1
|
Venkat S, Chen H, McGuire P, Stahman A, Gan Q, Fan C. Characterizing lysine acetylation of Escherichia coli type II citrate synthase. FEBS J 2019; 286:2799-2808. [PMID: 30974512 DOI: 10.1111/febs.14845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/27/2022]
Abstract
The citrate synthase (CS) catalyzes the first reaction of the tricarboxylic acid cycle, playing an important role in central metabolism. The acetylation of lysine residues in the Escherichia coli Type II CS has been identified at multiple sites by proteomic studies, but their effects remain unknown. In this study, we applied the genetic code expansion strategy to generate 10 site-specifically acetylated CS variants which have been identified in nature. Enzyme assays and kinetic analyses showed that lysine acetylation could decrease the overall CS enzyme activity, largely due to the acetylation of K295 which impaired the binding of acetyl-coenzyme A. Further genetic studies as well as in vitro acetylation and deacetylation assays were performed to explore the acetylation and deacetylation processes of the CS, which indicated that the CS could be acetylated by acetyl-phosphate chemically, and be deacetylated by the CobB deacetylase.
Collapse
Affiliation(s)
- Sumana Venkat
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Hao Chen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Paige McGuire
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Alleigh Stahman
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.,Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
2
|
Young EM, Zhao Z, Gielesen BE, Wu L, Benjamin Gordon D, Roubos JA, Voigt CA. Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast. Metab Eng 2018; 48:33-43. [DOI: 10.1016/j.ymben.2018.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/25/2022]
|
3
|
Tsiganova MO, Gelfand MS, Ravcheev DA. Regulation of bacterial respiration: Comparison of microarray and comparative genomics data. Mol Biol 2007. [DOI: 10.1134/s0026893307030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Smith LD, Stevenson KJ, Hough DW, Danson MJ. Citrate synthase from the thermophilic archaebacteriaThermoplasma acidophilumandSulfolobus acidocaldarius. FEBS Lett 2001. [DOI: 10.1016/0014-5793(87)81174-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Gu Z, Drueckhammer DG, Kurz L, Liu K, Martin DP, McDermott A. Solid state NMR studies of hydrogen bonding in a citrate synthase inhibitor complex. Biochemistry 1999; 38:8022-31. [PMID: 10387046 DOI: 10.1021/bi9813680] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ionization state and hydrogen bonding environment of the transition state analogue (TSA) inhibitor, carboxymethyldethia coenzyme A (CMX), bound to citrate synthase have been investigated using solid state NMR. This enzyme-inhibitor complex has been studied in connection with the postulated contribution of short hydrogen bonds to binding energies and enzyme catalysis: the X-ray crystal structure of this complex revealed an unusually short hydrogen bond between the carboxylate group of the inhibitor and an aspartic acid side chain [Usher et al. (1994) Biochemistry 33, 7753-7759]. To further investigate the nature of this short hydrogen bond, low spinning speed 13C NMR spectra of the CMX-citrate synthase complex were obtained under a variety of sample conditions. Tensor values describing the chemical shift anisotropy of the carboxyl groups of the inhibitor were obtained by simulating MAS spectra (233 +/- 4, 206 +/- 5, and 105 +/- 2 ppm vs TMS). Comparison of these values with our previously reported database and ab initio calculations of carbon shift tensor values clearly indicates that the carboxyl is deprotonated. New data from model compounds suggest that hydrogen bonds in a syn arrangement with respect to the carboxylate group have a pronounced effect upon the shift tensors for the carboxylate, while anti hydrogen bonds, regardless of their length, apparently do not perturb the shift tensors of the carboxyl group. Thus the tensor values for the enzyme-inhibitor complex could be consistent with either a very long syn hydrogen bond or an anti hydrogen bond; the latter would agree very well with previous crystallographic results. Two-dimensional 1H-13C heteronuclear correlation spectra of the enzyme-inhibitor complex were obtained. Strong cross-peaks were observed from the carboxyl carbon to proton(s) with chemical shift(s) of 22 +/- 5 ppm. Both the proton chemical shift and the intensity of the cross-peak indicate a very short hydrogen bond to the carboxyl group of the inhibitor, the C.H distance based upon the cross-peak intensity being 2.0 +/- 0.4 A. This proton resonance is assigned to Hdelta2 of Asp 375, on the basis of comparison with crystal structures and the fact that this cross-peak was absent in the heteronuclear correlation spectrum of the inhibitor-D375G mutant enzyme complex. In summary, our NMR studies support the suggestion that a very short hydrogen bond is formed between the TSA and the Asp carboxylate.
