1
|
Saon MS, Znosko BM. Thermodynamic characterization of naturally occurring RNA pentaloops. RNA (NEW YORK, N.Y.) 2022; 28:832-841. [PMID: 35318243 PMCID: PMC9074901 DOI: 10.1261/rna.078915.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/02/2022] [Indexed: 06/03/2023]
Abstract
RNA folding is hierarchical; therefore, predicting RNA secondary structure from sequence is an intermediate step in predicting tertiary structure. Secondary structure prediction is based on a nearest neighbor model using free energy minimization. To improve secondary structure prediction, all types of naturally occurring secondary structure motifs need to be thermodynamically characterized. However, not all secondary structure motifs are well characterized. Pentaloops, the second most abundant hairpin size, is one such uncharacterized motif. In fact, the current thermodynamic model used to predict the stability of pentaloops was derived from a small data set of pentaloops and from data for other hairpins of different sizes. Here, the most commonly occurring pentaloops were identified and optically melted. New experimental data for 22 pentaloop sequences were combined with previously published data for nine pentaloop sequences. Using linear regression, a pentaloop-specific model was derived. This new model is simpler and more accurate than the current model. The new experimental data and improved model can be incorporated into software that is used to predict RNA secondary structure from sequence.
Collapse
Affiliation(s)
- Md Sharear Saon
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, USA
| | - Brent M Znosko
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, USA
| |
Collapse
|
2
|
Developing an Updated Strategy for Estimating the Free-Energy Parameters in RNA Duplexes. Int J Mol Sci 2021; 22:ijms22189708. [PMID: 34575896 PMCID: PMC8467000 DOI: 10.3390/ijms22189708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
For the last 20 years, it has been common lore that the free energy of RNA duplexes formed from canonical Watson-Crick base pairs (bps) can be largely approximated with dinucleotide bp parameters and a few simple corrective constants that are duplex independent. Additionally, the standard benchmark set of duplexes used to generate the parameters were GC-rich in the shorter duplexes and AU-rich in the longer duplexes, and the length of the majority of the duplexes ranged between 6 and 8 bps. We were curious if other models would generate similar results and whether adding longer duplexes of 17 bps would affect the conclusions. We developed a gradient-descent fitting program for obtaining free-energy parameters-the changes in Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS), and the melting temperature (Tm)-directly from the experimental melting curves. Using gradient descent and a genetic algorithm, the duplex melting results were combined with the standard benchmark data to obtain bp parameters. Both the standard (Turner) model and a new model that includes length-dependent terms were tested. Both models could fit the standard benchmark data; however, the new model could handle longer sequences better. We developed an updated strategy for fitting the duplex melting data.
Collapse
|
3
|
Takahashi S, Sugimoto N. Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells. Chem Soc Rev 2020; 49:8439-8468. [DOI: 10.1039/d0cs00594k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review provides the biophysicochemical background and recent advances in stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST)
| |
Collapse
|
4
|
Danaee P, Rouches M, Wiley M, Deng D, Huang L, Hendrix D. bpRNA: large-scale automated annotation and analysis of RNA secondary structure. Nucleic Acids Res 2019; 46:5381-5394. [PMID: 29746666 PMCID: PMC6009582 DOI: 10.1093/nar/gky285] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/11/2018] [Indexed: 01/04/2023] Open
Abstract
While RNA secondary structure prediction from sequence data has made remarkable progress, there is a need for improved strategies for annotating the features of RNA secondary structures. Here, we present bpRNA, a novel annotation tool capable of parsing RNA structures, including complex pseudoknot-containing RNAs, to yield an objective, precise, compact, unambiguous, easily-interpretable description of all loops, stems, and pseudoknots, along with the positions, sequence, and flanking base pairs of each such structural feature. We also introduce several new informative representations of RNA structure types to improve structure visualization and interpretation. We have further used bpRNA to generate a web-accessible meta-database, ‘bpRNA-1m’, of over 100 000 single-molecule, known secondary structures; this is both more fully and accurately annotated and over 20-times larger than existing databases. We use a subset of the database with highly similar (≥90% identical) sequences filtered out to report on statistical trends in sequence, flanking base pairs, and length. Both the bpRNA method and the bpRNA-1m database will be valuable resources both for specific analysis of individual RNA molecules and large-scale analyses such as are useful for updating RNA energy parameters for computational thermodynamic predictions, improving machine learning models for structure prediction, and for benchmarking structure-prediction algorithms.
Collapse
Affiliation(s)
| | | | | | - Dezhong Deng
- School of Electrical Engineering and Computer Science
| | - Liang Huang
- School of Electrical Engineering and Computer Science
| | - David Hendrix
- School of Electrical Engineering and Computer Science.,Department of Biochemistry and Biophysics
| |
Collapse
|
5
|
Smith LG, Tan Z, Spasic A, Dutta D, Salas-Estrada LA, Grossfield A, Mathews DH. Chemically Accurate Relative Folding Stability of RNA Hairpins from Molecular Simulations. J Chem Theory Comput 2018; 14:6598-6612. [PMID: 30375860 DOI: 10.1021/acs.jctc.8b00633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To benchmark RNA force fields, we compared the folding stabilities of three 12-nucleotide hairpin stem loops estimated by simulation to stabilities determined by experiment. We used umbrella sampling and a reaction coordinate of end-to-end (5' to 3' hydroxyl oxygen) distance to estimate the free energy change of the transition from the native conformation to a fully extended conformation with no hydrogen bonds between non-neighboring bases. Each simulation was performed four times using the AMBER FF99+bsc0+χOL3 force field, and each window, spaced at 1 Å intervals, was sampled for 1 μs, for a total of 552 μs of simulation. We compared differences in the simulated free energy changes to analogous differences in free energies from optical melting experiments using thermodynamic cycles where the free energy change between stretched and random coil sequences is assumed to be sequence-independent. The differences between experimental and simulated ΔΔ G° are, on average, 0.98 ± 0.66 kcal/mol, which is chemically accurate and suggests that analogous simulations could be used predictively. We also report a novel method to identify where replica free energies diverge along a reaction coordinate, thus indicating where additional sampling would most improve convergence. We conclude by discussing methods to more economically perform these simulations.
Collapse
Affiliation(s)
- Louis G Smith
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| | - Zhen Tan
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| | - Aleksandar Spasic
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| | - Debapratim Dutta
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| | - Leslie A Salas-Estrada
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States
| | - Alan Grossfield
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States
| | - David H Mathews
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Department of Biostatistics and Computational Biology , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| |
Collapse
|
6
|
Miner JC, García AE. Equilibrium Denaturation and Preferential Interactions of an RNA Tetraloop with Urea. J Phys Chem B 2017; 121:3734-3746. [PMID: 28181434 DOI: 10.1021/acs.jpcb.6b10767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Urea is an important organic cosolute with implications in maintaining osmotic stress in cells and differentially stabilizing ensembles of folded biomolecules. We report an equilibrium study of urea-induced denaturation of a hyperstable RNA tetraloop through unbiased replica exchange molecular dynamics. We find that, in addition to destabilizing the folded state, urea smooths the RNA free energy landscape by destabilizing specific configurations, and forming favorable interactions with RNA nucleobases. A linear concentration-dependence of the free energy (m-value) is observed, in agreement with the results of other RNA hairpins and proteins. Additionally, analysis of the hydrogen-bonding and stacking interactions within RNA primarily show temperature-dependence, while interactions between RNA and urea primarily show concentration-dependence. Our findings provide valuable insight into the effects of urea on RNA folding and describe the thermodynamics of a basic RNA hairpin as a function of solution chemistry.
Collapse
Affiliation(s)
- Jacob C Miner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States.,Center for Nonlinear Studies, CNLS, MS B258, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Angel E García
- Center for Nonlinear Studies, CNLS, MS B258, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
7
|
Crowther CV, Jones LE, Morelli JN, Mastrogiacomo EM, Porterfield C, Kent JL, Serra MJ. Influence of two bulge loops on the stability of RNA duplexes. RNA (NEW YORK, N.Y.) 2017; 23:217-228. [PMID: 27872162 PMCID: PMC5238796 DOI: 10.1261/rna.056168.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 11/13/2016] [Indexed: 05/24/2023]
Abstract
Fifty-three RNA duplexes containing two single nucleotide bulge loops were optically melted in 1 M NaCl in order to determine the thermodynamic parameters ΔH°, ΔS°, ΔG°37, and TM for each duplex. Because of the large number of possible combinations and lack of sequence effects observed previously, we limited our initial investigation to adenosine bulges, the most common naturally occurring bulge. For example, the following duplexes were investigated: 5'GGCAXYAGGC/3'CCG YX CCG, 5'GGCAXY GCC/3'CCG YXACGG, and 5'GGC XYAGCC/3'CCGAYX CGG. The identity of XY (where XY are Watson-Crick base pairs) and the total number of base pairs in the terminal and central stems were varied. As observed for duplexes with a single bulge loop, the effect of the two bulge loops on duplex stability is primarily influenced by non-nearest neighbor interactions. In particular, the stability of the stems influences the destabilization of the duplex by the inserted bulge loops. The model proposed to predict the influence of multiple bulge loops on duplex stability suggests that the destabilization of each bulge is related to the stability of the adjacent stems. A database of RNA secondary structures was examined to determine the naturally occurring abundance of duplexes containing multiple bulge loops. Of the 2000 examples found in the database, over 65% of the two bulge loops occur within 3 base pairs of each other. A database of RNA three-dimensional structures was examined to determine the structure of duplexes containing two single nucleotide bulge loops. The structures of the bulge loops are described.
