104K/α were approximately 61%, 52%, and 54%, respectively, of those of eCG-wt. The Rmax values of the mutants were 58.9%–78.8% those of eCG-wt with eCGβR104K/α exhibiting the lowest value. The FSH-like activities of single mutants were only 16%–20% of those of eCG-wt. Additionally, the FSH-like activity of double mutants was less than 10% of that of eCG-wt. In particular, the FSH-like activities of βV102G;R104K/α and βF103P;R104K/α were 2.5–2.9% of that of eCG-wt. These results suggest that the amino acid residues 102–104 of the eCG β-subunit are dispensable and that the residue 104 of the eCG β-subunit plays a pivotal role in signal transduction through the rat FSH receptor. Thus, these mutants may aid future studies on eCG interactions with mammalian FSH receptors in vitro and in vivo.
Collapse
Affiliation(s)
- Munkhzaya Byambaragchaa
- Animal Life and Environmental Science, Institute of Genetic Engineering, Hankyong National University, Ansung, Korea
| | - Ayoung Park
- Animal Life and Environmental Science, Institute of Genetic Engineering, Hankyong National University, Ansung, Korea
| | - So-Jin Gil
- School of Animal Life Biotechnology, Hankyong National University, Ansung, Korea
| | - Hae-Won Lee
- School of Animal Life Biotechnology, Hankyong National University, Ansung, Korea
| | - Yun-Jeong Ko
- School of Animal Life Biotechnology, Hankyong National University, Ansung, Korea
| | - Seung-Hee Choi
- Animal Life and Environmental Science, Institute of Genetic Engineering, Hankyong National University, Ansung, Korea
| | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan, Korea
| | - Kwan-Sik Min
- Animal Life and Environmental Science, Institute of Genetic Engineering, Hankyong National University, Ansung, Korea.,School of Animal Life Biotechnology, Hankyong National University, Ansung, Korea
| |
Collapse
|
3
|
Schuler G. [Equine chorionic gonadotrophin: Biology and veterinary use]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48:344-354. [PMID: 33080658 DOI: 10.1055/a-1235-7973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The pituitary gonadotrophins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) play a prominent role in the control of gonadal functions. Therefore, their use in the treatment of fertility disorders (e. g. anovulatory anestrus) as well as in biotechnology (e. g. superovulation, hormone programs for cycle synchronization) is of substantial interest. Preparations of FSH or LH are relatively expensive due to the laborious extraction from pituitary tissue and are therefore reserved for special indications. In primates and equids, the chorionic epithelium expresses an LH-like molecule (chorionic gonadotrophin, CG). Equine CG (eCG) selectively binds to LH receptors in equids. In all other domestic mammalian species, equine CG (eCG) shows an extraordinarily high FSH activity in addition to its LH activity ("dual activity"). Since its market launch, this has therefore gained considerable importance as a comparatively inexpensive FSH analogue, mainly for use in ruminants and pigs. In contrast to the human CG (hCG), which may be isolated non-invasively from the urine of pregnant women and is widely used as LH analogue, eCG must be extracted from the blood of pregnant donor mares, as eCG concentrations in urine are only minimal. Following reports of deaths and suffering of donor mares associated with eCG collection in South American settings, the current practice of eCG production has given rise to increasing public criticism. This has recently led to calls for a general production ban. Primary aim of this review is therefore to summarize the current state of knowledge concerning the properties and biology of this molecule, which is also highly interesting from the point of view of basic science.