Collapse
Affiliation(s)
- Z Gu
- Department of Chemistry, Columbia University, New York 10027, USA
| | | | | | | | | | | |
Collapse
|
6
|
Ayed A, Duckworth HW. A stable intermediate in the equilibrium unfolding of Escherichia coli citrate synthase. Protein Sci 1999; 8:1116-26. [PMID: 10338022 PMCID: PMC2144337 DOI: 10.1110/ps.8.5.1116] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Urea-induced unfolding of Escherichia coli citrate synthase occurs in two phases, as monitored by circular dichroism at 222 nm (measuring secondary structure) or by tryptophan fluorescence. In this paper we characterize the intermediate state, which retains about 40% of the ellipticity of the native state, and is stable between 2.5 M and 5.5 M urea, approximately. This intermediate binds significant amounts of the probe for hydrophobic surfaces, anilinonaphthalene sulfonate, but forms aggregates at least as high as an octamer, as shown by transverse urea gradient polyacrylamide electrophoresis. Thermal denaturation of E. coli citrate synthase also produces an intermediate at temperatures near 60 degrees C, which also retains about 40% of the native ellipticity and forms aggregates, as measured by electrospray-ionization/time-of-flight mass spectrometry. We have used a collection of "cavity-forming" mutant proteins, in which bulky buried hydrophobic residues are replaced by alanines, to explore the nature of the intermediate state further. A certain amount of these mutant proteins shows a destabilized intermediate, as measured by the urea concentration range in which the intermediate is observed. These mutants are found in parts of the citrate synthase sequence that, in a native state, form helices G, M, N, Q, R, and S. From this and other evidence, it is argued that the intermediate state is an aggregated state in which these six helices, or parts of them, remain folded, and that formation of this intermediate is also likely to be a key step in the folding of E. coli citrate synthase.
Collapse
Affiliation(s)
- A Ayed
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
7
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
8
|
Abstract
Coxiella burnetii, the causative agent of Q fever, is an obligate intracellular bacterium. With the development of molecular biology techniques, there have been increasing efforts on gene cloning and other genetic analyses of this organism. In this report, we tabulate the codon usage (CU) and nucleotide (nt) co-occurrence in C. burnetii, based on available nt sequence data. The average G+C content of the C. burnetii genome is 42.4%, where the G+C content is 42.7% for the chromosome and 38.7% for the plasmid. In comparison to Escherichia coli, there is biased CU. Some codons are frequently used in C. burnetii, but rarely used in E. coli and vice versa. Plasmid genes prefer A or T at the first or third position of a codon. However, TAA remains the most used stop codon. In the AT-rich DNA of C. burnetii, A or T tend to occur together, forming A or T tracks.
Collapse
Affiliation(s)
- Z Lin
- Department of Microbiology, Washington State University, Pullman 99164-4233, USA
| | | | | |
Collapse
|
9
|
Numata O. Multifunctional proteins in Tetrahymena: 14-nm filament protein/citrate synthase and translation elongation factor-1 alpha. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 164:1-35. [PMID: 8575889 DOI: 10.1016/s0074-7696(08)62383-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
One gene encoding a protein has been shown to have two entirely different functions. Such a phenomenon, which has been called "gene sharing," was first known in crystallins. We found two multifunctional proteins in the ciliated protozoan Tetrahymena: 14-nm filament protein and protein translation elongation factor 1-alpha (EF-1 alpha). The 14-nm filament protein has dual functions as a citrate synthase in mitochondria and as a cytoskeletal protein in cytoplasm. In cytoplasm, the 14-nm filament protein was involved in oral morphogenesis and in pronuclear behavior during conjugation. The observation that Tetrahymena intramitochondrial filamentous inclusions contain the 14-nm filament protein and that the citrate synthase activity of the 14-nm filament protein is decreased by polymerization and increased by depolymerization, suggests a possible modulating mechanism of citrate synthase activity by monomer-polymer conversion in mitochondria in situ. The EF-1 alpha functions as an F-actin-bundling protein and a 14-nm filament-associated protein as well as an elongation factor in protein synthesis. The F-actin-bundling activity of EF-1 alpha was regulated by Ca2+ and calmodulin. Here we review the properties and functions of two multifunctional proteins in Tetrahymena.