Collapse
Affiliation(s)
- Claire V Crowther
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | - Laura E Jones
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | - Jessica N Morelli
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | | | - Claire Porterfield
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | - Jessica L Kent
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | - Martin J Serra
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| |
Collapse
|
8
|
Mak CH. Atomistic Free Energy Model for Nucleic Acids: Simulations of Single-Stranded DNA and the Entropy Landscape of RNA Stem-Loop Structures. J Phys Chem B 2015; 119:14840-56. [PMID: 26548372 DOI: 10.1021/acs.jpcb.5b08077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While single-stranded (ss) segments of DNAs and RNAs are ubiquitous in biology, details about their structures have only recently begun to emerge. To study ssDNA and RNAs, we have developed a new Monte Carlo (MC) simulation using a free energy model for nucleic acids that has the atomisitic accuracy to capture fine molecular details of the sugar-phosphate backbone. Formulated on the basis of a first-principle calculation of the conformational entropy of the nucleic acid chain, this free energy model correctly reproduced both the long and short length-scale structural properties of ssDNA and RNAs in a rigorous comparison against recent data from fluorescence resonance energy transfer, small-angle X-ray scattering, force spectroscopy and fluorescence correlation transport measurements on sequences up to ∼100 nucleotides long. With this new MC algorithm, we conducted a comprehensive investigation of the entropy landscape of small RNA stem-loop structures. From a simulated ensemble of ∼10(6) equilibrium conformations, the entropy for the initiation of different size RNA hairpin loops was computed and compared against thermodynamic measurements. Starting from seeded hairpin loops, constrained MC simulations were then used to estimate the entropic costs associated with propagation of the stem. The numerical results provide new direct molecular insights into thermodynaimc measurement from macroscopic calorimetry and melting experiments.
Collapse
Affiliation(s)
- Chi H Mak
- Department of Chemistry and Center of Applied Mathematical Sciences, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Cragnolini T, Derreumaux P, Pasquali S. Ab initio RNA folding. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:233102. [PMID: 25993396 DOI: 10.1088/0953-8984/27/23/233102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.
Collapse
Affiliation(s)
- Tristan Cragnolini
- Laboratoire de Biochimie Théorique UPR 9080 CNRS, Université Paris Diderot, Sorbonne, Paris Cité, IBPC 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | |
Collapse
|
10
|
Cragnolini T, Laurin Y, Derreumaux P, Pasquali S. Coarse-Grained HiRE-RNA Model for ab Initio RNA Folding beyond Simple Molecules, Including Noncanonical and Multiple Base Pairings. J Chem Theory Comput 2015; 11:3510-22. [PMID: 26575783 DOI: 10.1021/acs.jctc.5b00200] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HiRE-RNA is a coarse-grained model for RNA structure prediction and the dynamical study of RNA folding. Using a reduced set of particles and detailed interactions accounting for base-pairing and stacking, we show that noncanonical and multiple base interactions are necessary to capture the full physical behavior of complex RNAs. In this paper, we give a full account of the model and present results on the folding, stability, and free energy surfaces of 16 systems with 12 to 76 nucleotides of increasingly complex architectures, ranging from monomers to dimers, using a total of 850 μs of simulation time.
Collapse
Affiliation(s)
- Tristan Cragnolini
- Laboratoire de Biochimie Théorique UPR 9080 CNRS, Université Paris Diderot , Sorbonne, Paris Cité, IBPC 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Yoann Laurin
- Laboratoire de Biochimie Théorique UPR 9080 CNRS, Université Paris Diderot , Sorbonne, Paris Cité, IBPC 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique UPR 9080 CNRS, Université Paris Diderot , Sorbonne, Paris Cité, IBPC 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France , Boulevard Saint-Michel, 75005 Paris, France
| | - Samuela Pasquali
- Laboratoire de Biochimie Théorique UPR 9080 CNRS, Université Paris Diderot , Sorbonne, Paris Cité, IBPC 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
11
|
Dishler AL, McMichael EL, Serra MJ. Determination of the secondary structure of group II bulge loops using the fluorescent probe 2-aminopurine. RNA (NEW YORK, N.Y.) 2015; 21:975-984. [PMID: 25805856 PMCID: PMC4408803 DOI: 10.1261/rna.048306.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
Eleven RNA hairpins containing 2-aminopurine (2-AP) in either base-paired or single nucleotide bulge loop positions were optically melted in 1 M NaCl; and, the thermodynamic parameters ΔH°, ΔS°, ΔG°37, and TM for each hairpin were determined. Substitution of 2-AP for an A (adenosine) at a bulge position (where either the 2-AP or A is the bulge) in the stem of a hairpin, does not affect the stability of the hairpin. For group II bulge loops such as AA/U, where there is ambiguity as to which of the A residues is paired with the U, hairpins with 2-AP substituted for either the 5' or 3' position in the hairpin stem have similar stability. Fluorescent melts were performed to monitor the environment of the 2-AP. When the 2-AP was located distal to the hairpin loop on either the 5' or 3' side of the hairpin stem, the change in fluorescent intensity upon heating was indicative of an unpaired nucleotide. A database of phylogenetically determined RNA secondary structures was examined to explore the presence of naturally occurring bulge loops embedded within a hairpin stem. The distribution of bulge loops is discussed and related to the stability of hairpin structures.
Collapse
Affiliation(s)
- Abigael L Dishler
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | | | - Martin J Serra
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| |
Collapse
|
12
|
Kent JL, McCann MD, Phillips D, Panaro BL, Lim GF, Serra MJ. Non-nearest-neighbor dependence of stability for group III RNA single nucleotide bulge loops. RNA (NEW YORK, N.Y.) 2014; 20:825-34. [PMID: 24742935 PMCID: PMC4024637 DOI: 10.1261/rna.043232.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/21/2014] [Indexed: 05/24/2023]
Abstract
Thirty-five RNA duplexes containing single nucleotide bulge loops were optically melted and the thermodynamic parameters for each duplex determined. The bulge loops were of the group III variety, where the bulged nucleotide is either a AG/U or CU/G, leading to ambiguity to the exact position and identity of the bulge. All possible group III bulge loops with Watson-Crick nearest-neighbors were examined. The data were used to develop a model to predict the free energy of an RNA duplex containing a group III single nucleotide bulge loop. The destabilization of the duplex by the group III bulge could be modeled so that the bulge nucleotide leads to the formation of the Watson-Crick base pair rather than the wobble base pair. The destabilization of an RNA duplex caused by the insertion of a group III bulge is primarily dependent upon non-nearest-neighbor interactions and was shown to be dependent upon the stability of second least stable stem of the duplex. In-line structure probing of group III bulge loops embedded in a hairpin indicated that the bulged nucleotide is the one positioned further from the hairpin loop irrespective of whether the resulting stem formed a Watson-Crick or wobble base pair. Fourteen RNA hairpins containing group III bulge loops, either 3' or 5' of the hairpin loop, were optically melted and the thermodynamic parameters determined. The model developed to predict the influence of group III bulge loops on the stability of duplex formation was extended to predict the influence of bulge loops on hairpin stability.
Collapse
|
13
|
Andronescu M, Condon A, Turner DH, Mathews DH. The determination of RNA folding nearest neighbor parameters. Methods Mol Biol 2014; 1097:45-70. [PMID: 24639154 DOI: 10.1007/978-1-62703-709-9_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The stability of RNA secondary structure can be predicted using a set of nearest neighbor parameters. These parameters are widely used by algorithms that predict secondary structure. This contribution introduces the UV optical melting experiments that are used to determine the folding stability of short RNA strands. It explains how the nearest neighbor parameters are chosen and how the values are fit to the data. A sample nearest neighbor calculation is provided. The contribution concludes with new methods that use the database of sequences with known structures to determine parameter values.
Collapse
Affiliation(s)
- Mirela Andronescu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
14
|
Sikora JR, Rauzan B, Stegemann R, Deckert A. Modeling stopped-flow data for nucleic acid duplex formation reactions: the importance of off-path intermediates. J Phys Chem B 2013; 117:8966-76. [PMID: 23902467 DOI: 10.1021/jp404550a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Evidence for unexpected off-path intermediates to DNA duplex formation is presented. These off-path intermediates are shown to involve unimolecular and, in one case, bimolecular structure in one of the single strands of complementary DNA. Three models are developed to account for the observed single-stranded structures that are formed in parallel with duplex formation. These models are applied to the analysis of stopped-flow data for eight different nonself-complementary duplex formation reactions in order to extract the elementary rate constant for formation of the duplex from the complementary random coil single-stranded DNA. The free energy of activation (at 25 °C) for the denaturation of each duplex is calculated from these data and is shown to have a linear correlation to the overall standard free energy for duplex formation (also at 25 °C). Duplexes that contain mismatches obey a parallel linear free-energy (LFE) relationship with a y-intercept that is greater than that of duplexes without mismatches. Slopes near unity for the LFE relationships indicate that all duplexes go through an early, unstructured transition state.