Collapse
Affiliation(s)
- Gerhard Schuler
- Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere mit Tierärztlicher Ambulanz, Justus-Liebig-Universität Gießen
| |
Collapse
|
4
|
Min KS, Park JJ, Byambaragchaa M, Kang MH. Characterization of tethered equine chorionic gonadotropin and its deglycosylated mutants by ovulation stimulation in mice. BMC Biotechnol 2019; 19:60. [PMID: 31409346 PMCID: PMC6692925 DOI: 10.1186/s12896-019-0550-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background To directly assess the biological role of oligosaccharides in recombinant equine chorionic gonadotropin (rec-eCG) functioning, cDNA encoding the full-length eCGβ-subunit was fused with the mature protein part of the α-subunit, and we examined the expression levels of deglycosylated eCG mutants, the ovulation rate for deglycosylated mutants in C57BL/6 mice. Results The characterizations of heterodimeric and tethered mutants were studied following their respective secretions in culture medium, molecular weight and ovulation in vivo. Rec-eCG variants containing mutations at glycosylation sites at Asn82 of the α-subunit (eCGβ/αΔ82) and Asn13 of the β-subunit (eCGβΔ13/α) were not efficiently secreted into the culture medium from transfected cells. Western blot analysis revealed that the rec-eCGβ/α proteins have an approximate broad range of molecular weights of 40–46 kDa. Three rec-eCG mutants—a deglycosylated site at Asn56 of the α-subunit (eCGβ/αΔ56), a deletion of the C-terminal region of the β-subunit (eCGβ-D/α), and the double mutant (eCGβ-D/αΔ56)—turned out to have clearly lower (approximately 4–23 kDa) molecular weights. Protein N-glycosydase F (PNGase F) treatment markedly decreased the molecular weight to approximately 2–10 kDa. Normal oocytes were significantly more abundant in the natural eCG–treated group than in mutant rec-eCG–treated groups. In particular, numbers of nonfuntional oocytes were remarkably lower in all rec-eCG groups. Conclusions Our results indicate that the ovulation rates of oocytes are not affected by the deglycosylated rec-eCGβ/α mutant proteins. There are around 20% non-functional oocytes with natural eCG and only 2% with the rec-eCGs tested. These results provide insight into the molecular mechanisms underlying the production of rec-eCG hormones with excellent bioactivity in vivo. Electronic supplementary material The online version of this article (10.1186/s12896-019-0550-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kwan-Sik Min
- Animal Biotechnology, Graduate School of Future Convergence Technology, Institute of Genetic Engineering, Hankyong National University, Ansung, 17579, Korea. .,Department of Animal Resource Science, Hankyong National University, Ansung, 17579, Korea.
| | - Jong-Ju Park
- Animal Biotechnology, Graduate School of Future Convergence Technology, Institute of Genetic Engineering, Hankyong National University, Ansung, 17579, Korea
| | - Munkhzaya Byambaragchaa
- Animal Biotechnology, Graduate School of Future Convergence Technology, Institute of Genetic Engineering, Hankyong National University, Ansung, 17579, Korea
| | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan, 31499, Korea
| |
Collapse
|
5
|
Kara E, Dupuy L, Bouillon C, Casteret S, Maurel MC. Modulation of Gonadotropins Activity by Antibodies. Front Endocrinol (Lausanne) 2019; 10:15. [PMID: 30833928 PMCID: PMC6387920 DOI: 10.3389/fendo.2019.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
Gonadotropins are essential for reproduction control in humans as well as in animals. They are widely used all over the world for ovarian stimulation in women, spermatogenesis stimulation in men, and ovulation induction and superovulation in animals. Despite the availability of many different preparations, all are made of the native hormones. Having different ligands with a wide activity range for a given receptor helps better understand its molecular and cellular signaling mechanisms as well as its physiological functions, and thus helps the development of more specific and adapted medicines. One way to control the gonadotropins' activity could be the use of modulating antibodies. Antibodies are powerful tools that were largely used to decipher gonadotropins' actions and they have shown their utility as therapeutics in several other indications such as cancer. In this review, we summarize the inhibitory and potentiating antibodies to gonadotropins, and their potential therapeutic applications.
