1
|
Li Y, Guo Z, Jin L, Wang D, Gao Z, Su X, Hou H, Dong Y. Mechanism of the allosteric regulation of Streptococcus mutans 2'-deoxycytidylate deaminase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:883-91. [PMID: 27377385 DOI: 10.1107/s2059798316009153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/07/2016] [Indexed: 01/24/2023]
Abstract
In cells, dUMP is the intermediate precursor of dTTP in its synthesis during deoxynucleotide metabolism. In Gram-positive bacteria and eukaryotes, zinc-dependent deoxycytidylate deaminases (dCDs) catalyze the conversion of dCMP to dUMP. The activity of dCD is allosterically activated by dCTP and inhibited by dTTP. Here, the crystal structure of Streptococcus mutans dCD (SmdCD) complexed with dTTP is presented at 2.35 Å resolution, thereby solving the first pair of activator-bound and inhibitor-bound structures from the same species to provide a more definitive description of the allosteric mechanism. In contrast to the dTTP-bound dCD from the bacteriophage S-TIM5 (S-TIM5-dCD), dTTP-bound SmdCD adopts an inactive conformation similar to the apo form. A structural comparison suggests that the distinct orientations of the triphosphate group in S-TIM5-dCD and SmdCD are a result of the varying protein binding environment. In addition, calorimetric data establish that the modulators bound to dCD can be mutually competitively replaced. The results reveal the mechanism underlying its regulator-specific activity and might greatly enhance the understanding of the allosteric regulation of other dCDs.
Collapse
Affiliation(s)
- Yanhua Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhen Guo
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, YiXueYuanlu-1, Chongqing, People's Republic of China
| | - Li Jin
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, YiXueYuanlu-1, Chongqing, People's Republic of China
| | - Deqiang Wang
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, YiXueYuanlu-1, Chongqing, People's Republic of China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaodong Su
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Science, Peking University, Beijing 100871, People's Republic of China
| | - Haifeng Hou
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
2
|
Bacillus halodurans Strain C125 Encodes and Synthesizes Enzymes from Both Known Pathways To Form dUMP Directly from Cytosine Deoxyribonucleotides. Appl Environ Microbiol 2015; 81:3395-404. [PMID: 25746996 DOI: 10.1128/aem.00268-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022] Open
Abstract
Analysis of the genome of Bacillus halodurans strain C125 indicated that two pathways leading from a cytosine deoxyribonucleotide to dUMP, used for dTMP synthesis, were encoded by the genome of the bacterium. The genes that were responsible, the comEB gene and the dcdB gene, encoding dCMP deaminase and the bifunctional dCTP deaminase:dUTPase (DCD:DUT), respectively, were both shown to be expressed in B. halodurans, and both genes were subject to repression by the nucleosides thymidine and deoxycytidine. The latter nucleoside presumably exerts its repression after deamination by cytidine deaminase. Both comEB and dcdB were cloned, overexpressed in Escherichia coli, and purified to homogeneity. Both enzymes were active and displayed the expected regulatory properties: activation by dCTP for dCMP deaminase and dTTP inhibition for both enzymes. Structurally, the B. halodurans enzyme resembled the Mycobacterium tuberculosis enzyme the most. An investigation of sequenced genomes from other species of the genus Bacillus revealed that not only the genome of B. halodurans but also the genomes of Bacillus pseudofirmus, Bacillus thuringiensis, Bacillus hemicellulosilyticus, Bacillus marmarensis, Bacillus cereus, and Bacillus megaterium encode both the dCMP deaminase and the DCD:DUT enzymes. In addition, eight dcdB homologs from Bacillus species within the genus for which the whole genome has not yet been sequenced were registered in the NCBI Entrez database.
Collapse
|
3
|
Marx A, Alian A. The first crystal structure of a dTTP-bound deoxycytidylate deaminase validates and details the allosteric-inhibitor binding site. J Biol Chem 2014; 290:682-90. [PMID: 25404739 DOI: 10.1074/jbc.m114.617720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deoxycytidylate deaminase is unique within the zinc-dependent cytidine deaminase family as being allosterically regulated, activated by dCTP, and inhibited by dTTP. Here we present the first crystal structure of a dTTP-bound deoxycytidylate deaminase from the bacteriophage S-TIM5, confirming that this inhibitor binds to the same site as the dCTP activator. The molecular details of this structure, complemented by structures apo- and dCMP-bound, provide insights into the allosteric mechanism. Although the positioning of the nucleoside moiety of dTTP is almost identical to that previously described for dCTP, protonation of N3 in deoxythymidine and not deoxycytidine would facilitate hydrogen bonding of dTTP but not dCTP and may result in a higher affinity of dTTP to the allosteric site conferring its inhibitory activity. Further the functional group on C4 (O in dTTP and NH2 in dCTP) makes interactions with nonconserved protein residues preceding the allosteric motif, and the relative strength of binding to these residues appears to correspond to the potency of dTTP inhibition. The active sites of these structures are also uniquely occupied by dTMP and dCMP resolving aspects of substrate specificity. The methyl group of dTMP apparently clashes with a highly conserved tyrosine residue, preventing the formation of a correct base stacking shown to be imperative for deamination activity. The relevance of these findings to the wider zinc-dependent cytidine deaminase family is also discussed.