Collapse
Affiliation(s)
- Jacqueline R Sikora
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville, Pennsylvania 16335, USA
| | | | | | | |
Collapse
|
15
|
Rauzan B, McMichael E, Cave R, Sevcik LR, Ostrosky K, Whitman E, Stegemann R, Sinclair AL, Serra MJ, Deckert AA. Kinetics and thermodynamics of DNA, RNA, and hybrid duplex formation. Biochemistry 2013; 52:765-72. [PMID: 23356429 DOI: 10.1021/bi3013005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rates of duplex formation for two octamers of DNA (5' d-CACGGCTC/5' d-GAGCCGTG and 5' d-CACAGCAC/5' d-GTGCTGTG), the homologous RNA, and both sets of hybrids in 1 M NaCl buffer have been measured using stopped-flow spectroscopy. In addition, the thermodynamic parameters, ΔH° and ΔS°, have been determined for the same sequences under the same buffer conditions using optical melting techniques. These data reveal a linear free energy relationship between the free energy of activation for denaturation and the change in free energy for formation of the duplexes. This relationship indicates that these duplex formation reactions occur through a common unstructured transition state that is more similar to the single strands in solution than to the ensuing duplex. In addition, these data confirm that the greater stability of RNA duplexes relative to that of homologous DNA and hybrid duplexes is controlled by the denaturation rate and not the duplex formation rate.
Collapse
Affiliation(s)
- Brittany Rauzan
- Department of Chemistry, Allegheny College , 520 North Main Street, Meadville, Pennsylvania 16335, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Spasic A, Serafini J, Mathews DH. The Amber ff99 Force Field Predicts Relative Free Energy Changes for RNA Helix Formation. J Chem Theory Comput 2012; 8:2497-2505. [PMID: 23112748 PMCID: PMC3482406 DOI: 10.1021/ct300240k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of the Amber ff99 force field to predict relative free energies of RNA helix formation was investigated. The test systems were three hexaloop RNA hairpins with identical loops and varying stems. The potential of mean force of stretching the hairpins from the native state to an extended conformation was calculated with umbrella sampling. Because the hairpins have identical loop sequence, the differences in free energy changes are only from the stem composition. The Amber ff99 force field was able to correctly predict the order of stabilities of the hairpins, although the magnitude of the free energy change is larger than that determined by optical melting experiments. The two measurements cannot be compared directly because the unfolded state in the optical melting experiments is a random coil, while the end state in the umbrella sampling simulations was an elongated chain. The calculations can be compared to reference data by using a thermodynamic cycle. By applying the thermodynamic cycle to the transitions between the hairpins using simulations and nearest neighbor data, agreement was found to be within the sampling error of simulations, thus demonstrating that ff99 force field is able to accurately predict relative free energies of RNA helix formation.
Collapse
Affiliation(s)
- Aleksandar Spasic
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York
| | - John Serafini
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York
| | - David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
17
|
Bizarro CV, Alemany A, Ritort F. Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods. Nucleic Acids Res 2012; 40:6922-35. [PMID: 22492710 PMCID: PMC3413104 DOI: 10.1093/nar/gks289] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RNA duplex stability depends strongly on ionic conditions, and inside cells RNAs are exposed to both monovalent and multivalent ions. Despite recent advances, we do not have general methods to quantitatively account for the effects of monovalent and multivalent ions on RNA stability, and the thermodynamic parameters for secondary structure prediction have only been derived at 1M [Na(+)]. Here, by mechanically unfolding and folding a 20 bp RNA hairpin using optical tweezers, we study the RNA thermodynamics and kinetics at different monovalent and mixed monovalent/Mg(2+) salt conditions. We measure the unfolding and folding rupture forces and apply Kramers theory to extract accurate information about the hairpin free energy landscape under tension at a wide range of ionic conditions. We obtain non-specific corrections for the free energy of formation of the RNA hairpin and measure how the distance of the transition state to the folded state changes with force and ionic strength. We experimentally validate the Tightly Bound Ion model and obtain values for the persistence length of ssRNA. Finally, we test the approximate rule by which the non-specific binding affinity of divalent cations at a given concentration is equivalent to that of monovalent cations taken at 100-fold concentration for small molecular constructs.
Collapse
Affiliation(s)
- C V Bizarro
- Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | | | | |
Collapse
|
18
|
Cruz JA, Blanchet MF, Boniecki M, Bujnicki JM, Chen SJ, Cao S, Das R, Ding F, Dokholyan NV, Flores SC, Huang L, Lavender CA, Lisi V, Major F, Mikolajczak K, Patel DJ, Philips A, Puton T, Santalucia J, Sijenyi F, Hermann T, Rother K, Rother M, Serganov A, Skorupski M, Soltysinski T, Sripakdeevong P, Tuszynska I, Weeks KM, Waldsich C, Wildauer M, Leontis NB, Westhof E. RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. RNA (NEW YORK, N.Y.) 2012; 18:610-25. [PMID: 22361291 PMCID: PMC3312550 DOI: 10.1261/rna.031054.111] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report the results of a first, collective, blind experiment in RNA three-dimensional (3D) structure prediction, encompassing three prediction puzzles. The goals are to assess the leading edge of RNA structure prediction techniques; compare existing methods and tools; and evaluate their relative strengths, weaknesses, and limitations in terms of sequence length and structural complexity. The results should give potential users insight into the suitability of available methods for different applications and facilitate efforts in the RNA structure prediction community in ongoing efforts to improve prediction tools. We also report the creation of an automated evaluation pipeline to facilitate the analysis of future RNA structure prediction exercises.
Collapse
Affiliation(s)
- José Almeida Cruz
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Marc-Frédérick Blanchet
- Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Michal Boniecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Shi-Jie Chen
- Department of Physics and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Song Cao
- Department of Physics and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Rhiju Das
- Department of Biochemistry
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Feng Ding
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Samuel Coulbourn Flores
- Computational & Systems Biology Program, Institute for Cell and Molecular Biology, Uppsala University, 751 05 Uppsala, Sweden
| | - Lili Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Christopher A. Lavender
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Véronique Lisi
- Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - François Major
- Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Katarzyna Mikolajczak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Anna Philips
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Tomasz Puton
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - John Santalucia
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
- DNA Software, Ann Arbor, Michigan 48104, USA
| | | | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | - Kristian Rother
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Magdalena Rother
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Alexander Serganov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Marcin Skorupski
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Tomasz Soltysinski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Parin Sripakdeevong
- Department of Biochemistry
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Irina Tuszynska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Christina Waldsich
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Vienna 1030, Austria
| | - Michael Wildauer
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Vienna 1030, Austria
| | - Neocles B. Leontis
- Department of Chemistry and Center for Biomolecular Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
- Corresponding author.E-mail .
| |
Collapse
|
19
|
Lim GF, Merz GE, McCann MD, Gruskiewicz JM, Serra MJ. Stability of single-nucleotide bulge loops embedded in a GAAA RNA hairpin stem. RNA (NEW YORK, N.Y.) 2012; 18:807-14. [PMID: 22345128 PMCID: PMC3312567 DOI: 10.1261/rna.028308.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 12/11/2011] [Indexed: 05/24/2023]
Abstract
Forty-six RNA hairpins containing combinations of 3' or 5' bulge loops and a 3' or 5' fluorescein label were optically melted in 1 M NaCl, and the thermodynamic parameters ΔH°, ΔS°, ΔG°(37), and T(M) for each hairpin were determined. The bulge loops were of the group I variety, in which the identity of the bulge is known, and the group II variety, in which the bulged nucleotide is identical to one of its nearest neighbors, leading to ambiguity as to the exact position of the bulge. The fluorescein label at either the 3' end or 5' end of the hairpin did not significantly influence the stability of the hairpin. As observed with bulge loops inserted into a duplex motif, the insertion of a bulge loop into the stem of a hairpin loop was destabilizing. The model developed to predict the influence of bulge loops on the stability of duplex formation was extended to predict the influence of bulge loops on hairpin stability. Specifically, the influence of the bulge is related to the stability of the hairpin stem distal from the hairpin loop.