Collapse
Affiliation(s)
| | | | - Céline Bouillon
- Igyxos SA, Nouzilly, France
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France
- Biologie Intégrative de l'Ovaire, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | | | | |
Collapse
|
6
|
Lecompte F, Harbeby E, Cahoreau C, Klett D, Combarnous Y. Use of the immature rat uterotrophic assay for specific measurements of chorionic gonadotropins and follicle-stimulating hormones in vivo bioactivities. Theriogenology 2010; 74:756-64. [PMID: 20451992 DOI: 10.1016/j.theriogenology.2010.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/14/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
The uterine weight growth stimulation by equine Chorionic Gonadotropin (eCG/PMSG) was found to occur at much lower eCG concentrations than ovarian growth. Human Chorionic Gonadotropin (hCG) which has only LH activity, was found to be as active as eCG in the uterotrophic assay whereas equine Luteinizing Hormone (eLH) which has dual LH+FSH activities like eCG, exhibited a much lower potency. In contrast to hCG, porcine and ovine LH as well as pFSH and oFSH exhibited no uterotrophic activity indicating that only gonadotropins with both LH activity and long half-lives are active alone in this assay. The FSH preparations were nevertheless found to trigger a dose-dependent response, but only in the presence of a subactive dose of hCG. The uterotrophic activity of hCG was found to be suppressed in ovariectomized immature rats and to be diminished after injection of GnRH antagonist suggesting an indirect pathway implicating the hypothalamo-pituitary complex. The data in this report together with the analysis of literature suggest that choriogonadotropins exert their stimulatory role on uterine growth by an indirect mechanism involving an increase in ovarian FSH receptors and FSH release by the pituitary. At the lowest concentrations of hCG, the increase in ovarian FSH receptors without endogenous FSH release is thought to be responsible for the sensitivity of the uterotrophic assay to exogenous FSHs. In conclusion, the immature rat uterotrophic assay is a sensitive and convenient assay for eCG and hCG as well as for FSHs in the presence of a sub-active dose of hCG.
Collapse
Affiliation(s)
- F Lecompte
- Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Unit Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | | | |
Collapse
|
7
|
Legardinier S, Klett D, Poirier JC, Combarnous Y, Cahoreau C. Mammalian-like nonsialyl complex-type N-glycosylation of equine gonadotropins in Mimic™ insect cells. Glycobiology 2005; 15:776-90. [PMID: 15814822 DOI: 10.1093/glycob/cwi060] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recombinant equine luteinizing hormone/chorionic gonadotropin (eLH/CG) was expressed in Mimic insect cells, that are commercial stably transformed Spodoptera frugiperda (Sf9) cells expressing five mammalian genes encoding glycosyltransferases involved in the synthesis of complex-type monosialylated N-glycans. We previously showed that it exhibited no in vivo bioactivity although expressing full in vitro bioactivity, and it was suspected that this was because of insufficient sialylation of eLH/CG N-glycans. Lectin binding analyses were performed with recombinant dimeric eLH/CG or its alpha subunit, secreted in the serum-containing supernatant of infected Sf9 and Mimic cells. Two types of specific lectin affinity assays (blot analyses and enzyme-linked immunosorbent assay) were used to compare the ability or inability of natural and recombinant gonadotropins to bind to various lectins. In natural equine chorionic gonadotropin (eCG), complex-type N-glycans terminating with both Siaalpha2,3Gal (based on Maackia amurensis agglutinin [MAA] binding) and Siaalpha2,6Gal (based on Sambucus nigra agglutinin [SNA] binding) were found, but in the alpha subunit dissociated from natural eCG, we only detected Siaalpha2-6Gal. In eLH/CG and its alpha subunit produced by Sf9 cells, N-glycans were found to be terminated by mannosyl residues (based on Galanthus nivalis agglutinin [GNA] binding), whereas those produced in Mimic cells were terminated by galactoses (based on binding to Ricinus communis agglutinin I [RCA I] , but not to SNA or MAA). This is in agreement with the fact that the nucleotide donor substrate of sialic acid is not naturally synthesized in insect cells. On the basis of binding to Arachis Hypogaea agglutinin [PNA], O-glycans exhibited the Galbeta1-3GalNAc structure in recombinant-free alpha and eLH/CG from both Sf9 and Mimic cell lines. Both N- and O-linked carbohydrate side chains synthesized in Mimic cells should thus be amenable to further acellular sialylation.