Collapse
Affiliation(s)
- O Numata
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Man WJ, Li Y, O'Connor CD, Wilton DC. The binding of propionyl-CoA and carboxymethyl-CoA to Escherichia coli citrate synthase. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1250:69-75. [PMID: 7612655 DOI: 10.1016/0167-4838(95)00044-u] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The interaction of propionyl-CoA and acetyl-CoA with E. coli citrate synthase has been studied in order to gain insight into the structural requirements for substrate binding by this enzyme. In contrast to the enzyme from pig heart, the E. coli enzyme was unable to catalyse significant exchange of the methylene protons of propionyl-CoA while overall activity was very low with this enzyme. Carboxymethyl-CoA is a presumptive transition state analogue of acetyl-CoA using pig heart citrate synthase. The effect of carboxymethyl-CoA on both the native enzyme from E. coli and a catalytically active aspartate mutant (D362E) was investigated. Whereas the native enzyme was inhibited by carboxymethyl-CoA, the mutant enzyme (D362E) shows either no inhibition or minimal inhibition depending on the assay conditions. The binding of acetyl-CoA is not inhibited as a result of the mutation. The results with propionyl-CoA and carboxymethyl-CoA suggest that the active site of the E. coli enzyme is more restricted as compared with the enzyme from pig heart and, in the case of propionyl-CoA, this restriction prevents the formation of a catalytically productive enzyme-substrate complex.
Collapse
Affiliation(s)
- W J Man
- Department of Biochemistry, University of Southampton, Bassett Crescent East, UK
| | | | | | | |
Collapse
|
11
|
Kato A, Hayashi M, Mori H, Nishimura M. Molecular characterization of a glyoxysomal citrate synthase that is synthesized as a precursor of higher molecular mass in pumpkin. PLANT MOLECULAR BIOLOGY 1995; 27:377-390. [PMID: 7888626 DOI: 10.1007/bf00020191] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cDNA clone for glyoxysomal citrate synthase (gCS) was isolated from a lambda gt11 cDNA library prepared from etiolated pumpkin cotyledons. The cDNA of 1989 bp consisted of a 1548 bp open reading frame that encoded 516 amino acid residues. The deduced amino acid sequence of gCS did not have a typical peroxisomal targeting signal at its carboxyl terminal. A study of expression in vitro of the cDNA and an analysis of the amino-terminal sequence of the citrate synthase indicated that gCS is synthesized as a larger precursor that has a cleavable amino-terminal presequence of 43 amino acids. The predicted amino-terminal sequence of pumpkin gCS was highly homologous to those of other microbody enzymes, such as 3-ketoacyl-CoA thiolase of rat and malate dehydrogenase of watermelon that are also synthesized as precursors of higher molecular mass. Immunoblot analysis showed that the level of gCS protein increased markedly during germination and decreased rapidly during the light-induced transition of microbodies from glyoxysomes to leaf peroxisomes. By contrast, the level of mRNA for gCS reached a maximum earlier than that of the protein and declined even in darkness. The level of the mRNA was low during the microbody transition. These results indicate that the accumulation of the gCS protein does not correspond to that of the mRNA and that degradation of gCS is induced during the microbody transition, suggesting that post-transcriptional regulation plays an important role in the microbody transition.
Collapse
Affiliation(s)
- A Kato
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
12
|
Abstract
Two distinct Bacillus subtilis genes (citA and citZ) were found to encode citrate synthase isozymes that catalyze the first step of the Krebs cycle. The citA gene was cloned by genetic complementation of an Escherichia coli citrate synthase mutant strain (W620) and was in a monocistronic transcriptional unit. A divergently transcribed gene, citR, could encode a protein with strong similarity to the bacterial LysR family of regulatory proteins. A null mutation in citA had little effect on citrate synthase enzyme activity or sporulation. The residual citrate synthase activity was purified from a citA null mutant strain, and the partial amino acid sequence for the purified protein (CitZ) was determined. The citZ gene was cloned from B. subtilis chromosomal DNA by using a PCR-generated probe synthesized with oligonucleotide primers derived from the partial amino acid sequence of purified CitZ. The citZ gene proved to be the first gene in a tricistronic cluster that also included citC (coding for isocitrate dehydrogenase) and citH (coding for malate dehydrogenase). A mutation in citZ caused a substantial loss of citrate synthase enzyme activity, glutamate auxotrophy, and a defect in sporulation.