Collapse
Affiliation(s)
- Geoffrey F.S. Lim
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | - Gregory E. Merz
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | - Michael D. McCann
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | | | - Martin J. Serra
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| |
Collapse
|
20
|
Vanegas PL, Horwitz TS, Znosko BM. Effects of non-nearest neighbors on the thermodynamic stability of RNA GNRA hairpin tetraloops. Biochemistry 2012; 51:2192-8. [PMID: 22329761 DOI: 10.1021/bi300008j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Currently, several models for predicting the secondary structure of RNA exist, one of which is free energy minimization using the Nearest Neighbor Model. This model predicts the lowest-free energy secondary structure from a primary sequence by summing the free energy contributions of the Watson-Crick nearest neighbor base pair combinations and any noncanonical secondary structure motif. The Nearest Neighbor Model also assumes that the free energy of the secondary structure motif is dependent solely on the identities of the nucleotides within the motif and the motif's nearest neighbors. To test the current assumption of the Nearest Neighbor Model that the non-nearest neighbors do not affect the stability of the motif, we optically melted different stem-loop oligonucleotides to experimentally determine their thermodynamic parameters. In each of these oligonucleotides, the hairpin loop sequence and the adjacent base pairs were held constant, while the first or second non-nearest neighbors were varied. The experimental results show that the thermodynamic contributions of the hairpin loop were dependent upon the identity of the first non-nearest neighbor, while the second non-nearest neighbor had a less obvious effect. These results were then used to create an updated model for predicting the thermodynamic contributions of a hairpin loop to the overall stability of the stem-loop structure.
Collapse
Affiliation(s)
- Pamela L Vanegas
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, United States
| | | | | |
Collapse
|
21
|
McCann MD, Lim GFS, Manni ML, Estes J, Klapec KA, Frattini GD, Knarr RJ, Gratton JL, Serra MJ. Non-nearest-neighbor dependence of the stability for RNA group II single-nucleotide bulge loops. RNA (NEW YORK, N.Y.) 2011; 17:108-19. [PMID: 21088109 PMCID: PMC3004052 DOI: 10.1261/rna.2306911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 10/23/2010] [Indexed: 05/24/2023]
Abstract
Thirty-one RNA duplexes containing single-nucleotide bulge loops were optically melted in 1 M NaCl, and the thermodynamic parameters ΔH°, ΔS°, ΔG°(37), and T(M) for each sequence were determined. The bulge loops were of the group II variety, where the bulged nucleotide is identical to one of its nearest neighbors, leading to ambiguity as to the exact position of the bulge. The data were used to develop a model to predict the free energy of an RNA duplex containing a single-nucleotide bulge. The destabilization of the duplex by the bulge was primarily related to the stability of the stems adjacent to the bulge. Specifically, there was a direct correlation between the destabilization of the duplex and the stability of the less stable duplex stem. Since there is an ambiguity of the bulge position for group II bulges, several different stem combinations are possible. The destabilization of group II bulge loops is similar to the destabilization of group I bulge loops, if the second least stable stem is used to predict the influence of the group II bulge. In-line structure probing of the group II bulge loop embedded in a hairpin indicates that the bulged nucleotide is the one positioned farther from the hairpin loop.
Collapse
Affiliation(s)
- Michael D McCann
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Andronescu M, Condon A, Hoos HH, Mathews DH, Murphy KP. Computational approaches for RNA energy parameter estimation. RNA (NEW YORK, N.Y.) 2010; 16:2304-18. [PMID: 20940338 PMCID: PMC2995392 DOI: 10.1261/rna.1950510] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Methods for efficient and accurate prediction of RNA structure are increasingly valuable, given the current rapid advances in understanding the diverse functions of RNA molecules in the cell. To enhance the accuracy of secondary structure predictions, we developed and refined optimization techniques for the estimation of energy parameters. We build on two previous approaches to RNA free-energy parameter estimation: (1) the Constraint Generation (CG) method, which iteratively generates constraints that enforce known structures to have energies lower than other structures for the same molecule; and (2) the Boltzmann Likelihood (BL) method, which infers a set of RNA free-energy parameters that maximize the conditional likelihood of a set of reference RNA structures. Here, we extend these approaches in two main ways: We propose (1) a max-margin extension of CG, and (2) a novel linear Gaussian Bayesian network that models feature relationships, which effectively makes use of sparse data by sharing statistical strength between parameters. We obtain significant improvements in the accuracy of RNA minimum free-energy pseudoknot-free secondary structure prediction when measured on a comprehensive set of 2518 RNA molecules with reference structures. Our parameters can be used in conjunction with software that predicts RNA secondary structures, RNA hybridization, or ensembles of structures. Our data, software, results, and parameter sets in various formats are freely available at http://www.cs.ubc.ca/labs/beta/Projects/RNA-Params.
Collapse
Affiliation(s)
- Mirela Andronescu
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
23
|
Sheehy JP, Davis AR, Znosko BM. Thermodynamic characterization of naturally occurring RNA tetraloops. RNA (NEW YORK, N.Y.) 2010; 16:417-29. [PMID: 20047989 PMCID: PMC2811670 DOI: 10.1261/rna.1773110] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 11/04/2009] [Indexed: 05/24/2023]
Abstract
Although tetraloops are one of the most frequently occurring secondary structure motifs in RNA, less than one-third of the 30 most frequently occurring RNA tetraloops have been thermodynamically characterized. Therefore, 24 stem-loop sequences containing common tetraloops were optically melted, and the thermodynamic parameters DeltaH degrees , DeltaS degrees , DeltaG degrees (37,) and T(M) for each stem-loop were determined. These new experimental values, on average, are 0.7 kcal/mol different from the values predicted for these tetraloops using the model proposed by Vecenie CJ, Morrow CV, Zyra A, Serra MJ. 2006. Biochemistry 45: 1400-1407. The data for the 24 tetraloops reported here were then combined with the data for 28 tetraloops that were published previously. A new model, independent of terminal mismatch data, was derived to predict the free energy contribution of previously unmeasured tetraloops. The average absolute difference between the measured values and the values predicted using this proposed model is 0.4 kcal/mol. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA stem-loops containing tetraloops and, furthermore, should allow for improved prediction of secondary structure from sequence. It was also shown that tetraloops within the sequence 5'-GCCNNNNGGC-3' are, on average, 0.6 kcal/mol more stable than the same tetraloop within the sequence 5'-GGCNNNNGCC-3'. More systemic studies are required to determine the full extent of non-nearest-neighbor effects on tetraloop stability.
Collapse
Affiliation(s)
- Justin P Sheehy
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, USA
| | | | | |
Collapse
|
24
|
Folding of electrostatically charged beads-on-a-string as an experimental realization of a theoretical model in polymer science. Proc Natl Acad Sci U S A 2009; 106:17644-9. [PMID: 19805062 DOI: 10.1073/pnas.0905533106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The "beads-on-a-string" model for folding of polymers is a cornerstone of theoretical polymer science. This communication describes a physical model of beads-on-a-string, based on the folding of flexible strings of electrostatically charged beads in two dimensions. The system comprises millimeter-scale Teflon and Nylon-6,6 (spherical or cylindrical) beads (approximately 6 mm in diameter) separated by smaller (approximately 3 mm) poly(methyl methacrylate) (PMMA) spherical beads, threaded on a flexible string. The smaller, uncharged beads define the distances between the larger beads, and control the flexibility of the string. During agitation of the sequence of beads on a planar, horizontal paper surface, tribocharging generates opposite electrostatic charges on the larger Nylon and Teflon beads, but leaves the smaller PMMA beads essentially uncharged; the resulting electrostatic interactions cause the string to fold. Examination and comparison of two models--one physical and one theoretical--may offer a new approach to understanding folding, collapse, and molecular recognition at an abstract level, with particular opportunity to explore the influence of the flexibility of the string and the shape of the beads on the pattern and rate of folding. The physical system is, thus, an analog computer, simulating the theoretical beads-on-a-string model in two dimensions; this system makes it possible to test hypotheses connecting "sequence" to "folding", rapidly and conveniently, while exploring nonlinearities and other complexities omitted from the theoretical model.
Collapse
|
25
|
Clanton-Arrowood K, McGurk J, Schroeder SJ. 3' terminal nucleotides determine thermodynamic stabilities of mismatches at the ends of RNA helices. Biochemistry 2009; 47:13418-27. [PMID: 19053257 DOI: 10.1021/bi801594k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermodynamic stabilities of consecutive mismatches at the ends of RNA helices are determined by the 3' terminal nucleotides. More than 40 RNA duplexes containing terminal motifs of 3 or more nucleotides were studied by optical melting experiments. Up to three noncanonical pairs of nucleotides at the end of RNA helices provide additional thermodynamic stability. 3' nucleotides contribute more stability than 5' nucleotides, and purines contribute more stability than pyrimidines. The additional stability of a second or third 3' nucleotide stacking on a purine is the same for both dangling ends and consecutive terminal mismatches. Current predictions underestimate RNA duplex stabilities with terminal motifs by 1.4 kcal/mol on average, which is an order of magnitude in a binding constant at 37 degrees C. Accurate thermodynamic parameters for these terminal motifs will contribute to improvements in RNA secondary structure predictions, identification of microRNA targets, and design of siRNA therapeutics with fewer off-target effects.