Collapse
Affiliation(s)
- Sébastien Legardinier
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique et Université François Rabelais de Tours, 37 380 Nouzilly, France
| | | | | | | | | |
Collapse
|
8
|
Min KS, Hiyama T, Seong HH, Hattori N, Tanaka S, Shiota K. Biological Activities of Tethered Equine Chorionic Gonadotropin (eCG) and Its Deglycosylated Mutants. J Reprod Dev 2004; 50:297-304. [PMID: 15226594 DOI: 10.1262/jrd.50.297] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine chorionic gonadotropin (eCG), which consists of highly glycosylated alpha- and beta-subunits, is a unique member of the gonadotropin family because it elicits response characteristics of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in species other than the horse. In this study, recombinant tethered-eCG as well as its deglycosylated mutants were produced to determine if alpha- and beta- subunits can be synthesized as a single polypeptide chain (tethered-eCG) and display biological activity. We found that tethered-eCG (T- betaalpha) had both LH- and FSH-like activities comparable to dimeric eCG. Luteinizing hormone-like activity of tethered-eCGs deglycosylated at Asn(56) (T-betaalpha56) was decreased. In contrast, LH-like activity of eCG without O-glycosylated carboxyl-terminal peptide (CTP) (T-betacalpha) was slightly decreased but still similar to T-betaalpha. Double mutation at Asn(56) and CTP (T-betacalpha56) caused marked decrease in the activity, indicating that both glycosylations at Asn(56) and CTP are involved in LH-like activity in the tethered form. Interestingly, FSH-like activity remained in all deglycosylated eCG mutants (T-betaalpha56, T-betacalpha and T-betacalpha56) as well as T-betaalpha. The biological roles of oligosaccharides at Asn(56) of eCG alpha-subunit and O-linked peptide of beta-subunit appear to be different in LH- and FSH-like activities in tethered-eCG.
Collapse
Affiliation(s)
- Kwan-Sik Min
- Laboratory of Cellular Biochemistry, Animal Resource Sciences /Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Nguyen VT, Singh V, Butnev VY, Gray CM, Westfall S, Davis JS, Dias JA, Bousfield GR. Inositol phosphate stimulation by LH requires the entire alpha Asn56 oligosaccharide. Mol Cell Endocrinol 2003; 199:73-86. [PMID: 12581881 DOI: 10.1016/s0303-7207(02)00297-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lentil lectin-bound, fucose-enriched hTSH was reported to stimulate both cAMP and inositol phosphate (IP) intracellular signalling pathways, whereas fucose-depleted hTSH stimulated only the cAMP pathway. Gonadotropins activate the cAMP pathway and in several studies higher concentrations activate the IP pathway. Since only the 10% of alpha subunit Asn(56) oligosaccharides (Asn(52) in humans) are fucosylated, the higher glycoprotein hormone concentrations required for IP pathway activation might be related to the abundance of competent hormone isoforms. Lentil lectin-fractionated equine (e)LHalpha and eFSHalpha preparations were combined with a truncated, des(121-149)eLHbeta preparation. All four hybrid hormone preparations induced IP accumulation in porcine theca cells, suggesting that activation of the IP pathway was not dependent on fucosylation at alpha subunit Asn(56). However, the presence of Asn(56) carbohydrate was necessary for increased IP accumulation. Intact, rather than Asn(56)-deglycosylated eLH preparations provoked a biphasic steroidogenic response by rat testis Leydig cells, suggesting that Galpha(i) stimulation was also sensitive to loss of Asn(56) carbohydrate. While rat granulosa cells responded to human FSH preparations in a biphasic manner, a classical sigmoidal response was obtained to eFSH and Asn(56)-deglycosylated eFSH, suggesting that the equine preparations did not activate Galpha(i). Purified oLHalpha Asn(56) oligosaccharides inhibited FSH-stimulated steroidogenesis in rat granulosa cell cultures indicating a direct role for carbohydrate in FSH action. The same carbohydrate preparation inhibited hCG-stimulated fluorescence energy transfer suggesting oligosaccharide involvement in activated LH receptor self-association.