Collapse
Affiliation(s)
- S Jin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
13
|
Park SJ, McCabe J, Turna J, Gunsalus RP. Regulation of the citrate synthase (gltA) gene of Escherichia coli in response to anaerobiosis and carbon supply: role of the arcA gene product. J Bacteriol 1994; 176:5086-92. [PMID: 8051021 PMCID: PMC196348 DOI: 10.1128/jb.176.16.5086-5092.1994] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
As an enzyme of the tricarboxylic acid cycle pathway, citrate synthase participates in the generation of a variety of cellular biosynthetic intermediates and in that of reduced purine nucleotides that are used in energy generation via electron transport-linked phosphorylation reactions. It catalyzes the condensation of oxaloacetate and acetyl coenzyme A to produce citrate plus coenzyme A. In Escherichia coli this enzyme is encoded by the gltA gene. To investigate how gltA expression is regulated, a gltA-lacZ operon fusion was constructed and analyzed following aerobic and anaerobic cell growth on various types of culture media. Under aerobic culture conditions, expression was elevated to a level twofold higher than that reached under anaerobic culture conditions. ArcA functions as a repressor of gltA expression under each set of conditions: in a delta arcA strain, gltA-lacZ expression was elevated to levels two- and eightfold higher than those seen in a wild-type strain under aerobic and anaerobic conditions, respectively. This control is independent of the fnr gene product, an alternative anaerobic gene regulator in E. coli. When the richness or type of carbon compound used for cell growth was varied, gltA-lacZ expression varied by 10- to 14-fold during aerobic and anaerobic growth. This regulation was independent of both the crp and fruR gene products, suggesting that another regulatory element in E. coli is responsible for the observed control. Finally, gltA-lacZ expression was shown to be inversely proportional to the cell growth rate. These findings indicate that the regulation of gltA gene expression is complex in meeting the differential needs of the cell for biosynthesis and energy generation under various cell culture conditions.
Collapse
Affiliation(s)
- S J Park
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024
| | | | | | | |
Collapse
|
14
|
Active site mutants of Escherichia coli citrate synthase. Effects of mutations on catalytic and allosteric properties. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42366-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Abstract
Plasmid vectors for the acetic acid-producing strains of Acetobacter and Gluconobacter were constructed from their cryptic plasmids and the efficient transformation conditions were established. The systems allowed to reveal the genetic background of the strains used in the acetic acid fermentation. Genes encoding indispensable components in the acetic acid fermentation, such as alcohol dehydrogenase, aldehyde dehydrogenase and terminal oxidase, were cloned and characterized. Spontaneous mutations at high frequencies in the acetic acid bacteria to cause the deficiency in ethanol oxidation were analyzed. A new insertion sequence element, IS1380, was identified as a major factor of the genetic instability, which causes insertional inactivation of the gene encoding cytochrome c, an essential component of the functional alcohol dehydrogenase complex. Several genes including the citrate synthase gene of A. aceti were identified to confer acetic acid resistance, and the histidinolphosphate aminotransferase gene was cloned as a multicopy suppressor of an ethanol sensitive mutant. Improvement of the acetic acid productivity of an A. aceti strain was achieved through amplification of the aldehyde dehydrogenase gene with a multicopy vector. In addition, spheroplast fusion of the Acetobacter strains was developed and applied to improve their properties.
Collapse
Affiliation(s)
- T Beppu
- Department of Agricultural Chemistry, Faculty of Agriculture, University of Tokyo, Japan
| |
Collapse
|
16
|
Patton AJ, Hough DW, Towner P, Danson MJ. Does Escherichia coli possess a second citrate synthase gene? EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:75-81. [PMID: 8508809 DOI: 10.1111/j.1432-1033.1993.tb17898.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Escherichia coli possesses a hexameric citrate synthase that exhibits allosteric kinetics and regulatory sensitivity, and for which the gene (gltA) has previously been cloned and sequenced. A citrate-synthase-deficient strain of E. coli (K114) has been mutated to generate a revertant (K114r4) that produces a dimeric citrate synthase with altered kinetic and regulatory properties. On cloning and sequencing the gltA gene from both K114 and K114r4, a single mutation was found that caused the replacement of Asp362 with Asn. Asp362 has been previously shown to be a catalytically essential residue in E. coli citrate synthase, and we demonstrate that the hexameric enzyme produced on expression of the gltA gene from K114 and K114r4 is inactive. The dimeric citrate synthase from K114r4 has been purified and shown to be immunologically distinct from the wild-type hexameric enzyme. Determination of its N-terminal amino acid sequence demonstrates that the mutant citrate synthase is encoded by a gene distinct from the E. coli gltA gene. The N-terminal sequence is compared with those of other eukaryotic, eubacterial and archaebacterial citrate synthases.
