1
|
Affinity, Specificity, and Cooperativity of DNA Binding by Bacterial Gene Regulatory Proteins. Int J Mol Sci 2022; 23:ijms23010562. [PMID: 35008987 PMCID: PMC8745587 DOI: 10.3390/ijms23010562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Nearly all of biology depends on interactions between molecules: proteins with small molecules, proteins with other proteins, nucleic acids with small molecules, and nucleic acids with proteins that regulate gene expression, our concern in this Special Issue. All those kinds of interactions, and others, constitute the vast majority of biology at the molecular level. An understanding of those interactions requires that we quantify them to learn how they interact: How strongly? With which partners? How—and how well—are different partners distinguished? This review addresses the evolution of our current understanding of the molecular origins of affinity and specificity in regulatory protein–DNA interactions, and suggests that both these properties can be modulated by cooperativity.
Collapse
|
2
|
Gating in CNGA1 channels. Pflugers Arch 2009; 459:547-55. [PMID: 19898862 DOI: 10.1007/s00424-009-0751-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/14/2009] [Accepted: 10/16/2009] [Indexed: 01/07/2023]
Abstract
The aminoacid sequences of CNG and K(+) channels share a significant sequence identity, and it has been suggested that these channels have a common ancestral 3D architecture. However, K(+) and CNG channels have profoundly different physiological properties: indeed, K(+) channels have a high ionic selectivity, their gating strongly depends on membrane voltage and when opened by a steady depolarizing voltage several K(+) channels inactivate, whereas CNG channels have a low ion selectivity, their gating is poorly voltage dependent, and they do not desensitize in the presence of a steady concentration of cyclic nucleotides that cause their opening. The purpose of the present review is to summarize and recapitulate functional and structural differences between K(+) and CNG channels with the aim to understand the gating mechanisms of CNG channels.
Collapse
|
3
|
Reuter P, Koeppen K, Ladewig T, Kohl S, Baumann B, Wissinger B. Mutations in CNGA3 impair trafficking or function of cone cyclic nucleotide-gated channels, resulting in achromatopsia. Hum Mutat 2008; 29:1228-36. [PMID: 18521937 DOI: 10.1002/humu.20790] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CNGA3 encodes the A-subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel, which is a crucial component of the phototransduction cascade in cone outer segments. Mutations in the CNGA3 gene have been associated with complete and incomplete forms of achromatopsia (ACHR), a congenital, autosomal recessively inherited retinal disorder characterized by lack of color discrimination, reduced visual acuity, nystagmus, and photophobia. Here we report the identification of three novel CNGA3 missense mutations in ACHR patients: c.682G>A (p.E228 K), c.1315C>T (p.R439W), and c.1405G>A (p.A469 T), and the detailed functional analyses of these new as well as five previously reported mutations (R283Q, T291R, F547L, G557R, and E590 K), in conjunction with clinical data of patients carrying these mutations, to establish genotype-phenotype correlations. The functional characterization of mutant CNGA3 channels was performed with calcium imaging and patch clamp recordings in a heterologous HEK293 cell expression system. Results were corroborated by immunostaining and colocalization experiments of the channel protein with the plasma membrane. Several mutations evoked pronounced alterations of the apparent cGMP sensitivity of mutant channels. These functional defects were fully or partially compensated by coexpressing the mutant CNGA3 subunit with the wild-type CNGB3 subunit for channels with the mutations R439W, A469 T, F547L, and E590 K. We could show that several mutant channels with agonist dose-response relationships similar to the wild-type exhibited severely impaired membrane targeting. In addition, this study presents the positive effect of reduced cell culture temperature on surface expression and functional performance of mutant CNG channels with protein folding or trafficking defects.