Collapse
Affiliation(s)
- Van T Nguyen
- Department of Biological Sciences, Box 26, Wichita State University, 1845 Fairmount, KS 67260-0026, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Matsui T, Hamako J, Ozeki Y, Titani K. Comparative study of blood group-recognizing lectins toward ABO blood group antigens on neoglycoproteins, glycoproteins and complex-type oligosaccharides. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:50-7. [PMID: 11342253 DOI: 10.1016/s0304-4165(00)00170-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Binding specificities of ABO blood group-recognizing lectins toward blood group antigens on neoglycoproteins, glycoproteins and complex-type oligosaccharides were studied by lectin-blotting analysis, enzyme linked immunosorbent assay and lectin-conjugated agarose column chromatography. Human serum albumin conjugated with A- and B-trisaccharides was clearly recognized by Helix pomatia (HPA), Phaseolus lunatus, Dolichos biflorus agglutinins, and Griffonia simplicifolia I agglutinin B(4), respectively. Almost the same results were obtained for human group A and B ovarian cyst and A-active hog gastric mucins, but Glycine max agglutinin only reacted to the group A hog mucin. When human plasma von Willebrand factor (vWF), having Asn-linked blood group antigens, was tested, HPA was highly sensitive to blood group A antigen on the vWF. Ulex europaeus agglutinin I (UEA-I) preferentially bound to the vWF from blood group O plasma. Within the GalNAc-recognizing lectins examined, a biantennary complex-type oligosaccharide having the blood group A structure retarded on an HPA-agarose column, and the affinity was diminished after digestion with alpha-N-acetylgalactosaminidase. This product bound to UEA-I agarose column. These results indicate that HPA and UEA-I are most sensitive for detection of glycoproteins possessing small amounts of blood group A and H antigens and also useful for fractionation of complex-type oligosaccharides with blood group A and H antigens, respectively.
Collapse
Affiliation(s)
- T Matsui
- Division of Biomedical Polymer Science, Institute for Comprehensive Medical Science, Fujita Health Univeristy, Toyoake, Aichi, Japan.
| | | | | | | |
Collapse
|
11
|
Bousfield GR, Butnev VY, Butnev VY. Identification of twelve O-glycosylation sites in equine chorionic gonadotropin beta and equine luteinizing hormone ss by solid-phase Edman degradation. Biol Reprod 2001; 64:136-47. [PMID: 11133668 DOI: 10.1095/biolreprod64.1.136] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The O-glycosylation sites for equine LHss (eLHss) and eCGss were identified by solid-phase Edman degradation of four glycopeptides derived from the C-terminal region. Both subunits were O-glycosylated at the same 12 positions, rather than the 4-6 sites anticipated. These sites were partially glycosylated, with carbohydrate attachment ranging from 20% to 100% for eCGss and from 10% to 100% for eLHss. When the C-terminal peptide containing all but one of the O-linked oligosaccharides was removed by mild acid hydrolysis of either eLHss or eCGss, hybrid hormones could be obtained by reassociating eLHalpha,eFSHalpha, or eCGalpha with the truncated ss subunit derivatives. These hybrid hormones were identical in LH receptor-binding activity when des(121-149)eLHss or des(121-149)eCGss were combined with the same alpha subunit preparation. Thus, O-glycosylation appears to be responsible for the ss subunit contribution to the substantial difference in LH receptor-binding activity between eLH and eCG. Comparison of the equid LH/CGss sequences with those available for the primate CGss subunits indicated a greater conservation of glycosylation patterns in the former.
Collapse
Affiliation(s)
- G R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas 67260-0026, USA.
| | | | | |
Collapse
|
12
|
Bousfield GR, Baker VL, Gotschall RR, Butnev VY. Carbohydrate analysis of glycoprotein hormones. Methods 2000; 21:15-39. [PMID: 10764604 DOI: 10.1006/meth.2000.0972] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Complete carbohydrate composition analysis of glycoprotein hormones, their subunits, and oligosaccharides isolated from individual glycosylation sites can be accomplished using high-pH anion-exchange chromatography combined with pulsed amperometric detection. Neutral and amino sugars are analyzed from the same hydrolyzate by isocratic chromatography on a Dionex CarboPAC PA1 column in 16 mM NaOH. Sialic acid is quantified following mild hydrolysis conditions on the same column in 150 mM sodium acetate in 150 mM NaOH. Ion chromatography on a Dionex AS4A column in 1.8 mM Na(2)CO(3)/1.7 mM NaHCO(3); postcolumn, in-line anion micromembrane suppression; and conductivity detection can be used to quantify sulfate, a common component of pituitary glycoprotein hormone oligosaccharides. Mass spectrometric analysis before and after elimination of oligosaccharides from a single glycosylation site can provide an estimate of the average oligosaccharide mass, which facilitates interpretation of oligosaccharide composition data. Following release by peptide N-glycanase (PNGase) digestion and purification by ultrafiltration, oligosaccharides can be characterized by a high-resolution oligosaccharide mapping technique using the same equipment employed for composition analysis. Oligosaccharide mapping can be applied to the entire hormone, individual subunits, or individual glycosylation sites by varying PNGase digestion conditions or substrates. Oligosaccharide release by PNGase is readily monitored by SDS-PAGE. Site-specific deglycosylation can be confirmed by amino acid sequence analysis. For routine isolation of oligosaccharides, addition of 2-aminobenzamide at the reducing terminus facilitates detection; however, the oligosaccharide retention times are altered. Composition analysis is also affected as the 2-aminobenzamide-modified GlcNAc peak overlaps the fucose peak.