Collapse
Affiliation(s)
- A J Patton
- Department of Biochemistry, University of Bath, England
| | | | | | | |
Collapse
|
17
|
Molgat GF, Donald LJ, Duckworth HW. Chimeric allosteric citrate synthases: construction and properties of citrate synthases containing domains from two different enzymes. Arch Biochem Biophys 1992; 298:238-46. [PMID: 1524432 DOI: 10.1016/0003-9861(92)90118-g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The citrate synthases of the gram-negative bacteria, Escherichia coli and Acinetobacter anitratum, are allosterically inhibited by NADH. The kinetic properties, however, suggest that the equilibrium between active (R) and inactive (T) conformational states is shifted toward the T state in the E. coli enzyme. We have now manipulated the cloned genes for the two bacterial enzymes to produce two chimeric proteins, in which one folding domain of each subunit is derived from each enzyme. One chimera (the large domain from A. anitratum and the small domain from the E. coli enzyme) is designated CS ACI::eco; the other is called CS ECO::aci. Both chimeras are roughly as active as the wild type parents, but their Km values for both substrates are lower than those for the E. coli enzyme, and NADH inhibition is markedly sigmoid, while that for E. coli citrate synthases is hyperbolic. Curve-fitting to the allosteric equation suggests that these differences are the result of the destabilization of the T state in the chimeras. The ACI::eco chimera exists almost entirely as a hexamer, like the A. anitratum enzyme, while the ECO::aci chimera, like the E. coli synthase, forms three major bands on nondenaturing polyacrylamide gels, two of them hexamers of different net charge, and one a dimer. These findings indicate that subunit interactions leading to hexamer formation in allosteric citrate synthases of gram-negative bacteria involve mainly the large domains. The chimeras are also used to show that the NADH binding site of E. coli citrate synthase is located entirely in the large domain. Sensitivity of the chimeras to denaturation by urea, to which the A. anitratum enzyme is much more resistant than the E. coli enzyme, is determined by the large domains. Sensitivity to inactivation by subtilisin is intermediate between those shown by the E. coli (very sensitive) and A. anitratum (quite resistant) synthases. This result suggests that digestibility by subtilisin is determined by conformational factors as well as the amino acid sequences of the target regions.
Collapse
Affiliation(s)
- G F Molgat
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
18
|
Gietl C. Malate dehydrogenase isoenzymes: cellular locations and role in the flow of metabolites between the cytoplasm and cell organelles. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1100:217-34. [PMID: 1610875 DOI: 10.1016/0167-4838(92)90476-t] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malate dehydrogenases belong to the most active enzymes in glyoxysomes, mitochondria, peroxisomes, chloroplasts and the cytosol. In this review, the properties and the role of the isoenzymes in different compartments of the cell are compared, with emphasis on molecular biological aspects. Structure and function of malate dehydrogenase isoenzymes from plants, mammalian cells and ascomycetes (yeast, Neurospora) are considered. Significant information on evolutionary aspects and characterisation of functional domains of the enzymes emanates from bacterial malate and lactate dehydrogenases modified by protein engineering. The review endeavours to give up-to-date information on the biogenesis and intracellular targeting of malate dehydrogenase isoenzymes as well as enzymes cooperating with them in the flow of metabolites of a given pathway and organelle.
Collapse
Affiliation(s)
- C Gietl
- Institute of Botany, Technical University of Munich, München, Germany
| |
Collapse
|
19
|
Donald L, Crane B, Anderson D, Duckworth H. The role of cysteine 206 in allosteric inhibition of Escherichia coli citrate synthase. Studies by chemical modification, site-directed mutagenesis, and 19F NMR. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54766-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Nishiyama M, Horinouchi S, Beppu T. Characterization of an operon encoding succinyl-CoA synthetase and malate dehydrogenase from Thermus flavus AT-62 and its expression in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:1-9. [PMID: 2034208 DOI: 10.1007/bf00273580] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An open reading frame (ORF) was found upstream of the mdh gene in Thermus flavus by computer-aided analysis. It was identified as the gene encoding the alpha subunit of succinyl-CoA synthetase (SCS) and termed scsA. Nucleotide sequencing of a further upstream region revealed the presence of another ORF, corresponding to the sequence of the beta subunit of SCS. The latter gene was termed scsB. The scsB gene was found to contain an unusual translational initiation codon, TTG. S1 nuclease mapping indicates that transcription starts at the nucleotide at position--31 upstream of the initiation codon of the beta gene. The scsB and scsA genes along with the mdh gene appear to form an operon and are most likely co-transcribed in this order, because the intercistronic regions between them are very short; in fact, the termination codon of scsB overlaps the initiation codon of scsA. A stretch characteristic of the--10 region of a typical prokaryotic promoter was found upstream of scsB, whereas no sequence characteristic of a typical--35 region was present. Escherichia coli harboring a plasmid containing scsA and scsB did not produce thermostable SCS activity, even when a synthetic promoter for E. coli was attached. However, when an inverted repeat present in front of scsB, which covers the putative ribosome-binding site and is capable of forming a stable stem-loop structure, was altered by site-directed mutagenesis, overproduction of heat-stable SCS was observed.