Collapse
Affiliation(s)
- Ailie Marx
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 320003, Israel
| | - Akram Alian
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 320003, Israel
| |
Collapse
|
4
|
Crystal structures of Streptococcus mutans 2'-deoxycytidylate deaminase and its complex with substrate analog and allosteric regulator dCTP x Mg2+. J Mol Biol 2008; 377:220-31. [PMID: 18255096 DOI: 10.1016/j.jmb.2007.12.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 12/13/2007] [Accepted: 12/23/2007] [Indexed: 11/22/2022]
Abstract
2'-Deoxycytidylate deaminase [or deoxycytidine-5'-monophosphate (dCMP) deaminase, dCD] catalyzes the deamination of dCMP to deoxyuridine-5'-monophosphate to provide the main nucleotide substrate for thymidylate synthase, which is important in DNA synthesis. The activity of this homohexameric enzyme is allosterically regulated by deoxycytidine-5'-triphosphate (dCTP) as an activator and by deoxythymidine-5'-triphosphate as an inhibitor. In this article, we report the crystal structures of dCMP deaminase from Streptococcus mutans and its complex with dCTP and an intermediate analog at resolutions of 3.0 and 1.66 A. The protein forms a hexamer composed of subunits adopting a three-layer alpha/beta/alpha sandwich fold. The positive allosteric regulator dCTP mainly binds at the interface between two monomers in a molar ratio of 1:1 and rearranges the neighboring interaction networks. Structural comparisons and sequence alignments revealed that dCMP deaminase from Streptococcus mutans belongs to the cytidine deaminase superfamily, wherein the proteins exhibit a similar catalytic mechanism. In addition to the two conserved motifs involved in the binding of Zn(2+), a new conserved motif, (G(43)YNG(46)), related to the binding of dCTP was also identified. N-terminal Arg4, a key residue located between two monomers, binds strongly to the gamma phosphate group of dCTP. The regulation signal was transmitted by Arg4 from the allosteric site to the active site via modifications in the interactions at the interface where the substrate-binding pocket was involved and the relocations of Arg26, His65, Tyr120, and Arg121 to envelope the active site in order to stabilize substrate binding in the complex. Based on the enzyme-regulator complex structure observed in this study, we propose an allosteric mechanism for dCD regulation.
Collapse
|
5
|
Johansson E, Thymark M, Bynck JH, Fanø M, Larsen S, Willemoës M. Regulation of dCTP deaminase from Escherichia coli by nonallosteric dTTP binding to an inactive form of the enzyme. FEBS J 2007; 274:4188-98. [PMID: 17651436 DOI: 10.1111/j.1742-4658.2007.05945.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The trimeric dCTP deaminase produces dUTP that is hydrolysed to dUMP by the structurally closely related dUTPase. This pathway provides 70-80% of the total dUMP as a precursor for dTTP. Accordingly, dCTP deaminase is regulated by dTTP, which increases the substrate concentration for half-maximal activity and the cooperativity of dCTP saturation. Likewise, increasing concentrations of dCTP increase the cooperativity of dTTP inhibition. Previous structural studies showed that the complexes of inactive mutant protein, E138A, with dUTP or dCTP bound, and wild-type enzyme with dUTP bound were all highly similar and characterized by having an ordered C-terminal. When comparing with a new structure in which dTTP is bound to the active site of E138A, the region between Val120 and His125 was found to be in a new conformation. This and the previous conformation were mutually exclusive within the trimer. Also, the dCTP complex of the inactive H121A was found to have residues 120-125 in this new conformation, indicating that it renders the enzyme inactive. The C-terminal fold was found to be disordered for both new complexes. We suggest that the cooperative kinetics are imposed by a dTTP-dependent lag of product formation observed in presteady-state kinetics. This lag may be derived from a slow equilibration between an inactive and an active conformation of dCTP deaminase represented by the dTTP complex and the dUTP/dCTP complex, respectively. The dCTP deaminase then resembles a simple concerted system subjected to effector binding, but without the use of an allosteric site.