Collapse
Affiliation(s)
- G R Bousfield
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0026, USA.
| | | | | | | |
Collapse
|
13
|
Abstract
There are two species for which both pituitary and placental gonadotropins are readily available, humans and horses. The human gonadotropins are better characterized than equine gonadotropins. Nevertheless, the latter are very interesting because they provide exceptions to some of the general structure-function principles derived from studies on human and other mammalian gonadotropins. For example, separate genes encode the hLH beta and hCG beta subunits while a single gene encodes eLH beta and eCG beta. Thus, eCG and eLH differ only in their oligosaccharide moieties and eLH is the only LH that possesses the O-glycosylated C-terminal extension previously believed to be restricted to chorionic gonadotropins. Truncation experiments involving eLH beta and hCG beta have suggested the C-terminal extension has no effect on receptor binding. However, the largest of three eCG forms which differ only in the extent of O-glycosylation possessed reduced affinity for LH and FSH receptors. This result suggested that effects of O-glycosylation need to be considered when examining the glycosylation differences between eLH and eCG responsible for the 10-fold lower eCG receptor binding affinity compared with that of eLH. Contribution of alpha Asn56 N-linked oligosaccharides to the different biological activities of eLH and eCG has been evaluated following selective removal using peptide-N-glycanase digestion of native equine alpha-subunit preparations. Hormones-specific patterns of glycosylation were observed on alpha Asn56 of eLH, eFSH, and eCG. Removal of alpha Asn56 oligosaccharides increased the rate of subunit association, the extent of association, and receptor binding activity. Some unassociated alpha-subunit oligosaccharides were identified which may interfere with subunit association because they were more abundant in unassociated subunit oligosaccharide maps than in a total oligosaccharide map. This was most striking in the case of eCG alpha in which two minor peaks became the major oligosaccharide peaks detectable in the unassociated eCG alpha fraction following association with eLH beta and eFSH beta. The biological activities exhibited by hybrid hormones, eLH alpha reassociated with oLH beta and pLH beta, found to be greater than those of oLH and pLH provided an interesting exception to the general rule that the beta-subunit determines the potency of the heterodimer. LH receptor binding activities of eLH beta-chimeric ovine/equine alpha-subunits suggested that the equine alpha-subunit N-terminal domain may be responsible for this effect. Equine FSH has higher FSH receptor binding activity than human, ovine, and porcine FSH preparations. This probably results from two factors. First, the presence of the equine alpha-subunit promotes receptor binding as noted above. Second, the overall -2 charge of the eFSH beta determinant loop, which is less negative that the -3 observed in other species, results from the presence of an Asn residue at position 88 instead of Asp. This apparently facilitates binding to the FSH receptor.
Collapse
Affiliation(s)
- G R Bousfield
- Department of Biological Sciences, Wichita State University, KS 67260-0026, USA
| | | | | | | | | |
Collapse
|
14
|
Manzella SM, Hooper LV, Baenziger JU. Oligosaccharides containing beta 1,4-linked N-acetylgalactosamine, a paradigm for protein-specific glycosylation. J Biol Chem 1996; 271:12117-20. [PMID: 8647799 DOI: 10.1074/jbc.271.21.12117] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- S M Manzella
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|