Collapse
Affiliation(s)
- M Nishiyama
- Department of Agricultural Chemistry, University of Tokyo, Japan
| | | | | |
Collapse
|
21
|
Regnery RL, Spruill CL, Plikaytis BD. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol 1991; 173:1576-89. [PMID: 1671856 PMCID: PMC207306 DOI: 10.1128/jb.173.5.1576-1589.1991] [Citation(s) in RCA: 772] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA sequences from specific genes, amplified by the polymerase chain reaction technique, were used as substrata for nonisotopic restriction endonuclease fragment length polymorphism differentiation of rickettsial species and genotypes. The products amplified using a single pair of oligonucleotide primers (derived from a rickettsial citrate synthase gene sequence) and cleaved with restriction endonucleases were used to differentiate almost all recognized species of rickettsiae. A second set of primers was used for differentiation of all recognized species of closely related spotted fever group rickettsiae. The procedure circumvents many technical obstacles previously associated with identification of rickettsial species. Multiple amplified DNA digest patterns were used to estimate the intraspecies nucleotide sequence divergence for the genes coding for rickettsial citrate synthase and a large antigen-coding gene of the spotted fever group rickettsiae. The estimated relationships deduced from these genotypic data correlate reasonably well with established rickettsial taxonomic schemes.
Collapse
Affiliation(s)
- R L Regnery
- Viral and Rickettsial Zoonoses Branch, Centers for Disease Control, Atlanta, Georgia 30333
| | | | | |
Collapse
|
22
|
Sutherland KJ, Henneke CM, Towner P, Hough DW, Danson MJ. Citrate synthase from the thermophilic archaebacterium Thermoplasma acidophilium. Cloning and sequencing of the gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 194:839-44. [PMID: 2269303 DOI: 10.1111/j.1432-1033.1990.tb19477.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The gene encoding the citric acid cycle enzyme, citrate synthase, has been cloned from the thermoacidophilic archaebacterium, Thermoplasma acidophilum. We report the sequencing of this gene and its flanking regions, and the derived amino acid sequence of the enzyme is compared by multiple-sequence alignment analysis with those of citrate synthases from eubacterial and eukaryotic organisms. The similarity is less than 30% between the archaebacterial and non-archaebacterial sequences, although the majority of residues implicated in the catalytic action of the enzyme have been conserved across all three kingdoms. The cloned archaebacterial gene has been expressed in Escherichia coli to produce catalytically active citrate synthase. This is the first reported sequence of citrate synthase from the archaebacteria.
Collapse
|
23
|
Oden KL, DeVeaux LC, Vibat CR, Cronan JE, Gennis RB. Genomic replacement in Escherichia coli K-12 using covalently closed circular plasmid DNA. Gene 1990; 96:29-36. [PMID: 2265756 DOI: 10.1016/0378-1119(90)90337-q] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A number of gene replacements at different loci were constructed using covalently closed circular (ccc) plasmid DNA in the recB21 recC22 sbcB15 sbcC201 mutant of Escherichia coli (JC7623). Selected constructs representing deletions and insertion mutations formed from double-crossover events involving the ccc plasmid molecules and the genome were confirmed by Southern blots, and the frequency of double-crossover events was evaluated. It is reported that such mutants may be constructed without linearizing plasmid DNA, as described previously.
Collapse
Affiliation(s)
- K L Oden
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | | | | | | | |
Collapse
|
24
|
Regnery R. Use of DNA probes for differentiation of spotted fever group and other rickettsiae. Ann N Y Acad Sci 1990; 590:422-9. [PMID: 1974125 DOI: 10.1111/j.1749-6632.1990.tb42250.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R Regnery
- Division of Viral and Rickettsial Diseases, Centers for Disease Control, Department of Health and Human Services, Atlanta, Georgia 30333
| |
Collapse
|
25
|
Fukaya M, Takemura H, Okumura H, Kawamura Y, Horinouchi S, Beppu T. Cloning of genes responsible for acetic acid resistance in Acetobacter aceti. J Bacteriol 1990; 172:2096-104. [PMID: 2156811 PMCID: PMC208709 DOI: 10.1128/jb.172.4.2096-2104.1990] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Five acetic acid-sensitive mutants of Acetobacter aceti subsp. aceti no. 1023 were isolated by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Three recombinant plasmids that complemented the mutations were isolated from a gene bank of the chromosome DNA of the parental strain constructed in Escherichia coli by using cosmid vector pMVC1. One of these plasmids (pAR1611), carrying about a 30-kilobase-pair (kb) fragment that conferred acetic acid resistance to all five mutants, was further analyzed. Subcloning experiments indicated that a 8.3-kb fragment was sufficient to complement all five mutations. To identify the mutation loci and genes involved in acetic acid resistance, insertional inactivation was performed by insertion of the kanamycin resistance gene derived from E. coli plasmid pACYC177 into the cloned 8.3-kb fragment and successive integration into the chromosome of the parental strain. The results suggested that three genes, designated aarA, aarB, and aarC, were responsible for expression of acetic acid resistance. Gene products of these genes were detected by means of overproduction in E. coli by use of the lac promoter. The amino acid sequence of the aarA gene product deduced from the nucleotide sequence was significantly similar to those of the citrate synthases (CSs) of E. coli and other bacteria. The A. aceti mutants defective in the aarA gene were found to lack CS activity, which was restored by introduction of a plasmid containing the aarA gene. A mutation in the CS gene of E. coli was also complemented by the aarA gene. These results indicate that aarA is the CS gene.