Collapse
Affiliation(s)
- Peggy Reuter
- Centre for Ophthalmology, Institute for Ophthalmic Research, Molecular Genetics Laboratory, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
The role of loops 3 and 4 in the interdomains and intersubunits communication of E. coli cAMP receptor protein. Int J Biol Macromol 2008; 42:372-9. [PMID: 18328555 DOI: 10.1016/j.ijbiomac.2008.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 11/20/2022]
Abstract
Cyclic AMP serves as an intracellular messenger in cells and regulates a variety of biological functions by transmitting information through proteins. These proteins of different functions all consist of a cAMP-binding motif, and the structure of this motif is highly conserved with an exception of the loop 3 and 4. In current study, cAMP receptor protein was employed as a model system to investigate the function of the two loops. The results indicated that the loop 3 involves in the intersubunits communication of CRP, whereas the loop 4 involves in cAMP binding and interdomains communication.
Collapse
|
5
|
Zhou L, Olivier NB, Yao H, Young EC, Siegelbaum SA. A conserved tripeptide in CNG and HCN channels regulates ligand gating by controlling C-terminal oligomerization. Neuron 2005; 44:823-34. [PMID: 15572113 DOI: 10.1016/j.neuron.2004.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 09/28/2004] [Accepted: 11/03/2004] [Indexed: 12/17/2022]
Abstract
Cyclic nucleotides directly enhance the opening of the tetrameric CNG and HCN channels, although the mechanism remains unclear. We examined why HCN and certain CNG subunits form functional homomeric channels, whereas other CNG subunits only function in heteromeric channels. The "defect" in the CNGA4 subunit that prevents its homomeric expression was localized to its C-linker, which connects the transmembrane domain to the binding domain and contains a tripeptide that decreases the efficacy of ligand gating. Remarkably, replacement of the homologous HCN tripeptide with the CNGA4 sequence transformed cAMP into an inverse agonist that inhibits HCN channel opening. Using analytical ultracentrifugation, we identified the structural basis for this gating switch: whereas cAMP normally enhances the assembly of HCN C-terminal domains into a tetrameric gating ring, inclusion of the CNGA4 tripeptide reversed this action so that cAMP now causes gating ring disassembly. Thus, ligand gating depends on the dynamic oligomerization of C-terminal binding domains.
Collapse
Affiliation(s)
- Lei Zhou
- Center for Neurobiology and Behavior, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
6
|
Wu AY, Tang XB, Martinez SE, Ikeda K, Beavo JA. Molecular determinants for cyclic nucleotide binding to the regulatory domains of phosphodiesterase 2A. J Biol Chem 2004; 279:37928-38. [PMID: 15210692 DOI: 10.1074/jbc.m404287200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of cGMP to the GAF-B domain of phosphodiesterase 2A allosterically activates catalytic activity. We report here a series of mutagenesis studies on the GAF-B domain of PDE2A that support a novel mechanism for molecular recognition of cGMP. Alanine mutations of Phe-438, Asp-439, and Thr-488, amino acids that interact with the pyrimidine ring, decrease cGMP affinity slightly but increase cAMP affinity by up to 8-fold. Each interaction is required to provide for cAMP/cGMP specificity. Mutations of any of the residues that interact with the phosphate-ribose moiety or the imidazole ring abolish cGMP binding. Thus, residues that interact with the pyrimidine ring collectively control cAMP/cGMP specificity, whereas residues that bind the phosphate-ribose moiety and imidazole ring are critical for high affinity binding. Similar decreases in binding were found for mutations made in a bacterially expressed GAF-A/B plus catalytic domain construct. Because these constructs had very high catalytic activity, it appears that these mutations did not cause a global denaturation. The affinities of cAMP and cGMP for wild-type GAF-B alone were approximately 4-fold greater than for the holoenzyme, suggesting that the presence of neighboring domains alters the conformation of GAF-B. More importantly, the PDE2A GAF-B, GAF-A/B, GAF-A/B+C domains, and holoenzyme all bind cGMP with much higher affinity than has previously been reported. This high affinity suggests that cGMP binding to PDE2 GAF-B activates the enzyme rapidly, stoichiometrically, and in an all or none fashion, rather than variably over a large range of cyclic nucleotide concentrations.