Collapse
Affiliation(s)
- Koree Clanton-Arrowood
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, Oklahoma 73019, USA
| | | | | |
Collapse
|
26
|
Chatelain G, Brisset H, Chaix C. A thermodynamic study of ferrocene modified hairpin oligonucleotides upon duplex formation: applications to the electrochemical detection of DNA. NEW J CHEM 2009. [DOI: 10.1039/b817057f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Miller S, Jones LE, Giovannitti K, Piper D, Serra MJ. Thermodynamic analysis of 5' and 3' single- and 3' double-nucleotide overhangs neighboring wobble terminal base pairs. Nucleic Acids Res 2008; 36:5652-9. [PMID: 18765476 PMCID: PMC2553593 DOI: 10.1093/nar/gkn525] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Thermodynamic parameters are reported for duplex formation of 40 self-complementary RNA duplexes containing wobble terminal base pairs with all possible 3′ single and double-nucleotide overhangs, mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest neighbor analysis, the addition of a single 3′ dangling nucleotide increases the stability of duplex formation up to 1 kcal/mol in a sequence-dependent manner. The addition of a second dangling nucleotide increases the stability of duplexes closed with wobble base pairs in an idiosyncratic manner. The results allow for the development of a nearest neighbor model, which improves the predication of free energy and melting temperature for duplexes closed by wobble base pairs with 3′ single or double-nucleotide overhangs. Phylogenetic analysis of naturally occurring miRNAs was performed. Selection of the effector miR strand of the mature miRNA duplex appears to be dependent on the orientation of the GU closing base pair rather than the identity of the 3′ double-nucleotide overhang. Thermodynamic parameters for the 5′ single terminal overhangs adjacent to wobble closing base pairs are also presented.
Collapse
Affiliation(s)
- Stacy Miller
- Department of Chemistry, Allegheny College, 520 N. Main St, Meadville, PA 16335, USA
| | | | | | | | | |
Collapse
|
28
|
Bevilacqua PC, Blose JM. Structures, kinetics, thermodynamics, and biological functions of RNA hairpins. Annu Rev Phys Chem 2008; 59:79-103. [PMID: 17937599 DOI: 10.1146/annurev.physchem.59.032607.093743] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most RNA comprises one strand and therefore can fold back on itself to form complex structures. At the heart of these structures is the hairpin, which is composed of a stem having Watson-Crick base pairing and a loop wherein the backbone changes directionality. First, we review the structure of hairpins including diversity in the stem, loop, and closing base pair. The function of RNA hairpins in biology is discussed next, including roles for isolated hairpins, as well as hairpins in the context of complex tertiary structures. We describe the kinetics and thermodynamics of hairpin folding including models for hairpin folding, folding transition states, and the cooperativity of folding. Lastly, we discuss some ways in which hairpins can influence the folding and function of tertiary structures, both directly and indirectly. RNA hairpins provide a simple means of controlling gene expression that can be understood in the language of physical chemistry.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
29
|
Blose JM, Manni ML, Klapec KA, Stranger-Jones Y, Zyra AC, Sim V, Griffith CA, Long JD, Serra MJ. Non-nearest-neighbor dependence of the stability for RNA bulge loops based on the complete set of group I single-nucleotide bulge loops. Biochemistry 2007; 46:15123-35. [PMID: 18047298 PMCID: PMC2537471 DOI: 10.1021/bi700736f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fifty-nine RNA duplexes containing single-nucleotide bulge loops were optically melted in 1 M NaCl, and the thermodynamic parameters DeltaH degrees, DeltaS degrees, DeltaG 37 degrees, and TM for each sequence were determined. Sequences from this study were combined with sequences from previous studies [Longfellow, C. E., et al. (1990) Biochemistry 29, 278-285; Znosko, B. M., et al. (2002) Biochemistry 41, 10406-10417], thus examining all possible group I single-nucleotide bulge loop and nearest-neighbor sequence combinations. The free energy increments at 37 degrees C for the introduction of a group I single-nucleotide bulge loop range between 1.3 and 5.2 kcal/mol. The combined data were used to develop a model for predicting the free energy of a RNA duplex containing a single-nucleotide bulge. For bulge loops with adjacent Watson-Crick base pairs, neither the identity of the bulge nor the nearest-neighbor base pairs had an effect on the influence of the bulge loop on duplex stability. The proposed model for prediction of the stability of a duplex containing a bulged nucleotide was primarily affected by non-nearest-neighbor interactions. The destabilization of the duplex by the bulge was related to the stability of the stems adjacent to the bulge. Specifically, there was a direct correlation between the destabilization of the duplex and the stability of the less stable duplex stem. The stability of a duplex containing a bulged nucleotide adjacent to a wobble base pair also was primarily affected by non-nearest-neighbor interactions. Again, there was a direct correlation between the destabilization of the duplex and the stability of the less stable duplex stem. However, when one or both of the bulge nearest neighbors was a wobble base pair, the free energy increment for insertion of a bulge loop is dependent upon the position and orientation of the wobble base pair relative the bulged nucleotide. Bulge sequences of the type ((5'UBX)(3'GY)), ((5'GBG)(3'UU)) and ((5'UBU)(3'GG)) are less destabilizing by 0.6 kcal/mol, and bulge sequences of the type ((5'GBX)(3'UY)) and ((5'XBU)(3'YG)) are more destabilizing by 0.4 kcal/mol than bulge loops adjacent to Watson-Crick base pairs.
Collapse
Affiliation(s)
- Joshua M. Blose
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville PA 16335 U.S.A., Phone # 814-332-5356, Fax# 814-332-2789,
| | - Michelle L. Manni
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville PA 16335 U.S.A., Phone # 814-332-5356, Fax# 814-332-2789,
| | - Kelly A. Klapec
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville PA 16335 U.S.A., Phone # 814-332-5356, Fax# 814-332-2789,
| | - Yukiko Stranger-Jones
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville PA 16335 U.S.A., Phone # 814-332-5356, Fax# 814-332-2789,
| | - Allison C. Zyra
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville PA 16335 U.S.A., Phone # 814-332-5356, Fax# 814-332-2789,
| | - Vasiliy Sim
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville PA 16335 U.S.A., Phone # 814-332-5356, Fax# 814-332-2789,
| | - Chad A. Griffith
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville PA 16335 U.S.A., Phone # 814-332-5356, Fax# 814-332-2789,
| | - Jason D. Long
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville PA 16335 U.S.A., Phone # 814-332-5356, Fax# 814-332-2789,
| | - Martin J. Serra
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville PA 16335 U.S.A., Phone # 814-332-5356, Fax# 814-332-2789,
| |
Collapse
|
30
|
Chen G, Wen JD, Tinoco I. Single-molecule mechanical unfolding and folding of a pseudoknot in human telomerase RNA. RNA (NEW YORK, N.Y.) 2007; 13:2175-88. [PMID: 17959928 PMCID: PMC2080604 DOI: 10.1261/rna.676707] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
RNA unfolding and folding reactions in physiological conditions can be facilitated by mechanical force one molecule at a time. By using force-measuring optical tweezers, we studied the mechanical unfolding and folding of a hairpin-type pseudoknot in human telomerase RNA in a near-physiological solution, and at room temperature. Discrete two-state folding transitions of the pseudoknot are seen at approximately 10 and approximately 5 piconewtons (pN), with ensemble rate constants of approximately 0.1 sec(-1), by stepwise force-drop experiments. Folding studies of the isolated 5'-hairpin construct suggested that the 5'-hairpin within the pseudoknot forms first, followed by formation of the 3'-stem. Stepwise formation of the pseudoknot structure at low forces are in contrast with the one-step unfolding at high forces of approximately 46 pN, at an average rate of approximately 0.05 sec(-1). In the constant-force folding trajectories at approximately 10 pN and approximately 5 pN, transient formation of nonnative structures were observed, which is direct experimental evidence that folding of both the hairpin and pseudoknot takes complex pathways. Possible nonnative structures and folding pathways are discussed.
Collapse
Affiliation(s)
- Gang Chen
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
31
|
Lu ZJ, Turner DH, Mathews DH. A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation. Nucleic Acids Res 2006; 34:4912-24. [PMID: 16982646 PMCID: PMC1635246 DOI: 10.1093/nar/gkl472] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A complete set of nearest neighbor parameters to predict the enthalpy change of RNA secondary structure formation was derived. These parameters can be used with available free energy nearest neighbor parameters to extend the secondary structure prediction of RNA sequences to temperatures other than 37°C. The parameters were tested by predicting the secondary structures of sequences with known secondary structure that are from organisms with known optimal growth temperatures. Compared with the previous set of enthalpy nearest neighbor parameters, the sensitivity of base pair prediction improved from 65.2 to 68.9% at optimal growth temperatures ranging from 10 to 60°C. Base pair probabilities were predicted with a partition function and the positive predictive value of structure prediction is 90.4% when considering the base pairs in the lowest free energy structure with pairing probability of 0.99 or above. Moreover, a strong correlation is found between the predicted melting temperatures of RNA sequences and the optimal growth temperatures of the host organism. This indicates that organisms that live at higher temperatures have evolved RNA sequences with higher melting temperatures.