Collapse
Affiliation(s)
- M Fukaya
- Nakano Central Research Institute, Nakano Vinegar Co., Ltd., Aichi, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Guest JR, Angier SJ, Russell GC. Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli. Ann N Y Acad Sci 1989; 573:76-99. [PMID: 2699406 DOI: 10.1111/j.1749-6632.1989.tb14988.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- J R Guest
- Department of Microbiology, University of Sheffield, United Kingdom
| | | | | |
Collapse
|
27
|
Handford PA, Ner SS, Bloxham DP, Wilton DC. Site-directed mutagenesis of citrate synthase; the role of the active-site aspartate in the binding of acetyl-CoA but not oxaloacetate. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 953:232-40. [PMID: 3281713 DOI: 10.1016/0167-4838(88)90030-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Asp-362, a potential key catalytic residue of Escherichia coli citrate synthase (citrate oxaloacetate-lyase [pro-3S)-CH2COO- ----acetyl-CoA), EC 4.1.3.7) has been converted to Gly-362 by oligonucleotide-directed mutagenesis. The mutant gene was completely sequenced, using a series of synthetic oligodeoxynucleotides spanning the structural gene to confirm that no additional mutations had occurred during genetic manipulation. The mutant gene was expressed in M13 bacteriophage and produced a protein which migrated in an identical manner to wild-type E. coli citrate synthase on SDS-polyacrylamide gels and which cross-reacted with E. coli citrate synthase antiserum. The mutant gene was subsequently recloned into pBR322 for large scale purification of the protein, and the resulting plasmid, pCS31, used to transform the citrate synthase deletion strain, W620. The mutant enzyme purified in an analogous manner to wild-type E. coli citrate synthase and expressed less than 2% of wild-type enzyme activity. The activity of the partial reactions catalysed by citrate synthase was similarly affected suggesting that this residual activity may be due to contaminating wild-type enzyme activity. The mutant citrate synthase retains a high-affinity NADH-binding site consistent with the protein preserving its overall structural integrity. Oxaloacetate binding to the protein is unaffected by the Asp-362 to Gly-362 mutation. Binding of the acetyl-CoA analogue, carboxymethyl-CoA, could not be detected in the mutant protein indicating that the lack of catalytic competence is due primarily to the inability of the protein to bind the second substrate, acetyl-CoA.
Collapse
Affiliation(s)
- P A Handford
- Department of Biochemistry, University of Southampton, U.K
| | | | | | | |
Collapse
|
28
|
Anderson DH, Duckworth HW. In vitro mutagenesis of Escherichia coli citrate synthase to clarify the locations of ligand binding sites. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69186-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Danson MJ. Archaebacteria: the comparative enzymology of their central metabolic pathways. Adv Microb Physiol 1988; 29:165-231. [PMID: 3132816 DOI: 10.1016/s0065-2911(08)60348-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M J Danson
- Department of Biochemistry, University of Bath, England
| |
Collapse
|
30
|
Wood DO, Williamson LR, Winkler HH, Krause DC. Nucleotide sequence of the Rickettsia prowazekii citrate synthase gene. J Bacteriol 1987; 169:3564-72. [PMID: 3112124 PMCID: PMC212433 DOI: 10.1128/jb.169.8.3564-3572.1987] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Rickettsia prowazekii citrate synthase (gltA) gene, previously cloned in Escherichia coli, was localized to a 2.0-kilobase chromosomal fragment. DNA sequence analysis of a portion of this fragment revealed an open reading frame of 1,308 base pairs that encodes a protein of 435 amino acids with a molecular weight of 49,171. This translation product is comparable in size to both the E. coli and pig heart citrate synthase monomers and to the protein synthesized in E. coli minicells containing the rickettsial gene. Comparisons between the deduced amino acid sequence of R. prowazekii citrate synthase and those of the E. coli and pig heart enzymes revealed extensive homology (59%) between the two bacterial proteins. In contrast, only 20% of the rickettsial enzyme residues were shared with the functionally similar pig heart enzyme residues. Upstream from the open reading frame and in close proximity to one another, sequences with homology to E. coli consensus sequences for RNA polymerase and ribosome binding were identified. S1 nuclease mapping experiments demonstrated that the start of transcription for this gene in E. coli was located in the upstream region. Codon usage in the rickettsial gltA gene was found to be very biased and differed from the pattern observed in E. coli. Adenine and uracil were used preferentially in the third base position of rickettsial codons.