Collapse
Affiliation(s)
- Albert Y Wu
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
7
|
Ulens C, Siegelbaum SA. Regulation of hyperpolarization-activated HCN channels by cAMP through a gating switch in binding domain symmetry. Neuron 2004; 40:959-70. [PMID: 14659094 DOI: 10.1016/s0896-6273(03)00753-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent X-ray structures show that the binding domains of tetrameric ligand-gated channels form either a 4-fold symmetric gating ring or a 2-fold symmetric dimer of dimers. To determine how such structures function to coordinate the binding of multiple ligands during channel activation, we examined the action of cAMP to enhance the opening of the hyperpolarization-activated HCN2 channels, whose cytoplasmic C terminus forms a gating ring in the presence of cAMP. Using tandem dimers and tetramers in which cAMP binding to selected HCN2 subunits was prevented by a point mutation or deletion, we provide the first direct determination of the energetic effects on gating of each of four ligand binding events and demonstrate the importance of the gating ring for cAMP regulation. We suggest that cAMP binding enhances channel opening by promoting assembly of the gating ring from an unliganded state in which the four subunits interact as a 2-fold symmetric dimer of dimers.
Collapse
Affiliation(s)
- Chris Ulens
- Center for Neurobiology and Behavior, Department of Pharmacology, Howard Hughes Medical Institute, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | | |
Collapse
|
8
|
Punta M, Cavalli A, Torre V, Carloni P. Molecular modeling studies on CNG channel from bovine retinal rod: a structural model of the cyclic nucleotide-binding domain. Proteins 2003; 52:332-8. [PMID: 12866047 DOI: 10.1002/prot.10324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A dimeric model of the cyclic nucleotide-binding domain of the all-alpha homomeric cyclic nucleotide-gated channel from bovine retinal rod is constructed. The model, based on the structure of the fairly homologous catabolite gene activator protein (Weber and Steitz, J Mol Biol 1987;198:311-326), is obtained by use of comparative modeling and molecular dynamics simulations. Our model provides a structural basis for the experimentally measured difference in activity between cAMP and cGMP, as well as the different solvent accessibilities of GLY597 in the complex with cGMP, with cAMP and in the protein in free state. In addition, it provides support for the rearrangement of the domain C helix on ligand binding and releasing proposed by Matulef et al. (Neuron 1999;24:443-452).
Collapse
Affiliation(s)
- Marco Punta
- International School for Advanced Studies, Trieste, Italy
| | | | | | | |
Collapse
|
9
|
Chen R, Lee JC. Functional roles of loops 3 and 4 in the cyclic nucleotide binding domain of cyclic AMP receptor protein from Escherichia coli. J Biol Chem 2003; 278:13235-43. [PMID: 12551924 DOI: 10.1074/jbc.m211551200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic AMP is a ubiquitous secondary message that regulates a large variety of functions. The protein structural motif that binds cAMP is highly conserved with the exception of loops 3 and 4, whose structure and length are variable. The cAMP receptor protein of Escherichia coli, CRP, was employed as a model system to elucidate the functional roles of these loops. Based on the sequence differences between CRP and cyclic nucleotide gated channel, three mutants of CRP were constructed: deletion (residues 54-56 in loop 3 were deleted), insertion (loop 4 was lengthened by 5 residues between Glu-78 and Gly-79) and double mutants. The effects of these mutations on the structure and function of CRP were monitored. Results show that the deletion and insertion mutations do not significantly change the secondary structure of CRP, although the tertiary and quaternary structures are perturbed. The functional data indicate that loop 3 modulates the binding affinities of cAMP and DNA. Although the lengthened loop 4 may have some fine-tuning functions, the specific function of the original loop 4 of CRP remains uncertain. The function consequences of mutation in loop 3 of CRP are similar to that of site A and site B in the regulatory subunits of cyclic AMP-dependent protein kinases. Thus, the roles played by loop 3 in CRP may represent a more common mechanism employed by cyclic nucleotide binding domain in modulating ligand binding affinity and intramolecular communication.