Collapse
Affiliation(s)
- Eva Johansson
- Centre for Crystallographic Studies, Department of Chemistry, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
6
|
McGaughey KM, Wheeler LJ, Moore JT, Maley GF, Maley F, Mathews CK. Protein-protein interactions involving T4 phage-coded deoxycytidylate deaminase and thymidylate synthase. J Biol Chem 1996; 271:23037-42. [PMID: 8798492 DOI: 10.1074/jbc.271.38.23037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The enzymes deoxycytidylate deaminase (EC) and thymidylate synthase (EC) are functionally associated with one another, since they catalyze sequential reactions. In T4 coliphage infection the two enzymes are found in dNTP synthetase, a multienzyme complex for deoxyribonucleotide biosynthesis. Protein-protein interactions involving the phage-coded forms of these two enzymes have been explored in three experiments that use the respective purified protein as an affinity ligand. First, an extract of radiolabeled T4 proteins was passed through a column of immobilized enzyme (either dTMP synthase or dCMP deaminase), and the specifically bound proteins were identified. Second, two mutant form of dCMP deaminase (H90N and H94N), altered in presumed zinc-binding sites, were analyzed similarly, with the results suggesting that some, but not all, interactions require normal structure near the catalytic site. Third, affinity chromatography using either enzyme as the immobilized ligand, revealed interactions between the two purified enzymes in the absence of other proteins. In these experiments we noted a significant effect of dCTP, an allosteric modifier of dCMP deaminase, upon the interactions.
Collapse
Affiliation(s)
- K M McGaughey
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7503, USA
| | | | | | | | | | | |
Collapse
|
7
|
Nucci R, Raia CA, Vaccaro C, Rossi M, Whitehead EP. Allosteric modifier and substrate binding of donkey deoxycytidylate aminohydrolase (EC 3.5.4.12). Arch Biochem Biophys 1991; 289:19-25. [PMID: 1898061 DOI: 10.1016/0003-9861(91)90436-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hexameric allosteric enzyme deoxycytidylate aminohydrolase from donkey spleen is shown by equilibrium dialysis to bind specifically the allosteric inhibitor, dTTP, the activator dCTP, and the substrate analog dAMP each at six sites (the dTTP and dCTP sites may or may not be identical). These conclusions contrast with earlier ones that there were four sites for each effector; reasons for the discrepancy are discussed. With the knowledge of site numbers and the kinetic information from the accompanying paper it is concluded that the kinetic cooperativity of the enzyme excludes a concerted conformational transition mechanism. Amino acid analysis gives a molecular weight of 18,842 Da per subunit, i.e., 113,052 for the hexamer. A new simplified purification of homogeneous enzyme from donkey spleen probably useful for dCMP aminohydrolase from other sources is described.
Collapse
Affiliation(s)
- R Nucci
- C.N.R., Institute of Protein Biochemistry and Enzymology, Napoli, Italy
| | | | | | | | | |
Collapse
|
8
|
Maley GF, Duceman BW, Wang AM, Martinez J, Maley F. Cloning, sequence analysis, and expression of the bacteriophage T4 cd gene. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40192-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
9
|
Maley F, Belfort M, Maley G. Probing the infra-structure of thymidylate synthase and deoxycytidylate deaminase. ADVANCES IN ENZYME REGULATION 1984; 22:413-30. [PMID: 6433661 DOI: 10.1016/0065-2571(84)90023-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Methods are described for preparing and structurally analyzing two enzymes involved in the formation of dTMP, deoxycytidylate deaminase and thymidylate synthase. In the latter case, it has been possible through the use of recombinant DNA techniques with an amplification plasmid to obtain sufficient amounts of the E. coli and T4-phage synthases to complete the entire sequence of both enzymes by employing a combination of protein and DNA sequencing methods. A comparative analysis of the L. casei and E. coli synthases has revealed a 62% conservation of sequences but an even greater homology in their hydrophobic active site regions (82%), which are primarily hydrophobic in nature. The homology between these enzymes becomes apparent by deleting a 51 amino acid segment (residues 89-139) from the L. casei synthase, which accounts for the difference in size between these enzymes. Methods for obtaining the binding sites of both substrates are described, one being the activation of the carboxyls of folate with a water soluble carbodiimide and the other, the activation of dUMP by ultraviolet light. The DNA and protein sequence of the T4-phage synthase has recently been clarified by us and is in preparation. Of great interest is the finding by Purohit and Mathews (42), based on our sequence data for the synthase, that the gene segment for the carboxyl terminal end of dihydrofolate reductase overlaps with the amino end of the gene for thymidylate synthase. The complete amino acid sequence of T2-phage deoxycytidylate deaminase has been elucidated by conventional protein sequencing methods. The binding characteristics of this enzyme for its positive allosteric effectors and substrates, as determined by equilibrium dialysis, are consistent with the cooperative nature of its kinetic responses. Consistent with these findings was the demonstration that each of the enzyme's six subunits bound an equivalent amount of substrate or allosteric modifier. Similarly the deaminase showed a marked negative change in ellipticity at 280 nm in response to increasing concentrations of dCTP, changes which could be reversed by dTTP. From the information on the enzyme's primary sequence, it should be possible to define the substrate and allosteric binding regions within the deaminase with the appropriately activated compounds. A start in this direction has been initiated by the finding that dTTP is rapidly and apparently covalently fixed to the amino terminal cyanogen bromide peptide of the enzyme in the presence of ultraviolet light.
Collapse
|
10
|
Maley GF, Guarino DU, Maley F. Complete amino acid sequence of an allosteric enzyme, T2 bacteriophage deoxycytidylate deaminase. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(20)82063-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
|