Collapse
|
31
|
Ner SS, Bloxham DP, Handford PA, Akhtar M. The synthesis and use of oligodeoxynucleotides in plasmid DNA sequencing. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1986; 18:257-62. [PMID: 3514304 DOI: 10.1016/0020-711x(86)90115-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A convenient procedure for the synthesis and purification of oligonucleotides is described. 16-base long primers synthesised by this method were used to investigate DNA sequencing using plasmid DNA as a template. This allowed the further analysis of the E. coli glt A sequence coding for citrate synthase and enabled determination of the 5'-non-coding regulatory region of the aminoglycoside phosphotransferase gene.
Collapse
|
32
|
Buck D, Spencer ME, Guest JR. Primary structure of the succinyl-CoA synthetase of Escherichia coli. Biochemistry 1985; 24:6245-52. [PMID: 3002435 DOI: 10.1021/bi00343a031] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The primary structure of the succinyl-CoA synthetase of Escherichia coli has been deduced from the nucleotide sequence of a 2451-base-pair segment of DNA containing the corresponding sucC (beta subunit) and sucD (alpha subunit) genes. The genes are located at one end of a gene cluster that encodes several citric acid cycle enzymes: gltA-sdhCDAB-sucABCD; gltA, citrate synthase; sdh, succinate dehydrogenase; sucA and sucB, the dehydrogenase (E1) and succinyltransferase (E2) components of the 2-oxoglutarate dehydrogenase complex. The sucC and sucD genes are separated from the sucA and sucB genes by a 273-base-pair segment containing four palindromic units, but they appear to be expressed from a sucABCD read-through transcript that extends from the suc promoter to a potential rho-independent terminator at the distal end of sucD. The stop codon of the sucC gene overlaps the sucD initiation codon by a single nucleotide, indicating close translational coupling of the sucC and sucD genes. The sucC gene comprises 1161 base pairs (388 codons, excluding the stop codon), and it encodes a polypeptide of Mr 41 390 corresponding to the beta subunit of succinyl-CoA synthetase. The sucD gene comprises 864 base pairs (288 codons, excluding the start and stop codons), and it encodes a product of Mr 29 644, corresponding to the alpha subunit of succinyl-CoA synthetase. The alpha subunit contains a 12-residue amino acid sequence that is identical with the histidine peptide previously isolated from the phosphoenzyme. This sequence forms part of one of the two potential nucleotide binding sites detected in the alpha subunit.
Collapse
|
33
|
Pullen AM, Budgen N, Danson MJ, Hough DW. Citrate synthase: an immunochemical investigation of interspecies diversity. FEBS Lett 1985; 182:163-6. [PMID: 2578989 DOI: 10.1016/0014-5793(85)81175-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rabbit antibodies have been raised to pig heart citrate synthase. Using purified IgG, competitive enzyme-linked immunoassays and assays of citrate synthase activity indicate the presence of antibodies to a number of antigenic sites on the enzyme, only some of which are essential for catalytic activity. From a comparison of citrate synthases from prokaryotic and eukaryotic organisms, the degree of interaction between antibody and enzyme was in the order: pig heart greater than pigeon breast greater than Bacillus megaterium greater than Escherichia coli. These findings are discussed in terms of the known interspecies diversity of the enzyme.
Collapse
|
34
|
Abstract
Overlapping restriction fragments of DNA carrying the gua promoter region of Escherichia coli have been cloned using promoter-probe plasmids. Antibiotic resistance conferred by the constructed plasmids is repressed by guanine and enhanced by adenine, two features characteristic of expression of the gua operon. The nucleotide sequence of these fragments reveals the gua promoter 43 bp upstream of the translational start codon for inosine 5'-monophosphate (IMP) dehydrogenase. The promoter is preceded by an A + T-rich region and several potential polymerase secondary binding sites, and is immediately followed by a G + C-rich discriminator, suggesting that the gua operon may be under stringent control. A sequence with twofold symmetry overlaps both promoter and discriminator and is therefore located where repressor binding could interfere with transcription initiation. A stem and loop can be formed from the leader mRNA, thus sequestering the ribosome-binding site.
Collapse
|