Collapse
Affiliation(s)
| | - Douglas H. Turner
- Department of Chemistry, University of RochesterBox 0216, Rochester, NY 14627, USA
| | - David H. Mathews
- To whom correspondence should be addressed. Tel: 1 585 275 1734; Fax: 1 585 275 6007;
| |
Collapse
|
32
|
O'Toole AS, Miller S, Haines N, Zink MC, Serra MJ. Comprehensive thermodynamic analysis of 3' double-nucleotide overhangs neighboring Watson-Crick terminal base pairs. Nucleic Acids Res 2006; 34:3338-44. [PMID: 16820533 PMCID: PMC1500867 DOI: 10.1093/nar/gkl428] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thermodynamic parameters are reported for duplex formation of 48 self-complementary RNA duplexes containing Watson-Crick terminal base pairs (GC, AU and UA) with all 16 possible 3' double-nucleotide overhangs; mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest-neighbor analysis, the addition of a second dangling nucleotide to a single 3' dangling nucleotide increases stability of duplex formation up to 0.8 kcal/mol in a sequence dependent manner. Results from this study in conjunction with data from a previous study [A. S. O'Toole, S. Miller and M. J. Serra (2005) RNA, 11, 512.] allows for the development of a refined nearest-neighbor model to predict the influence of 3' double-nucleotide overhangs on the stability of duplex formation. The model improves the prediction of free energy and melting temperature when tested against five oligomers with various core duplex sequences. Phylogenetic analysis of naturally occurring miRNAs was performed to support our results. Selection of the effector miR strand of the mature miRNA duplex appears to be dependent upon the identity of the 3' double-nucleotide overhang. Thermodynamic parameters for 3' single terminal overhangs adjacent to a UA pair are also presented.
Collapse
Affiliation(s)
| | | | | | | | - Martin J. Serra
- To whom correspondence should be addressed. Tel: +1 814 332 5356; Fax: +1 814 332 2789;
| |
Collapse
|
33
|
Kim J, Doose S, Neuweiler H, Sauer M. The initial step of DNA hairpin folding: a kinetic analysis using fluorescence correlation spectroscopy. Nucleic Acids Res 2006; 34:2516-27. [PMID: 16687657 PMCID: PMC1459409 DOI: 10.1093/nar/gkl221] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Conformational fluctuations of single-stranded DNA (ssDNA) oligonucleotides were studied in aqueous solution by monitoring contact-induced fluorescence quenching of the oxazine fluorophore MR121 by intrinsic guanosine residues (dG). We applied fluorescence correlation spectroscopy as well as steady-state and time-resolved fluorescence spectroscopy to analyze kinetics of DNA hairpin folding. We first characterized the reporter system by investigating bimolecular quenching interactions between MR121 and guanosine monophosphate in aqueous solution estimating rate constants, efficiency and stability for formation of quenched complexes. We then studied the kinetics of complex formation between MR121 and dG residues site-specifically incorporated in DNA hairpins. To uncover the initial steps of DNA hairpin folding we investigated complex formation in ssDNA carrying one or two complementary base pairs (dC–dG pairs) that could hybridize to form a short stem. Our data show that incorporation of a single dC–dG pair leads to non-exponential decays for opening and closing kinetics and reduces rate constants by one to two orders of magnitude. We found positive activation enthalpies independent of the number of dC–dG pairs. These results imply that the rate limiting step of DNA hairpin folding is not determined by loop dynamics, or by mismatches in the stem, but rather by interactions between stem and loop nucleotides.
Collapse
Affiliation(s)
| | - Sören Doose
- To whom correspondence should be addressed. Tel: +49 521 106 5440; Fax: +49 521 106 2958;
| | | | - Markus Sauer
- Correspondence may also be addressed to Markus Sauer. Tel: +49 521 106 5450; Fax: +49 521 106 2958;
| |
Collapse
|
34
|
O'Toole AS, Miller S, Serra MJ. Stability of 3' double nucleotide overhangs that model the 3' ends of siRNA. RNA (NEW YORK, N.Y.) 2005; 11:512-6. [PMID: 15769878 PMCID: PMC1370740 DOI: 10.1261/rna.7254905] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Thermodynamic parameters are reported for duplex formation in 1 M NaCl for 16 RNA sequences, each containing a core tetramer duplex, GGCC, and a 3' overhang consisting of two bases. The results indicate additional double-helical stability is conferred by the double 3' terminal overhang relative to the single 3' terminal overhang. A nearest-neighbor analysis of the data indicates that the free energy contribution at 37 degrees C of the second base in the double 3' terminal overhang varies from 0 to 0.7 kcal/mol. The second base in the 3' double overhang can contribute nearly the same stability to a duplex as a base pair or a 3' dangling overhang. Stability contribution of a dangling base, two nucleotides removed from the 3' end of a duplex, is dependent upon both the identity of the base as well as that of the dangling base that it neighbors. A second dangling base only increases the stability of the duplex when it is neighboring a 3' purine dangling nucleotide. Furthermore, a second dangling pyrimidine provides a greater contribution to duplex stability than a purine. A nearest-neighbor model was developed to predict the influence of 3' double overhang on the stability of duplex formation. The model improves the prediction of free energy and melting temperature when tested against six sequences with different core duplexes.
Collapse
Affiliation(s)
- Amanda S O'Toole
- Department of Chemistry, Allegheny College, 520 N. Main St., Meadville, PA 16335, USA
| | | | | |
Collapse
|
35
|
Thiviyanathan V, Yang Y, Kaluarachchi K, Rijnbrand R, Gorenstein DG, Lemon SM. High-resolution structure of a picornaviral internal cis-acting RNA replication element (cre). Proc Natl Acad Sci U S A 2004; 101:12688-93. [PMID: 15314212 PMCID: PMC515117 DOI: 10.1073/pnas.0403079101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Picornaviruses constitute a medically important family of RNA viruses in which genome replication critically depends on a small RNA element, the cis-acting replication element (cre), that templates 3D(pol) polymerase-catalyzed uridylylation of the protein primer for RNA synthesis, VPg. We report the solution structure of the 33-nt cre of human rhinovirus 14 under solution conditions optimal for uridylylation in vitro. The cre adopts a stem-loop conformation with an extended duplex stem supporting a novel 14-nt loop that derives stability from base-stacking interactions. Base-pair interactions are absent within the loop, and base substitutions within the loop that favor such interactions are detrimental to viral RNA replication. Conserved adenosines in the 5' loop sequence that participate in a slide-back mechanism of VPg-pUpU synthesis are oriented to the inside of the loop but are available for base templating during uridylation. The structure explains why substitutions of the 3' loop nucleotides have little impact on conformation of the critical 5' loop bases and accounts for wide variation in the sequences of cres from different enteroviruses and rhinoviruses.
Collapse
|
36
|
Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 2004; 101:7287-92. [PMID: 15123812 PMCID: PMC409911 DOI: 10.1073/pnas.0401799101] [Citation(s) in RCA: 1100] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Indexed: 11/18/2022] Open
Abstract
A dynamic programming algorithm for prediction of RNA secondary structure has been revised to accommodate folding constraints determined by chemical modification and to include free energy increments for coaxial stacking of helices when they are either adjacent or separated by a single mismatch. Furthermore, free energy parameters are revised to account for recent experimental results for terminal mismatches and hairpin, bulge, internal, and multibranch loops. To demonstrate the applicability of this method, in vivo modification was performed on 5S rRNA in both Escherichia coli and Candida albicans with 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate, dimethyl sulfate, and kethoxal. The percentage of known base pairs in the predicted structure increased from 26.3% to 86.8% for the E. coli sequence by using modification constraints. For C. albicans, the accuracy remained 87.5% both with and without modification data. On average, for these sequences and a set of 14 sequences with known secondary structure and chemical modification data taken from the literature, accuracy improves from 67% to 76%. This enhancement primarily reflects improvement for three sequences that are predicted with <40% accuracy on the basis of energetics alone. For these sequences, inclusion of chemical modification constraints improves the average accuracy from 28% to 78%. For the 11 sequences with <6% pseudoknotted base pairs, structures predicted with constraints from chemical modification contain on average 84% of known canonical base pairs.