Collapse
Affiliation(s)
- Ran Chen
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-1055, USA
| | | |
Collapse
|
10
|
Mazzolini M, Punta M, Torre V. Movement of the C-helix during the gating of cyclic nucleotide-gated channels. Biophys J 2002; 83:3283-95. [PMID: 12496096 PMCID: PMC1302404 DOI: 10.1016/s0006-3495(02)75329-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Movements within the cyclic nucleotide-binding domain of cyclic nucleotide-gated channels are thought to underlie the initial phase of channel gating (Tibbs, G. R., D. T. Liu, B. G. Leypold, and S. A. Siegelbaum. 1998. J. Biol. Chem. 273:4497-4505; Zong, X., H. Zucker, F. Hofmann, and M. Biel. 1998. EMBO J. 17:353-362; Matulef, K., G. E. Flynn, and W. N. Zagotta. 1999. Neuron. 24:443-452; Paoletti, P., E. C. Young, and S. A. Siegelbaum. 1999. J. Gen. Physiol. 113:17-33; Johnson, J. P., and W. N. Zagotta. 2001. Nature. 412:917-921). To investigate these movements, cysteine mutation was performed on each of the 28 residues (Leu-583 to Asn-610), which span the agonist-binding domain of the alpha-subunit of the bovine rod cyclic nucleotide-gated channel. The effects of Cd(2+) ions, 2-trimethylammonioethylmethane thiosulfonate (MTSET) and copper phenanthroline (CuP) on channel activity were examined, in excised inside-out patches in the presence and in the absence of a saturating concentration of cGMP. The application of 100 microM Cd(2+) in the presence of saturating concentration of cGMP caused an irreversible and almost complete reduction of the current in mutant channels E594C, I600C, and L601C. In the absence of cGMP, the presence of 100 microM Cd(2+) caused a strong current reduction in all cysteine mutants from Asp-588 to Leu-607, with the exception of mutant channels A589C, M592C, M602C, K603C, and L606C. The selective effect of Cd(2+) ions was very similar to that observed when adding the oxidizing agent CuP to the bath medium, except for mutant channel G597C, where CuP caused a stronger current decrease (67 +/- 7%) than Cd(2+) (23 +/- 4%). In the absence of cGMP, MTSET caused a reduction of the current by >40% in mutant channels L607C, L601C, I600C, G597C, and E594C, whereas in the presence of cGMP only mutant channel L601C was affected. The application of MTSET protected many mutant channels from the effects of Cd(2+) and CuP. These results suggest that, when CNG channels are in the open state, residues from Asp-588 to Leu-607 are in an alpha-helical structure, homologous to the C-helix of the catabolite gene activator protein (Weber, I. T., and T. A. Steitz. 1987. J. Mol. Biol. 198:311-326). Furthermore, residues Glu-594, Gly-597, Ile-600, and Leu-601 of these helices belonging to two different subunits must be in close proximity. In the closed state the C-helices are in a different configuration and undergo significant fluctuations.
Collapse
Affiliation(s)
- Monica Mazzolini
- INFM Section and International School for Advanced Studies, via Beirut 2-4, I-34014 Trieste, Italy
| | | | | |
Collapse
|
11
|
Abstract
Cyclic nucleotide-gated (CNG) channels comprise four subunits and are activated by the direct binding of cyclic nucleotide to an intracellular domain on each subunit. This ligand binding domain is thought to contain a beta roll followed by two alpha helices, designated the B and C helices. To examine the quaternary structure of CNG channels and how it changes during ion channel gating, we introduced single cysteines along the C helix of each subunit in an otherwise cysteineless channel. We found that cysteines on the C helices could form intersubunit disulfide bonds, even between diagonal subunits. Disulfide bond formation occurred primarily in closed channels and inhibited channel opening. These data suggest that the C helices from all four channel subunits are in close proximity in the closed state and move apart during channel opening.