Collapse
Affiliation(s)
- David H Mathews
- Center for Human Genetics and Molecular Pediatric Disease, The Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 703, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
37
|
Iranzo O, Khalili H, Epstein DM, Morrow JR. Recruitment of divalent metal ions by incorporation of 4-thio-2'-deoxythymidine or 4-thio-2'-deoxyuridine into DNA. J Biol Inorg Chem 2004; 9:462-70. [PMID: 15118878 DOI: 10.1007/s00775-004-0545-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2003] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
The modified nucleosides 4-thio-2'-deoxyuridine (s4dU) and 4-thio-2'-deoxythymidine (s4dT) are incorporated into dinucleosides, and s4dT is incorporated into a DNA hairpin loop to provide divalent metal ion binding sites. Binding of two different metal ions to these sites is studied, including Cd(II) as an NMR spectroscopy probe and Cu(II) as a reactive metal ion for DNA cleavage. Binding of Cd(II) to 4-thiouridine (s4U) and s4dT nucleosides, s4dU- and s4dT-containing dinucleosides, and a hairpin loop oligonucleotide containing s4dT is monitored by following the change in UV-vis absorbance of the thionucleosides at 340 nm and 21 degrees C in solutions containing 20.0-40 mM buffer, 1.00 M NaCl, and 15.0 mM BaCl2. Cd(II) binds to the N3 deprotonated form of s4dT with a binding constant (K = 1.1 x 10(4) M(-1)) that is similar to that for Cd(II) binding to d(Tps4T) (K = 9.2 x 10(3) M(-1)). Apparent binding constants (Kapp) at pH 7.7 of Cd(II) to dinucleosides d(Gps4T), d(s4TpG), and d(Gps4U) are similar to those of their respective nucleosides s4U and s4dT, suggesting that neither the phosphate diester nor the second nucleoside has a major effect on Cd(II) binding. Binding of Cd(II) to s4U and d(Gps4U) is studied by use of 113Cd NMR and 1H NMR spectroscopy, respectively. Binding strength and stoichiometry of the Cd(II) complex with d(Gps4U) as studied by 1H NMR spectroscopy are similar to that obtained by UV-vis spectroscopy. Cd(II) binds strongly to s4dT in the loop portion of a DNA hairpin loop (Kapp = 2.7 x 10(3) M(-1) at pH 7.7). However, the hairpin loop is moderately destabilized by Cd(II) binding, with a decrease in T(m) of 14 degrees C in the presence of 10.0 mM Cd(II) as determined by optical melting experiments. Cu(II) oxidizes s4dT to form the disulfide of s4dT, limiting the usefulness of further studies with Cu(II).
Collapse
Affiliation(s)
- Olga Iranzo
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | | | | | | |
Collapse
|
38
|
Serra MJ, Smolter PE, Westhof E. Pronounced instability of tandem IU base pairs in RNA. Nucleic Acids Res 2004; 32:1824-8. [PMID: 15037659 PMCID: PMC390343 DOI: 10.1093/nar/gkh501] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Optical melting was used to determine the stabilities of three series of RNA oligomers containing tandem XU base pairs, GGCXUGCC (5'XU3'), GGCUXGCC (5'UX3') and GGCXXGGC/CCGUUCCG (5'XX3'), where X is either A, G or I (inosine). The helices containing tandem AU base pairs were the most stable in the first two series (5'XU3' and 5'UX3'), with an average melting temperature approximately 11 degrees C higher than the helices with tandem 5'GU3' base pairs and 25 degrees C higher than the helices with tandem 5'IU3' base pairs. For the third series (5'XX3'), the helix containing tandem GG is the most stable, with an average melting temperature approximately 2 degrees C higher than the helix with tandem AA base pairs and approximately 24 degrees C higher than the helix with tandem II base pairs. The thermodynamic stability of the oligomers with tandem IU base pairs was also investigated as a function of magnesium ion concentration. As with normal A-U or G-U tandem duplexes, the data could best be interpreted as non-specific binding of magnesium ions to the inosine-containing RNA oligonucleotides.
Collapse
Affiliation(s)
- Martin J Serra
- Department of Chemistry, Allegheny College, 520 N. Main St, Meadville, PA 16335, USA.
| | | | | |
Collapse
|
39
|
Pan Y, MacKerell AD. Altered structural fluctuations in duplex RNA versus DNA: a conformational switch involving base pair opening. Nucleic Acids Res 2004; 31:7131-40. [PMID: 14654688 PMCID: PMC291876 DOI: 10.1093/nar/gkg941] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA and RNA are known to have different structural properties. In the present study, molecular dynamics (MD) simulations on a series of RNA and DNA duplexes indicate differential structural flexibility for the two classes of oligonucleotides. In duplex RNA, multiple base pairs experienced local opening events into the major groove on the nanosecond time scale, while such events were not observed in the DNA simulations. Three factors are indicated to be responsible for the base opening events in RNA: solvent-base interactions, 2'OH(n)-O4'(n+1) intra-strand hydrogen bonding, and enhanced rigid body motion of RNA at the nucleoside level. Water molecules in the major groove of RNA contribute to initiation of base pair opening. Stabilization of the base pair open state is due to a 'conformational switch' comprised of 2'OH(n)-O4'(n+1) hydrogen bonding and a rigid body motion of the nucleoside moiety in RNA. This rigid body motion is associated with decreased flexibility of the glycosyl linkage and sugar moieties in A-form structures. The observed opening rates in RNA are consistent with the imino proton exchange experiments for AU base pairs, although not for GC base pairs, while structural and flexibility changes associated with the proposed conformational switch are consistent with survey data of RNA and DNA crystal structures. The possible relevance of base pair opening events in RNA to its many biological functions is discussed.
Collapse
Affiliation(s)
- Yongping Pan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|
40
|
Abstract
The energetics of small internal loops are important for prediction of RNA secondary and tertiary structure, selection of drug target sites, and understanding RNA structure-function relationships. Hydrogen bonding, base stacking, electrostatic interactions, backbone distortion, and base-pair size compatibility all contribute to the energetics of small internal loops. Thus, the sequence dependence of these energetics are idiosyncratic. Current approximations for predicting the free energies of internal loops consider size, asymmetry, closing base pairs, and the potential to form GA, GG, or UU pairs. The database of known three-dimensional structures allows for comparison with the models used for predicting stability from sequence.
Collapse
Affiliation(s)
- S J Schroeder
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY 14627-0216, USA
| | | | | |
Collapse
|
41
|
Gutell RR, Cannone JJ, Shang Z, Du Y, Serra MJ. A story: unpaired adenosine bases in ribosomal RNAs. J Mol Biol 2000; 304:335-54. [PMID: 11090278 DOI: 10.1006/jmbi.2000.4172] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 1985 an analysis of the Escherichia coli 16 S rRNA covariation-based structure model revealed a strong bias for unpaired adenosines. The same analysis revealed that the majority of the G, C, and U bases were paired. These biases are (now) consistent with the high percentage of unpaired adenosine nucleotides in several structure motifs. An analysis of a larger set of bacterial comparative 16 S and 23 S rRNA structure models has substantiated this initial finding and revealed new biases in the distribution of adenosine nucleotides in loop regions. The majority of the adenosine nucleotides are unpaired, while the majority of the G, C, and U bases are paired in the covariation-based structure model. The unpaired adenosine nucleotides predominate in the middle and at the 3' end of loops, and are the second most frequent nucleotide type at the 5' end of loops (G is the most common nucleotide). There are additional biases for unpaired adenosine nucleotides at the 3' end of loops and adjacent to a G at the 5' end of the helix. The most prevalent consecutive nucleotides are GG, GA, AG, and AA. A total of 70 % of the GG sequences are within helices, while more than 70 % of the AA sequences are unpaired. Nearly 50 % of the GA sequences are unpaired, and approximately one-third of the AG sequences are within helices while another third are at the 3' loop.5' helix junction. Unpaired positions with an adenosine nucleotide in more than 50 % of the sequences at the 3' end of 16 S and 23 S rRNA loops were identified and arranged into the A-motif categories XAZ, AAZ, XAG, AAG, and AAG:U, where G or Z is paired, G:U is a base-pair, and X is not an A and Z is not a G in more than 50 % of the sequences. These sequence motifs were associated with several structural motifs, such as adenosine platforms, E and E-like loops, A:A and A:G pairings at the end of helices, G:A tandem base-pairs, GNRA tetraloop hairpins, and U-turns.
Collapse
MESH Headings
- Adenosine/genetics
- Adenosine/metabolism
- Bacteria/genetics
- Base Composition
- Base Pairing
- Base Sequence
- Computational Biology
- Introns/genetics
- Molecular Sequence Data
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Sequence Alignment
- Software
Collapse
Affiliation(s)
- R R Gutell
- Institute for Cellular and Molecular Biology, University of Texas, 2500 Speedway, Austin, TX, 78712-1095, USA.
| | | | | | | | | |
Collapse
|
42
|
Morosyuk SV, Lee K, SantaLucia J, Cunningham PR. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides. J Mol Biol 2000; 300:113-26. [PMID: 10864503 DOI: 10.1006/jmbi.2000.3852] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleotides 680 to 710 of Escherichia coli 16 S rRNA form a distinct structural domain required for ribosome function. The goal of this study was to determine the functional significance of pairing interactions in the 690 region. Two different secondary structures were proposed for this hairpin, based on phylogenetic and chemical modification studies. To study the effect of pairing interactions in the 690 hairpin on ribosome function and to determine which of the proposed secondary structures is biologically significant, we performed an instant-evolution experiment in which the nine nucleotides that form the proposed base-pairs and dangling ends of the 690 stem were randomly mutated, and functional mutant combinations were selected. A total of 96 unique functional mutants were isolated, assayed in vivo, and sequenced. Analysis of these data revealed extensive base-pairing and stacking interactions among the mutated nucleotides. Formation of either a Watson-Crick base-pair or G.U pair between positions 688 and 699 is absolutely required for ribosome function. We also performed NMR studies of a 31-nucleotide RNA which indicate the formation of a functionally important base-pair between nucleotides 688 and 699. Formation of a second base-pair between positions 689 and 698, however, is not essential for ribosome function, but the level of ribosome function correlates with the predicted thermodynamic stability of the nucleotide pairs in these positions. The universally conserved positions G690 and U697 are generally portrayed as forming a G.U mismatch. Our data show co-variation between these positions, but do not support the hypothesis that the G690:U697 pair forms a wobble structure. NMR studies of model 14-nt and 31-nt RNAs support these findings and show that G690 and U697 are involved in unusual stacking interactions but do not form a wobble pair. Preliminary NMR structural analysis reveals that the loop portion of the 690 hairpin folds into a highly structured and novel conformation.