Collapse
Affiliation(s)
- Kimberly Matulef
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
12
|
Abstract
Cyclic nucleotide-gated (CNG) channels are nonselective cation channels first identified in retinal photoreceptors and olfactory sensory neurons (OSNs). They are opened by the direct binding of cyclic nucleotides, cAMP and cGMP. Although their activity shows very little voltage dependence, CNG channels belong to the superfamily of voltage-gated ion channels. Like their cousins the voltage-gated K+ channels, CNG channels form heterotetrameric complexes consisting of two or three different types of subunits. Six different genes encoding CNG channels, four A subunits (A1 to A4) and two B subunits (B1 and B3), give rise to three different channels in rod and cone photoreceptors and in OSNs. Important functional features of these channels, i.e., ligand sensitivity and selectivity, ion permeation, and gating, are determined by the subunit composition of the respective channel complex. The function of CNG channels has been firmly established in retinal photoreceptors and in OSNs. Studies on their presence in other sensory and nonsensory cells have produced mixed results, and their purported roles in neuronal pathfinding or synaptic plasticity are not as well understood as their role in sensory neurons. Similarly, the function of invertebrate homologs found in Caenorhabditis elegans, Drosophila, and Limulus is largely unknown, except for two subunits of C. elegans that play a role in chemosensation. CNG channels are nonselective cation channels that do not discriminate well between alkali ions and even pass divalent cations, in particular Ca2+. Ca2+ entry through CNG channels is important for both excitation and adaptation of sensory cells. CNG channel activity is modulated by Ca2+/calmodulin and by phosphorylation. Other factors may also be involved in channel regulation. Mutations in CNG channel genes give rise to retinal degeneration and color blindness. In particular, mutations in the A and B subunits of the CNG channel expressed in human cones cause various forms of complete and incomplete achromatopsia.
Collapse
Affiliation(s)
- U Benjamin Kaupp
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Jülich, Germany.
| | | |
Collapse
|
13
|
Higgins MK, Weitz D, Warne T, Schertler GF, Kaupp U. Molecular architecture of a retinal cGMP-gated channel: the arrangement of the cytoplasmic domains. EMBO J 2002; 21:2087-94. [PMID: 11980705 PMCID: PMC125374 DOI: 10.1093/emboj/21.9.2087] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2002] [Revised: 03/08/2002] [Accepted: 03/08/2002] [Indexed: 02/04/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) channels play a central role in the conversion of sensory information, such as light and scent, into primary electrical signals. We have purified the CNG channel from bovine retina and have studied it using electron microscopy and image processing. We present the structure of the channel to 35 A resolution. This three-dimensional reconstruction provides insight into the architecture of the protein, suggesting that the cyclic nucleotide-binding domains, which initiate the response to ligand, 'hang' below the pore-forming part of the channel, attached by narrow linkers. The structure also suggests that the four cyclic nucleotide-binding domains present in each channel form two distinct domains, lending structural weight to the suggestion that the four subunits of the CNG channels are arranged as a pair of dimers.
Collapse
Affiliation(s)
| | - Dietmar Weitz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK and
Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, D-52425 Jülich, Germany Corresponding authors e-mail: or M.K.Higgins and D.Weitz contributed equally to this work
| | | | - Gebhard F.X. Schertler
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK and
Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, D-52425 Jülich, Germany Corresponding authors e-mail: or M.K.Higgins and D.Weitz contributed equally to this work
| | - U.Benjamin Kaupp
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK and
Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, D-52425 Jülich, Germany Corresponding authors e-mail: or M.K.Higgins and D.Weitz contributed equally to this work
| |
Collapse
|
14
|
Flynn GE, Johnson JP, Zagotta WN. Cyclic nucleotide-gated channels: shedding light on the opening of a channel pore. Nat Rev Neurosci 2001; 2:643-51. [PMID: 11533732 DOI: 10.1038/35090015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- G E Flynn
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|