Collapse
Affiliation(s)
- S V Morosyuk
- Department of Chemistry Sciences, Wayne State University, Detroit, MI, 48202, USA
| | | | | | | |
Collapse
|
43
|
Abstract
The thermodynamics of RNA secondary structure formation in small model systems provides a database for predicting RNA structure from sequence. Methods for making these measurements are reviewed with emphasis on optical methods and treatment of experimental errors. Analysis of experimental results in terms of simple nearest-neighbor models is presented. Some measured sequence dependences of non-Watson-Crick motifs are discussed.
Collapse
Affiliation(s)
- J SantaLucia
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
44
|
Bibillo A, Figlerowicz M, Ziomek K, Kierzek R. The nonenzymatic hydrolysis of oligoribonucleotides. VII. Structural elements affecting hydrolysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:977-94. [PMID: 10893716 DOI: 10.1080/15257770008033037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Several elements of oligoribonucleotide structure are important for efficient hydrolysis. We have found that the following factors influence oligoribonucleotide hydrolysis: (i) single-stranded structure of RNA flanking the scissile phosphodiester bond, (ii) the substituent on atom C-5 of the uridine adjacent to the cleaved internucleotide bond, (iii) the position of the scissile UA phosphodiester bond within a hairpin loop, (iv) the concentration of formamide, urea, ethanol and sodium chloride.
Collapse
Affiliation(s)
- A Bibillo
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | |
Collapse
|
45
|
Patel DJ, Suri AK. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. J Biotechnol 2000; 74:39-60. [PMID: 10943571 DOI: 10.1016/s1389-0352(99)00003-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Through the use of in vitro selection techniques, a number of RNA aptamers have been selected for their ability to bind ligands with high affinity and specificity. The three-dimensional solution structures of a number of these complexes have been solved within the last 4 years. This review focuses on the structural characterization of the RNA aptamers bound to the cofactors FMN and AMP, the amino acids arginine and citrulline, the drug theophylline and the aminoglycoside antibiotic tobramycin in solution. Analysis of the structural features of these complexes allows the identification of molecular themes in RNA aptamer structure, recognition and discrimination.
Collapse
Affiliation(s)
- D J Patel
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
46
|
Mathews DH, Sabina J, Zuker M, Turner DH. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 1999; 288:911-40. [PMID: 10329189 DOI: 10.1006/jmbi.1999.2700] [Citation(s) in RCA: 2768] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An improved dynamic programming algorithm is reported for RNA secondary structure prediction by free energy minimization. Thermodynamic parameters for the stabilities of secondary structure motifs are revised to include expanded sequence dependence as revealed by recent experiments. Additional algorithmic improvements include reduced search time and storage for multibranch loop free energies and improved imposition of folding constraints. An extended database of 151,503 nt in 955 structures? determined by comparative sequence analysis was assembled to allow optimization of parameters not based on experiments and to test the accuracy of the algorithm. On average, the predicted lowest free energy structure contains 73 % of known base-pairs when domains of fewer than 700 nt are folded; this compares with 64 % accuracy for previous versions of the algorithm and parameters. For a given sequence, a set of 750 generated structures contains one structure that, on average, has 86 % of known base-pairs. Experimental constraints, derived from enzymatic and flavin mononucleotide cleavage, improve the accuracy of structure predictions.
Collapse
Affiliation(s)
- D H Mathews
- Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA
| | | | | | | |
Collapse
|
47
|
Gregory ST, Dahlberg AE. Mutations in the conserved P loop perturb the conformation of two structural elements in the peptidyl transferase center of 23 S ribosomal RNA. J Mol Biol 1999; 285:1475-83. [PMID: 9917390 DOI: 10.1006/jmbi.1998.2410] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence is presented for the participation of the P loop (nucleotides G2250-C2254) of 23 S rRNA in establishing the tertiary structure of the peptidyl transferase center. Single base substitutions were introduced into the P loop, which participates in peptide bond formation through direct interaction with the CCA end of P site-bound tRNA. These mutations altered the pattern of reactivity of RNA to chemical probes in a structural subdomain encompassing the P loop and extending roughly from G2238 to A2433. Most of the effects on chemical modification in the P loop subdomain occurred near sites of tertiary interactions inferred from comparative sequence analysis, indicating that these mutations perturb the tertiary structure of this region of RNA. Changes in chemical modification were also seen in a subdomain composed of the 2530 loop (nucleotides G2529-A2534) and the A loop (nucleotides U2552-C2556), the latter a site of interaction with the CCA end of A site-bound tRNA. Mutations in the P loop induced effects on chemical modification that were commensurate with the severity of their characterized functional defects in peptide bond formation, tRNA binding and translational fidelity. These results indicate that, in addition to its direct role in peptide bond formation, the P loop contributes to the tertiary structure of the peptidyl transferase center and influences the conformation of both the acceptor and peptidyl tRNA binding sites.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- Conserved Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Peptidyl Transferases/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- S T Gregory
- J. W. Wilson Laboratory Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | | |
Collapse
|
48
|
Klinck R, Sprules T, Gehring K. Structural characterization of three RNA hexanucleotide loops from the internal ribosome entry site of polioviruses. Nucleic Acids Res 1997; 25:2129-37. [PMID: 9153312 PMCID: PMC146728 DOI: 10.1093/nar/25.11.2129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Structural characteristics of three RNA hairpins from the internal ribosome entry site of poliovirus mRNAs have been determined in solution by NMR. Complete proton, phosphorus and carbon resonance assignments were made for the three 16 nt hairpins. The loop sequences, 5'-AAUCCA , AAACCA and GAACCA, have been shown to be essential for viral mRNA translation. NOESY spectra for the three oligomers were very similar indicating a common three dimensional structure. Stems were A-type duplexes with C3'-endo sugar pucker. In the loops, sequential base stacking interactions were detected for all bases except between U8/A8 and C9, indicating a turn in the phosphodiester backbone at this point. Only one nucleotide, U8/A8, had a sugar pucker which deviated appreciably from C3'-endo. The final base in the loop, A11, exhibited an unusual gauche (-) gamma angle. An ensemble of 10 structures calculated for one hairpin using restrained molecular dynamics shows that the first three bases of the loop are turned so as to be exposed to the exterior of the molecule, while the remaining three bases are in an orientation approximating a continuation of the stem helix. Structure calculations and NMR relaxation measurements indicate that the loop apex is subject to considerable local dynamics.
Collapse
Affiliation(s)
- R Klinck
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McIntyre Medical Science Building, McGill University, 3655 Drummond, Montréal, QC, H3G 1Y6, Canada
| | | | | |
Collapse
|
49
|
Lodmell JS, Gutell RR, Dahlberg AE. Genetic and comparative analyses reveal an alternative secondary structure in the region of nt 912 of Escherichia coli 16S rRNA. Proc Natl Acad Sci U S A 1995; 92:10555-9. [PMID: 7479839 PMCID: PMC40650 DOI: 10.1073/pnas.92.23.10555] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mutations at position 912 of Escherichia coli 16S rRNA result in two notable phenotypes. The C-->U transition confers resistance to streptomycin, a translational-error-inducing antibiotic, while a C-->G transversion causes marked retardation of cell growth rate. Starting with the slow-growing G912 mutant, random mutagenesis was used to isolate a second site mutation that restored growth nearly to the wild-type rate. The second site mutation was identified as a G-->C transversion at position 885 in 16S rRNA. Cells containing the G912 mutation had an increased doubling time, abnormal sucrose gradient ribosome/subunit profile, increased sensitivity to spectinomycin, dependence upon streptomycin for growth in the presence of spectinomycin, and slower translation rate, whereas cells with the G912/C885 double mutation were similar to wild type in these assays. Comparative analysis showed there was significant covariation between positions 912 and 885. Thus the second-site suppressor analysis, the functional assays, and the comparative data suggest that the interaction between nt 912 and nt 885 is conserved and necessary for normal ribosome function. Furthermore, the comparative data suggest that the interaction extends to include G885-G886-G887 pairing with C912-U911-C910. An alternative secondary structure element for the central domain of 16S rRNA is proposed.
Collapse
Affiliation(s)
- J S Lodmell
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
50
|
Affiliation(s)
- M J Serra
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | | |
Collapse
|